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ABSTRACT 
Companies are increasingly struggling to manage their complex product portfolios. Since they do not 
fully understand the complexity, intelligent solutions are required. Emerging technologies and tools 
offer new ways to deal with existing problems. With the help of clustering, similarities between product 
variants can be identified automatically, and complexity can be systematically reduced. This article aims 
to develop a methodological approach to identify correlations between product variants in complex 
product portfolios automatically by using clustering algorithms. The approach includes the systematic 
cleaning and transformation of product portfolio data. In addition, a guide for algorithm selection and 
evaluation of clustering results is presented. As the last step, the results are systematically analysed and 
visualised. To validate the methodical approach, it is applied to a real-world data set of a commercial 
vehicle manufacturer and the usefulness of the results is confirmed in an expert workshop. 
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1 INTRODUCTION 

The number of product variants offered by companies has increased significantly in recent years due 

to changes in customer demands and increased global competition in many industries (Krause and 

Gebhardt, 2018). The growing external variety leads to an increase in internal variety and thus to 

higher complexity and costs (Schuh et al., 2018). To keep internal variety and complexity as low as 

possible, companies pursue different strategies for product structuring (e.g. platforms or modular 

systems). Nevertheless, the large number of product variants is increasingly challenging for companies 

(Schmieder and Thomas, 2005). For example, a BMW 7 can have up to 1017 possible product variants 

(Hu et al., 2008). The number is much higher for commercial vehicles (Kusiak et al., 2007). Although 

the complexity is no longer manageable manually, the activities in product portfolio and variety 

management are driven by the experiential knowledge of the developers (Mehlstäubl, Braun, et al., 

2022). Machine learning techniques offer great potential in these disciplines and make it possible to 

gain insights from large amounts of data and thus provide a meaningful basis of information for 

decision-making processes in product portfolio and variety management (Mehlstäubl et al., 2023). 

Especially clustering algorithms offer great potential for identifying similarities among product 

variants (Hochdörffer et al., 2018). Compared to manual approaches, there are advantages in terms of 

time and costs as well as the objectivity of the results. The described motivation and problem 

statement results in the following research question: How can correlations between product variants in 

complex product portfolios be detected automatically using clustering algorithms? 

In the following terminological and methodological background of complex product portfolios and 

clustering is described in section 2. Subsequently, in section 3, state of the art on the clustering of 

complex product portfolios is presented and the need for research is derived. Section 4 presents the 

research methodology used to conduct this research. Section 5 describes the methodological approach 

for clustering complex product portfolios. Subsequently, in section 6, the validation of the results 

through a case study at an industrial partner from the commercial vehicle sector is conducted. The 

validation includes the application of the approach to a real-world data set as well as the assessment by 

experts in a workshop. 

2 BACKGROUND 

2.1 Complex product portfolios 

The product portfolio refers to all products and/or services that a company offers on the market (Jonas, 

2013). It consists of several product families, which represent a selection of similar product variants 

developed on a common product platform (Kissel, 2014). Product variants are products of similar form 

or function with a generally high proportion of identical groups or parts (DIN 199-1, 2002). In systems 

theory, complexity is understood to be the number, variety and relationships of the elements as well as 

their states and variability (Krause and Gebhardt, 2018). Complex product portfolios result from the 

number, variety and temporal variability of features and components, their relationships, and the 

resulting product configurations. Since a lot of product variants are not profitable due to complexity 

costs, many companies are focusing on projects to rationalise product variety. Examples of complex 

product portfolios are those of passenger or commercial vehicle manufacturers with hundreds or 

thousands of features that can be selected by the customer (Greisel et al., 2013). 

2.2 Clustering as a part of machine learning 

Machine learning is the science that gives computers the ability to learn without being explicitly 

programmed (Samuel, 1959). A computer program learns from experience E concerning a task T and a 

performance measure P if its performance on T, measured against P, improves with experience E 

(Mitchell, 1997). Murphy (2012) extends the definition to include the use of patterns for prediction 

and decision support. He defines machine learning as a set of techniques that can automatically detect 

patterns in data and use them to predict future data or make other types of decisions under uncertainty. 

Clustering is a technique of unsupervised machine learning. In unsupervised learning, patterns are 

extracted from unlabelled data. The aim is to identify similar instances in a data set and to divide them 

into homogeneous groups (Géron, 2017). This can be expressed as the partitioning of n data points of 

a data set D = {x1, x2, ..., xn} into k disjunctive subsets C1, C2, ..., Ck. Each data point is described as 
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a vector of feature values (Kubat, 2021). This results in different approaches for clustering procedures. 

A distinction can be made between density-based, distance-based, probabilistic, and hierarchical 

clustering algorithms. The clustering itself is only a single phase in a data analysis process. For the 

industrial application of clustering, a data analysis process must be run through entirely. In this article, 

the CRoss Industry Standard Process for Data Mining (CRISP-DM) by Wirth and Hipp (2000) is used 

to develop the methodological approach to cluster complex product portfolios. This process focuses 

the industrial application of data analysis and is characterised by the phases of business and data 

understanding at the beginning. These phases are particularly important in industry and product design 

due to the complexity of the domains and the data challenges (Mehlstäubl, Gadzo, et al., 2022). 

3 STATE OF THE ART 

The state of the art is based on the literature review conducted by Mehlstäubl et al. (2021) on the use 

of data mining in product portfolio and variety management. For this article, the relevant approaches 

are those that use clustering for variety reduction and control as well as for market analysis. Zhang et 

al. (2007) investigate ways to identify product families based on market segmentation. They define 

product families directly from the preferences of the respective customer group, which result from the 

feature combinations sold. Fuzzy clustering is used for this purpose, which considers the fuzziness of 

customer preferences. Tucker et al. (2010) propose a methodology for the top-down development of 

product families. This makes it possible to derive the optimal number of product families based on 

customer preference data and to minimise product portfolio cost. They apply the ReliefF algorithm for 

weighting product features and the X-Means algorithm for clustering. In the context of individualised 

mass production, Kusiak et al. (2007) investigate possibilities for the standardisation of product 

configurations to reduce variety-induced complexity. They cluster historical sales data of trucks using 

the k-means algorithm to identify central customer configurations. Chan et al. (2012) investigate ways 

to identify ideal points within market segments. They consider that evaluating product features from 

the consumer's point of view is not fully separable when making a purchase decision. They use also 

fuzzy clustering for market segmentation based on customer survey data. 

Romanowski and Nagi (2004) are developing an approach for the automated generation of generic 

BOMs. First, purchased parts are unified into part groups using a hierarchical clustering algorithm. 

Subsequently, all existing sub-assemblies are grouped using the k-medoid algorithm. In the k-medoid 

algorithm, the most centrally located data point of a cluster is defined as the cluster centre. Finally, 

using the same algorithm, groups of similar products, i.e. product families, are identified from all 

existing parts lists. Neis (2015) applies a two-stage clustering to BOMs. In the first step, the product 

portfolio is structured with a hierarchical clustering and the number of clusters or product families is 

determined. In the second step, a k-medoid procedure is used to determine the reference product 

structure. The medoids serve as the starting point for the reference product structure. Ma and Kim 

(2016) present a method in which product architecture candidates are generated using the k-means 

clustering algorithm for different values of k. The method is based on a time series analysis. Using a 

time series analysis, the expected profits are then modelled to determine the optimal position and 

number of product architectures among the product architecture candidates. The current state of the art 

shows a need for further research regarding three main fields associated with the defined research 

question. First, none of the existing approaches is clustering data of complex product portfolios with a 

variety of features and sold configurations. Second, there is a need for research regarding the 

optimisation of clustering by using and comparing different algorithms. Third, the existing approaches 

do not evaluate the quality of clustering by applying different validity indices. 

4 RESEARCH APPROACH 

The research approach of this article is based on the Design Research Methodology (DRM) type 5 

according to Blessing and Chakrabarti (2009). In the first phase, the research question is defined 

based on a literature review and the challenges of an industrial partner. Subsequently, the 

descriptive study I provides a deeper understanding about theoretical as well as methodological 

background. In the prescriptive study, the methodological approach to cluster complex product 

portfolios is introduced. It is derived from the CRISP-DM process model and describes the 

individual phases for the analysis of complex product portfolios with clustering. The approach 

consists of five phases and is validated in the final descriptive study II with a case study in the 

https://doi.org/10.1017/pds.2023.265 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.265


2648  ICED23 

commercial vehicle industry. Due to the global competitive situation and the multitude of 

transport tasks and application scenarios, commercial vehicle manufacturers have a particularly 

broad and deep product portfolio (Kreimeyer et al., 2013) and are therefore particularly well 

suited for a case study. The descriptive study II consists of a validation of the applicability as well 

as the success of the introduced approach. In the application validation, a real sales data set with 

configurations of product variants was analysed. In the success validation, the results are 

evaluated with eleven experts from the industrial partner in a workshop. 

5 METHODICAL APPROACH TO CLUSTER COMPLEX PRODUCT 

PORTFOLIOS 

The developed methodical approach enables the clustering of data that represent a complex product 

portfolio. An overview of the approach is given in Figure 1. The first step is to describe and select the 

target data, i.e. the data set on the basis of which the clustering of a product portfolio can be carried 

out (section 5.1). The preparation of the data includes the handling of missing values, encoding and 

dimension reduction (section 5.2). In clustering, the algorithms are selected and implemented 

systematically (section 5.3). The next step is the evaluation of the clusters identified with the help of 

clustering validation indices (section 5.4). Finally, the clusters are analysed and the optimal clustering 

is visualised (section 5.5). 

 

Figure 1: Overview of the methodical approach 

5.1 Product data model and sales data 

In complex product portfolios, the product variants are derived from a generic product data model that 

is valid for all product variants (Braun et al., 2017). The main elements of a product data model are the 

feature structure, the product structure and the rule sets (Kreimeyer et al., 2016). The feature structure 

contains all feature categories (e.g. suspension) and the associated features (e.g. air or leaf suspension) 

that can be selected by the customer and allows a complete product description of all possible product 

variants from a sales perspective. The dependencies and constraints between the individual features 

are mostly defined by the Boolean combinatoric rules (Mortensen et al., 2000). The product structure 

represents the corresponding engineering view and structures all technical solution modules. It 

contains the components (e.g. steering wheel) and the associated component variants (e.g. steering 

wheel standard or plastic). The component variants represent the smallest elements, the technical 

modules, which can be combined into a complete product. In the configuration process of a product 

variant, one feature from each feature category is selected by the customer based on the specifications 

and restrictions of the product data model. The resulting component variants are picked based on the 

features with Boolean part selection rules. Clustering can be carried out at both the feature level and 

the component level. 
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Methodical Approach to 

Cluster Complex Product Portfolios

5.1 Product Data Model and Sales Data 

5.2 Handling Missing Values, Encoding, 
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5.2 Handling missing values, encoding, and dimensionality reduction 

The product data model is in constant motion as feature categories and components are added or 

removed in line with product development cycles. For this reason, the sales data contains missing values, 

which must be cleaned up. Feature categories or product variants can be deleted if the majority of the 

entries contain missing values. If only individual values are missing, they are replaced by a fixed value.  

An attempt is made to replace the missing value with the value with the highest probability (Han et al., 

2012). In cases with categorical input data with no ordinal relationship, the most probable value is the 

most frequent expression. Clustering algorithms can only process numerical data, which is why 

encoding is required. Since there is no ordinal relationship between most of the features, one-hot 

encoding is used. In one-hot encoding, a discrete nominal variable x, which can assume the values x1, 

x2, ..., xn is converted to a binary vector v (Hancock and Khoshgoftaar, 2020). If a certain expression 

xi of x is to be coded, every element of v receives the value 0 except the i-th element, which takes the 

value 1. Figure 2 shows how the original form of the target data is changed by one-hot encoding.  

The computational effort for most clustering algorithms increases rapidly with the number of 

dimensions. With a dimensionality reduction, the original data can be projected into a lower 

dimensionality. For a one-hot encoded dataset, Multiple Correspondence Analysis (MCA) can be 

applied (Abdi and Valentin, 2007). It is an extension of Correspondence Analysis, which makes it 

possible to examine the relations of several categorical attributes. The MCA provides two important 

results. First, the singular and eigenvalues as well as the percentages of the explained variety are 

derived. Secondly, the projection of the original data points onto the coordinates of a low-dimensional 

space is provided (Figure 2). 

 

Figure 2. Encoding and dimensionality reduction  

5.3 Clustering 

In this phase, different clustering algorithms are implemented. If the same amount of data is clustered 

using different algorithms, the clusters and their quality determined in each case differ. Table 1 shows 

an overview of the characteristics that positively or negatively influence the performance of clustering 

algorithms. Product portfolio data has a high variance and high dimensionality. Besides the choice of 

algorithms, the second important influence factor for the clustering quality is the number of clusters. 

Therefore, the data set must be clustered several times, varying the number of clusters searched for in 

each case. 

5.4 Evaluation with clustering validation indices 

As explained in the previous section, the quality of an identified clustering depends on both the 

selection of the appropriate algorithm and the number of clusters. Therefore, the clustering results 

must be analysed considering these two factors. For this purpose, so-called clustering validation 

indices (CVI) are used. Each of these indices follows a different calculation formula and thus focuses 

on a specific aspect of the structure of a clustering. For the evaluation of the identified clusters, three 

different CVIs are used, which can be applied independently of the algorithm. The first CVI is the 

Davies-Bouldin-Index, which maps the average similarity of each cluster to the most similar cluster 

(Davies and Bouldin, 1979). Clusters that are further apart and less dispersed have smaller values of 

the Davies-Bouldin-Index and indicate higher quality of the clustering. The second CVI is the 

silhouette coefficient, which indicates how accurate the assignment of instances to a cluster is by 

MT FH KA

0001 MD6 FHS K0

0002 MD8 FHB KC

0003 MD5 FHS KB

MD6 MD8 MD5 FSN FBH K0 KC KB

0001 1 0 0 1 0 1 0 0

0002 0 1 0 0 1 0 1 0

0003 0 0 1 1 0 0 0 1

Dim. 1 Dim. 2 Dim. 3

0001 -0,598 0,305 0,077

0002 -0,406 1,061 -0,049

0003 -1,090 -0,968 -0,027

One-hot

Encoding

MCA
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relating their similarity to instances in the same cluster to their similarity to instances in the nearest 

cluster (Rousseeuw, 1987). The clusters of clustering are denser and better separated, the higher the 

silhouette coefficient. The last CVI is called inertia and is the sum of the squared distances of the 

instances to their respective nearest centroid. The smaller the inertia of clustering, the closer the 

instances are to the corresponding centroid and the more compact the individual clusters. 

Table 1. Overview of algorithms and their characteristics 

 

5.5 Analysis and visualisation of the clustering 

The result of the clustering consists of the assignment of the identification numbers to the clusters. To 

enable the interpretation of the results, the identification numbers must be merged with the feature 

categories and features of the product variants. Subsequently, the clusters can be analysed regarding 

the three aspects characteristic features, distances, and market-specific attributes. Features are 

characteristic for a cluster if they occur in all or almost all product variants of the cluster. This enables 

the analysis of unique and common features of the individual clusters. The distances between the 

clusters can be considered by visualising them in two-dimensional or three-dimensional space or in a 

matrix. Through visualisation, conspicuous clusters can be identified easily and through comparison in 

a matrix, the exact values can be examined. For the analysis of the product portfolio, market-specific 

attributes of the clusters can be considered. The unit numbers can be taken directly from the input 

data. In addition, data on costs and revenues are relevant, for example to estimate whether and how 

profitable individual clusters in the product portfolio are. 

6 CASE STUDY IN THE COMMERCIAL VEHICLE INDUSTRIE 

6.1 Application validation 

For the implementation, a sales data set with the configurations of the sold product variants of the 

industrial partner from the commercial vehicle industry was analysed, with a time range from April 

2020 to March 2022. The data set contains 189 802 configurations as well as 986 feature categories 

and a total of 12 511 features. The Python libraries pandas, scikit-learn, and prince were used for the 

implementation. In the first step, the 986 feature categories were reduced with experts to 246 feature 

categories that have high relevance for the characteristics of the product variant. In the data 

preparation, the duplicates were removed as they do not have any added value in terms of the variety 

Algorithm Cluster Definition Characteristics Application

k-Means,

distance-based

Clusters are groups of 

instances represented 

by their centroid

• Simple calculation

• Depending on initialisation

+ Spherical clusters

- Cluster density & size strongly 

varies

Mini-batch k-

Means,

distance-based

• High speed for large amounts 

of data

• Lower accuracy

+ Spherical clusters

- Cluster density & size strongly 

varies

EM,

probabilistic

Clustering consists of 

several probability 

distributions

• Shape and density depending 

on the distributions

• Different covariance 

matrices (e.g. round, 

spherical)

+ Elliptical or spherical clusters

- High dimensionality

- Few instances per cluster

DBSCAN,

density-based

Clusters are areas of 

high density

• Identification of outliers

possible

• Density parameters difficult 

to determine

+ Clusters of any shape

- Cluster density varies greatly

Linkage,

hierarchical

Clustering consists of 

a multi-level 

hierarchy of nested 

clusters

• k does not have to be given 

in advance

• Different linkage functions

applicable

+ Overlapping clusters

+ Spherical clusters

- Depending on the linkage 

function: varying cluster size 

& density, clusters very close 

to each other
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of the product portfolio and to increase the efficiency of the calculation. The remaining 65 456 unique 

vehicle configurations and 246 feature categories were examined for completeness in the next step. 

One feature category and four vehicle configurations were removed due to too many missing values. 

The remaining missing values were replaced with the feature that occurs most frequently in the 

respective feature category. The resulting dataset contains 65 452 vehicle configurations and 245 

feature categories with a total of 1 828 features. Subsequently, a one-hot encoding and a dimension 

reduction with an MCA were conducted. This reduces the one-hot encoded data from 1 828 to 118 

dimensions which represent 99% of the variety among the product configurations. Figure 3 shows the 

CVI of the algorithms k-Means, Mini-batch k-Means, Ward-Linkage, and EM (Gaussian Mixture 

Model spherical). The interval for the number of clusters k was set between 10 and 100 together with 

the industrial partner. A higher number of clusters would make the interpretation and subsequent 

analysis of the clusters too time-consuming. 

 

Figure 3. Evaluation of the implemented algorithms 

The DBSCAN algorithm identified two clusters and a lot of noise. Since two clusters are not enough 

for the analysis of the product portfolio of the industrial partner and almost all of the data points were 

in one of the two clusters, the results of the DBSCAN are not considered further. The graph for inertia 

shows that k-Means and Ward-Linkage have almost identical values, which are lower and thus better 

than those of the other two algorithms. For the silhouette coefficient and the Davies-Bouldin index, 

these two algorithms also provide the best values. In a detailed analysis, the Ward-Linkage algorithm 

performs slightly better than the k-means algorithm. The best CVI values were achieved with the 

clustering of 31 clusters (see Figure 4 below). The identified clusters were analysed in terms of their 

distances from each other and characteristic features. In Figure 5 below, the identified clusters were 

visualised in three dimensions. It can be seen, for example, that clusters 19 and 20 are close together 

and far away from all other clusters. Based on this, the analysis of the characteristic features can be 

used to conclude what differentiates them from the other clusters. For example, there are features such 

as the X and Y types, the 8X4/4 wheel formula, the ceram clutch, or the A engine family that are 

found exclusively in these two clusters. In the same way, commonalities of clusters that are close to 

each other, such as clusters 15, 16, 17, and 18 can be investigated. They are all chassis, have the 

engine families B or C, the cab compact or comfort, and the construction type normal high. 

6.2 Success validation 

For the success validation the results were presented to eleven experts of the industrial partner from 

different departments and with different backgrounds. The methodological approach was considered 
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as useful by the experts for identifying correlations in complex product portfolios. The form and 

content of the analysis were deemed suitable for more in-depth analyses. The possibility of 

subdividing a large number of product variants into a small number of groups by means of the method 

developed represents a high added value for analysing and controlling the width and depth product 

portfolio of the industrial partner. However, the added value of the methodological approach is 

estimated to be higher than the value of the clustering carried out. The experts considered the use of 

the method to be promising and potentially profitable if implemented as a flexible method within a 

software tool. The input feature categories must be selectable and thus individual and targeted 

analyses become possible. Regarding the selection of the 246 feature categories, it was noted that 

these represent a variety of different perspectives on product variants and therefore the statement is not 

specific enough for the potential user group. Due to its adaptability, the approach can be used by 

different users in different contexts to identify an optimal grouping of product configurations and can 

also be easily transferred to components or even BOMs. 

 

Figure 4. Identification of the optimal cluster number for the Ward-Linkage algorithm 

 

Figure 5. Analysis of the identified clusters 
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7 CONCLUSION AND OUTLOOK 

The developed methodical approach makes it possible to cluster complex product portfolios 

automatically and thus identify the correlations between the product variants. This is confirmed by an 

application at a commercial vehicle manufacturer with a particularly complex product portfolio and 

thereby, the research question is answered. In the approach, different clustering algorithms are applied 

and objectively compared to identify the optimal clustering. In addition, the benefit of the methodical 

approach is confirmed by eleven experts from the industrial partner. Clustering enables the objective 

identification of similar variants, special configurations and the characteristic features that occur 

together within the clusters. However, the approach does not address how the clustering results can be 

used to derive concrete measures for adapting and optimising the product portfolio. This is to be 

explored in the following research activities together with the experts of the industrial partner. 

Furthermore, the approach only considers the positioning of the variants sold. It is not examined where 

these are located in the total possible variant space of the product portfolio. This requires the inclusion 

of all information of the product data model. Moreover, it also becomes apparent that a one-time 

clustering is not enough, but that a flexible tool is necessary to carry out a clustering depending on the 

different perspectives of the portfolio managers. This requires the implementation in a software tool. 

The tool must allow the user to individually select the features and/or components for clustering and 

automate the analysis. This enables an individual and goal-oriented use of the approach. Moreover, the 

application of the approach has only been applied and validated in one company. The approach should 

therefore be applied to further companies from other industries to confirm its general applicability. 
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