ON GENERALIZED MORSE-TRANSUE FUNCTION SPACES

H. W. ELLIS

1. Introduction. Marston Morse and William Transue (6, 8) have introduced and studied function spaces, called MT -spaces, for which the elements of the topological dual are of integral type. Their theory does not admit certain classical Banach function spaces including spaces of bounded functions and \mathcal{R}_{c}^{∞} spaces. The theory of function spaces determined by a length function (λ -spaces) (4, 5), which depends on a fixed measure, admits many of the maximal MT-spaces, the spaces ℓ_c^{∞} and spaces of locally integrable functions but does not admit certain maximal MT -spaces including the space $\Re c$ of complex continuous functions with compact supports.

In (4) the definition of MT -spaces was weakened by dropping the requirement that \mathcal{R}_c be dense in the space and making no hypothesis concerning the dual. The resulting spaces were called MT^* -spaces and the elements of intregal type in the dual then constituted the *MT-con]*ugate of the space. A λ -space (4) is an MT^{*}-space if it contains $\Re \sigma$. The MT-spaces are just those M7"*-spaces for which the dual and *MT-con]*ugate coincide. The space of bounded functions on a suitable space *E* is an *M*r*-space that is neither an MT - nor a λ -space.

In the development of the theory of MT -spaces an important role was played by the fact that the semi-norm \mathfrak{N}^A could be defined in A and extended to all of \mathbb{C}^E by (3.2) below. Since there are MT^* -spaces for which the MTconjugate reduces to the zero element of the dual $(\S 3)$, (3.2) is not valid for every MT^* -space. For an \mathfrak{N}^A -extensible MT^* -space (Definition 3.2) (3.2) holds. Since \mathfrak{N}^A is then a reflexive semi-norm, the *MT*-conjugate is then dense in the dual of *A* in the $\sigma(A', A)$ topology (Theorem 3.1). The \mathfrak{R}^4 extensible MT^* -spaces have many of the properties of general MT-spaces.

The last part of this paper is mainly concerned with the role played in the general theory of MT^* -spaces by the λ -spaces. When E is countable at infinity this can be simply stated as follows. If A is a λ -space containing $\Re c$, *A* is an \mathfrak{R}^4 -extensible *MT**-space for which every measure in \mathfrak{A}^* is of base μ (Theorem 3.3.). Conversely if *A* is an \mathcal{R}^A -extensible MT^{*}-space for which every measure in \mathfrak{A}^* is of base μ , \mathfrak{R}^A extended by (3.2) determines a length function λ (Theorem 4.1) and $\mathcal{R}_{c}^{\lambda}$, the λ -space determined by λ , and Ω^A (§ 3), coincide on some μ -measurable set *B* with $E - B$ 2I^{*}-negligible (Theorem 4.3). If then *A* is an *MT**-space of Cauchy type, $A = \mathcal{R}_c^{\lambda} = \Omega^A$

Received October 6, 1958.

on B . Thus an MT -space of Cauchy type on a locally compact space E that is countable at infinity coincides with a λ -space for μ on the restriction of *E* to some μ -measurable set *B* with $E - B$ \mathfrak{A}^* -negligible if and only if every element of A' is of base μ .

2. The MT-conjugates as vector spaces. Let £ be a locally compact space, \mathbf{C}^E the vector space of functions on E valued in C the field of complex numbers. A semi-norm on a vector subspace A of \mathbb{C}^E will be called monotone if $\mathfrak{R}^A(x) \leq \mathfrak{R}^A(y)$ when $|x(t)| \leq |y(t)|$, $x, y \in A$; non-trivial if $\mathfrak{R}^A(x) \neq 0$ over *A* (6).

Definition. A vector subspace A of \mathbb{C}^E will be called an MT^* -space if it contains \mathcal{R}_c , if with x it contains $|x|$ and \bar{x} and if it has a non-trivial, monotone semi-norm *%l^A .*

If *A'* is the dual of *A* topologized by \mathfrak{R}^A as a semi-norm and if $y \in A'$, then the restriction of y to \mathcal{R}_{c} determines a C-measure \hat{y} and

$$
(2.1) \t\t\t y(x) = \int x \ d\hat{y},
$$

for every $x \in \Re_{\mathcal{C}}$ (6). We denote by A^* the subspace of elements *y* of A' for which every $x \in A$ is \hat{y} -integrable with (2.1) holding and call such a y an element of integral type. We call *A** the *MT-con*jugate of *A.* As in (6) the mapping $y \rightarrow \hat{y}$ of A^* into \mathfrak{M}_c , the space of measures on E, is an isomorphism. We denote by \mathfrak{A}' and \mathfrak{A}^* the images of A' , A^* in \mathfrak{M}_c and call \mathfrak{A}^* the *MT*-measure conjugate of A. We define for each $y \in A^*$, $\hat{y} \in \mathfrak{A}^*$,

$$
|\hat{y}|_{\mathfrak{A}^*} = \sup_{\substack{x \neq 0 \\ x \in A}} |\int x \, d\hat{y}| / \mathfrak{A}^A(x) = \sup_{\substack{x \neq 0 \\ x \in A}} |y(x)| / \mathfrak{A}^A(x) = |y|_{A^*} = |y|_{A'},
$$

where $|\mathbf{y}|_{A}$ ^{*i*} is the usual norm on A'. There are corresponding definitions for real MT^* -spaces.

 A^* *is a vector subspace of A'.* Let $y_1, y_2 \in A^*$, $a, b \in C$. Then $z = ay_1 + b_2$ $by_2 \in A'$ and determines a C-measure \hat{z} . From (2.1) for $\Re \sigma$ it follows that $\hat{z} = a\hat{y}_1 + b\hat{y}_2$. By (6, Corollary 9.1) every $x \in A$ is $a\hat{y}_1 + b\hat{y}_2 = \hat{z}$ -integrable and

$$
\int x \ d\hat{z} = \int x \ d(a\hat{y}_1 + b\hat{y}_2) = ay_1(x) + by_2(x) = z(x).
$$

The spaces A^* and \mathfrak{A}^* are thus normed vector spaces, equivalent by definition.

Morse and Transue (6, p. 153) associate with each C-measure η on *E* a unique positive measure $|\eta|$ such that for $x \in K$, $x \ge 0$,

(2.2)
$$
|\eta|(x) = \sup_{\substack{\|u\| \leq x \\ u \in \mathfrak{N}_C}} |\int u \, d\,\eta|.
$$

The absolute measure $|\eta|$ defined by η then has a unique extension $|\eta|_{e}$ as a real C-measure on $E(6, p. 151)$.

Condition 2.1. If
$$
\eta \in \mathfrak{A}^*
$$
, $|\eta|_e \in \mathfrak{A}^*$ and $|\eta|_{\mathfrak{H}^*} = ||\eta|_e|_{\mathfrak{H}^*}$.

Condition (2.1) is the analogue for the MT-conjugate spaces of the condition for A that $|x| \in A$ if $x \in A$ (noting that the monotone property of \mathfrak{R}^A implies that $\mathfrak{R}^A(x) = \mathfrak{R}^A(|x|)$. If, for a positive measure μ , the *C*-measure η is of base μ (that is, can be written in the form $g(t)$. μ with $g(t)$ locally μ -integrable (3, p. 42; 7, § 3).

(2.3)
$$
|g(t) \cdot \mu| = |g(t)| \cdot \mu
$$
.

When all the elements of \mathfrak{A}^* are of base μ , A^* can be identified with the collection of functions $\{g(t)\}\)$. If then A^* is an MT^* -space Condition 2.1 is necessarily satisfied. We note also that it is trivially satisfied when $A^* = 0$, that it is satisfied by the measure dual of every MT -space (6, Lemma 11.2) and by the measure dual of every MT^* -space that is a λ -space with the *MT*- and λ-conjugates coinciding (4).

Suppose that α_i , $i = 1, 2, \ldots$, are positive measures with $\alpha_{i,e} \in \mathfrak{A}^*$ and that $\Sigma |\alpha_{i,e}|_{\mathfrak{M}^*} < \infty$. Then for every $x \in \mathbb{R}$, $x \geq 0$,

$$
\sum_{1}^{\infty} \left| \alpha_i(x) \right| = \sum_{1}^{\infty} \alpha_i(|x|) \leq \Re^A(x) \sum_{1}^{\infty} \left| \alpha_{i,\,e} \right|_{\mathfrak{A}^*} < \infty,
$$

so that the α_i form a *summable family* of positive measures on E and determine a positive measure $\alpha_0 = \sum_1^{\infty} \alpha_i$ (3, § 3, no. 5).

THEOREM 2.1. *Let A be an MT*-space for which Condition* 2.1 *holds. If every real x in A is* α_0 *-integrable for every* α_0 *defined as in the preceding paragraph, then* 31* *is complete.*

Proof. The theorem is trivial when $\mathfrak{A}^* = 0$. In the general case let $\{y_n\}$ denote a Cauchy sequence in \mathfrak{A}^* and choose a subsequence $\{\eta_{n_i}\}\$ with

$$
|\eta_{n_1}|_{\mathfrak{A}^*} + \sum_{1}^{\infty} |\eta_{n_{i+1}} - \eta_{n_i}|_{\mathfrak{A}^*} = L < \infty.
$$

Define

$$
\alpha_1 = |\eta_{n_1}|, \alpha_i = |\eta_{n_{i+1}} - \eta_{n_i}|, i = 2, 3, ..., \alpha_0 = \sum_{1}^{\infty} \alpha_i.
$$

Condition 2.1 implies that each $\alpha_{i,e}$ is in \mathfrak{A}^* with

$$
|\alpha_{1,e}|_{\mathfrak{A}} = |\eta_{n_1}|_{\mathfrak{A}}^*
$$
,
\n $|\alpha_{i,e}|_{\mathfrak{A}} = |\eta_{n_{i+1}} - \eta_{n_i}|_{\mathfrak{A}}^*$, $i = 1, 2, \ldots$

By hypothesis each real $x \in A$ is α_0 -integrable so that (3, Proposition 5, 3⁰)

$$
\int x\,d\alpha_0 = \sum_1^{\infty} \int x\,d\alpha_i.
$$

If $x \in A$, $x = x_1 + ix_2$, with x_1 and x_2 real and in A , x is $\alpha_{0,e}$ -integrable (6, Lemma 4.3) and

$$
\int x \, d\alpha_{0e} = \int x_1 \, d\alpha_0 + i \int x_2 \, d\alpha_0 = \sum_{1}^{\infty} \int x_1 \, d\alpha_1 + i \sum_{1}^{\infty} \int x_2 \, d\alpha_1
$$

$$
= \sum_{1}^{\infty} \int x \, d\alpha_{i,e};
$$

$$
\left| \int x \, d\alpha_{0,e} \right| \leq \sum_{1}^{\infty} \int |x| \, d\alpha_{i,e} \leq L \, \mathfrak{N}^4(x).
$$

It follows that $\int x \, d\alpha_{0,e}$ determines a continuous linear functional *y* of integral type with $\hat{y} = \alpha_{0,e}$ and therefore $\alpha_{0,e} \in \mathfrak{A}^*$.

For each $x \in A$,

$$
[\eta_{n_{i+1}}(x) - \eta_{n_i}(x)]
$$

is a Cauchy sequence in C since

$$
\left|\sum_{p}^{q} \left[\eta_{n_{i+1}}(x) - \eta_{n_{i}}(x)\right]\right| \leqslant \sum_{p}^{q} \alpha_{i}(|x|) \to 0
$$

as $p, q \rightarrow \infty$. Thus

(2.4)
$$
\eta(x) = \eta_{n_1}(x) + \sum_{1}^{\infty} [\eta_{n_1+i}(x) - \eta_{n_i}(x)] = \lim_{i \to \infty} \eta_{n_i}(x)
$$

is defined in C for every $x \in A$. Now η is linear on A and continuous since

$$
|\eta(x)| \leq \alpha_0(|x|) \leqslant L \mathfrak{N}^A(x)
$$

for all $x \in A$. Thus η determines an element of A'.

It follows from (2.2) and (2.5) that $|\eta|(x) \le \alpha_0(x)$ for every $x \ge 0, x \in \mathbb{R}$. This implies that $|\eta|^*(x) \leq \alpha^*_{0}(x)$ for every $x \geq 0$. Thus every α_0 -negligible set is $|\eta|$ -negligible and every α_0 -measurable function is $|\eta|$ -measurable (2, p. 180). Thus if $x \in A$, |x| is | η |-measurable and x is η -measurable (6, p. 168). Since

$$
\int |x| d\eta \leqslant \int |x| d\alpha_0 \leqslant L \ \Re^A(x) < \infty \,,
$$

every x in A is η -integrable (6, Theorem 9.4). This with (2.5) shows that $\int x \, d\eta$ determines an element $y \in A^*$ with $\hat{y} = \eta$ so that $\eta \in \mathfrak{A}^*$.

Then

$$
|\eta - \eta_{n_i}|_{\mathfrak{A}^*} = \sup_{0 \neq x \in A} |\int x d(\eta - \eta_{n_i})| / \mathfrak{A}^4(x)
$$

\$\leqslant \sup_{0 \neq x \in A} \sum_{i+1}^{\infty} \int |x| d\alpha_j / \mathfrak{A}^4(x)\$
\$\leqslant \sum_{i+1}^{\infty} |\alpha_{j,e}|_{\mathfrak{A}^*}\$

which approaches zero as $i \rightarrow \infty$. The full sequence $\{\eta_n\}$ then converges to η in \mathfrak{A}^* so that \mathfrak{A}^* is complete.

COROLLARY. *If E is countable at infinity and A is an MT*-space for which Condition* 2.1 *holds,* A^* *and* \mathfrak{A}^* *are Banach spaces.*

Proof. By (3, Corollaire 2, p. 28) every $x \in A$ is α_0 -integrable.

Length functions for a positive measure μ are defined in (4, 5). We denote by \mathbb{R}^{λ} , \mathbb{R}_{c}^{λ} the subspaces of \mathbb{R}^{E} and \mathbb{C}^{E} respectively consisting of μ -measurable functions $x(t)$ with $\lambda(x) = \lambda(|x|) < \infty$ (cf. 5, p. 577). (If $x(t) \in \mathbb{C}^E$, it is μ -measurable for $\mu > 0$ if its Riesz components are μ -measurable (6. p. 168).)

We show that if $A = \mathcal{R}_c^{-1}(E, \mu)$ (4, § 2) with E and μ defined as in (2, Exercise 4, pp. 116) A^* is not complete. We define $g_i(P) = 1/\ln n$, $P = (1/n)$, k/n^2 , $n = 2, 3, \ldots i$; $g_i(P) = 0$ elsewhere; $g(P) = 1/ln n$, $P = (1/n, k/n^2)$, $n = 2, 3, \ldots$; $g(P) = 0$ elsewhere. The g_i form a Cauchy sequence in A' and converge to g. Each g_i . μ is in \mathfrak{A}^* but $g \mu$ is not.

The λ -conjugate of every λ -space is complete since it is also a λ -space (4). Thus the MT-conjugate of an arbitrary λ -space containing $\Re \sigma$ is complete when it coincides with the λ -conjugate.

3. \mathbb{R}^4 -extensible MT*-spaces. For a normed or semi-normed space X we let X_u denote the subunit elements of X , that is, the elements with norm or semi-norm not exceeding unity (cf. 6, p. 171).

Definition 3.1. A semi-norm \mathfrak{R}^A on an MT^* -space A will be called *reflexive* if for every $x \in A$,

(3.1)
$$
\mathfrak{N}^A(x) = \sup_{\eta \in \mathfrak{N}_n^{\ast}} |\int x \, d\eta|.
$$

THEOREM 3.1. *In order that %l^A be a reflexive semi-norm on the MT*-space A* it is necessary and sufficient that A^* ^{*u*} be dense in A ^{*u*} for the $\sigma(A', A)$ topology.

Proof. Since A_u' and A_u^* are *équilibré* parts of A' , the polars of A_u' and A_u are respectively $A_u^{\prime\,0} = (x \in A : |y(x)| \leq 1$ for all $y \in A_u^{\prime\prime}$ and $A_u^{*0} = (x \in A : |y(x)| \leq 1$ $|\mathcal{Y}(x)| \leq 1$ for all $\mathcal{Y} \in A^*_{\mathcal{U}}$ (1, p. 52). We first show that $A^{*0}_{\mathcal{U}} = A_{\mathcal{U}}^{\mathcal{U}}$. Since $A^*_{\mu} \subset A_{\mu}$ ['], A_{μ} [']^o $\supset A^{*0}_{\mu}$ and it is sufficient to prove the opposite inequality. If $x \in A^{*0}$ _u, the hypothesis that \mathfrak{N}^A is reflexive implies that

$$
\mathfrak{N}^A(x) = \sup_{y \in \mathfrak{N}^*_x} |\int x \, d\hat{y}| \leq 1.
$$

Thus $|y(x)| \leq \Re^A(x)|y|_{A'} \leq 1$ if $y \in A_{u'}$ so that $x \in A_{u'}^{0}$.

Thus A^{*0} _u = A _u^{to} and it follows that A^{*00} _u = A _u^{to} = A _u^t. Since A^* _u is convex and contains 0, the argument of $(1,$ Proposition 3, p. 52) shows that $A_u' = A^{*00}$ is the closure of A^* for $\sigma(A', A)$.

We next prove that the condition is sufficient. Since the definition of $|y|_A^*$ implies that \geq holds in (3.1) we need only show that, given $\epsilon > 0$, there exists $y \in A^*$ ^{*u*} with $\Re^A(x) \leq \left| \int x \, dy \right| + \epsilon$.

By an extension of the Hahn-Banach Theorem there exsits $y_0 \in A_u'$ with $y_0(x) = \Re^A(x)$, $|y_0|_{A'} = 1$. The set $[y \in A'; |(y - y_0)(x)| < \epsilon]$ is a neighbourhood of y_0 for the $\sigma(A', A)$ topology and by hypothesis contains $y_1 \in A^*$. Then

 $0 \le \Re^A(x) - \int x \ d\hat{y}_1 \le |y_0(x) - y_1(x)| = |(y_0 - y_1)(x)| < \epsilon$

We note the analogy with the relation between *E* and *E"* for Banach spaces (1, Proposition 5, p. 114).

Definition 3.2. A semi-norm on an MT^* -space will be called *extensible* if A satisfies Condition 2.1 and \mathfrak{N}^A is reflexive. An MT^* -space will be called \mathfrak{N}^A -extensible if it has an extensible semi-norm.

For an extensible semi-norm

(3.2)
$$
\mathfrak{N}^A(x) = \sup_{\eta \in \mathfrak{N}_u^*} \int_0^* |x| d|\eta|
$$

holds with outer integrals replaced by integrals for every $x \in A$. Formula (3.2) then extends the definition of \mathfrak{R}^A to all of \mathbf{C}^E and all of $\bar{\mathbf{R}}^E$.

Given a collection of C-measures \mathfrak{M} a function $x \in \mathbb{C}^E$ or $\bar{\mathbb{R}}^E$ will be called \mathfrak{M} -negligible if $|x(t)|$ is $|\eta|$ -negligible for every $\eta \in \mathfrak{M}$. \mathfrak{M} -negligible sets, \mathfrak{M} -equivalence and almost everywhere (\mathfrak{M}) are then defined by analogy with the case where \mathfrak{M} reduces to a single C-measure η . When A is an \mathfrak{N}^4 extensible MT^* -space, $\mathfrak{N}^A(x) = 0$ if x is \mathfrak{A}^* -negligible. If then $x(t)$ is defined and valued in **C** or **R** almost everywhere (\mathfrak{A}^*) , *x* is \mathfrak{A}^* -equivalent to some *x* in \mathbb{C}^E or $\bar{\mathbb{R}}^E$ and we define $\mathbb{N}^A(x) = \mathbb{N}^A(x)$. When $\mathbb{N}^* \equiv 0$ every function is \mathfrak{A}^* -negligible but $\mathfrak{R}^A(x) > 0$ holds for some $x \in A$.

THEOREM 3.2. For $1 \leqslant p \leq \infty$, $A = \overline{\mathfrak{L}}_c^p(E,\mu)$ is an \mathfrak{R}^A -extensible MT**space.*

LEMMA 3.1. If $A = \overline{\mathfrak{L}}_c^{\lambda}(E, \mu)$ is an MT^{*}-space for which the λ -conjugate *contains the MT-conjugate, then Condition* 2.1 *is satisfied and every element of* \mathfrak{A}^* *is of base* μ .

Proof of Lemma 3.1. Every *g* in the λ -conjugate is locally μ -integrable and therefore determines a measure $g \mu$ (that is, a measure of base μ) (4, § 3). *H* $g \in A^*$, $\hat{g} = g \cdot \mu$ and thus the elements of \mathfrak{A}^* are of base μ .

The definition of the λ -conjugate then implies that $|g(t)| \in \mathbb{R}^{k*}$. By (7, § 3) $|g| \cdot \mu = |g| \cdot \mu$. Now $\int |x||g| d\mu \leq \lambda(x)\lambda^*(g) < \infty$ and the *g* . *µ*-integrability of *x* implies that $\int |x| dy$, μ < ∞ (6, Theorem 9.4). Thus by (7, Theorem 1.1), for every $x \in A$,

$$
|g|(x) = \int x|g|d\mu = \int x d(|g| \cdot \mu)_e
$$

so that $(|g| \cdot \mu)_e \in \mathfrak{A}^*$. It then follows from the definitions that

$$
|(|g| \cdot \mu)_e|_{\mathfrak{A}^*} = \lambda^*(|g|) = \lambda^*(g) = |g \cdot \mu|_{\mathfrak{A}^*}.
$$

Proof of Theorem 3.2. It remains to be shown that $\overline{\mathfrak{R}}^p$ is reflexive as a semi-norm on $A = \overline{R}_{c}P$. Since $\overline{N}P$ is reflexive as a length function,

$$
\mathfrak{N}^p(x) = \sup_{\rho \in (\mathfrak{X}_C^q)_u} |\int xg \, d\mu| \geqslant \sup_{\rho \in \mathfrak{N}_u^*} |\int xg \, d\mu|,
$$

and it is sufficient to determine $g \in H$ w with $\int x g \mu$ arbitrarily near to π *(x).*

If $\mathfrak{N}^p(x) < \infty$ there exists $E_0 = \bigcup_{i=1}^{\infty} K_i$, where $\{K_i\}$ is an increasing sequence of compact sets for which, writing f_B for the product of the function *f(f)* and the characteristic function of the set *B,*

$$
\mathfrak{N}^p(x) = \mathfrak{N}^p(x_{E_0}) = \mathfrak{N}^p(x_{E_0})
$$

(4, § 2). Now

$$
x_{E_0} \in \Omega_c^p
$$

and \mathcal{R}_c^p is \mathfrak{R}^A -extensible as an *MT*-space. Thus

$$
\overline{\mathfrak{N}}^{p}(x) = \mathfrak{N}^{p}(x_{E_{0}}) = \sup_{g \in (\mathfrak{N}_{C})_{u}} |\int x_{E_{0}} g d \mu|.
$$

Since E_0 is μ -measurable and

$$
|g_{E_0}(t)| \leqslant |g(t)|, g_{E_0} \in \mathfrak{L}^q_u
$$

if $g \in L_{\mathfrak{u}}^q$. Thus

$$
\overline{\mathfrak{N}}^{p}(x) = \mathfrak{N}^{p}(x_{E_{0}}) = \sup_{g_{E_{0}} \in (\mathfrak{X}_{C})_{u}} \int x g_{E_{0}} d \mu.
$$

For $g \in (\mathfrak{X}_{\mathcal{C}}^q)_u$ fixed,

 $\int x g_{K} d\mu$ \rightarrow $\int x g_{K_0} d\mu$

as $i \rightarrow \infty$ and

$$
g_{K_i} \in (\mathfrak{X}_C^q)_u.
$$

Thus for i sufficiently large and a suitable

$$
g \in (\mathfrak{E}_{C}^{q})_{u}, g_{K_{i}} \in (\mathfrak{E}_{C}^{q})_{u}
$$

with $\int x g_{K_i} d\mu$ arbitrarily near $\bar{\mathfrak{N}}^p(x)$. The C-measure g_{K_i} μ has compact support so that CK_i is g_{Ki} . μ -negligible (2, Proposition 5, p. 119). Thus if $f \in A$ and $fg_{\boldsymbol{\kappa}}$, vanishes in E ,

$$
\int^* |f| d|g_{K_i} \cdot \mu| \le \int^* |f|_{CK_i} d(|g_{K_i}| \cdot \mu) + \int^* |f|_{K_i} d(|g_{K_i}| \cdot \mu) = \int |f g_{K_i}| d\mu = 0
$$

and the complex analogue of (4, Theorem 3.1) implies that

$$
g_{K_i} \cdot \mu \in \mathfrak{A}_u^*.
$$

THEOREM 3.3. If λ is a reflexive length function for the positive measure μ , *if E* is countable at infinity or if *E* is arbitrary and $A = \mathcal{R}_c^{\lambda}$ is an MT*-space *for which the MT- and [\-conjugates c](file:///-conjugates)oincide, then A is %l^A -extensible and every measure in* \mathfrak{A}^* *is of base* μ .

Proof. Theorem 3.3 is a consequence of Lemma 3.1 and the fact that the reflexivity of $\mathfrak{N}^A = \lambda$ as a length function implies that it is reflexive as a semi-norm on *A.*

When *A* is an \mathfrak{N}^A -extensible MT^* -space we denote by \mathfrak{F}^A the vector subspace of \mathbb{C}^E of mappings x with $\mathbb{R}^A(x) < \infty$. Then \mathbb{R}^A is a non-trivial,

monotone semi-norm on \mathfrak{F}^A and \mathfrak{F}^A is an MT^* -space for which Condition 2.1 holds. If for each $\eta \neq 0$ in \mathfrak{A}^* there exists a relatively compact set $e(\eta)$ that is not η -measurable the *MT*-conjugate of \mathfrak{F}^A reduces to the zero element of *A'*. Such non-measurable sets exist, for example, if $A = \mathcal{R}_c^p(E, \mu)$ with $E = (0, 1)$ and μ Lebesgue measure on *E*, $1 \leq \rho \leq \infty$. In contrast, if *E* is arbitrary, if $A = \Re \sigma$ and \mathfrak{N}^A is the uniform semi-norm, \mathfrak{N}^A extends to \mathbf{C}^E in the form (6, Theorem 15.3),

$$
\mathfrak{N}^A(x) = \sup_{t \in E} |x(t)|
$$

and \mathfrak{F}^A is the space of all bounded functions on E which is an \mathfrak{R}^A -extensible MT^* -space.

We note that if $B = \mathfrak{F}^A$, where A is an arbitrary \mathfrak{R}^A -extensible MT^* space, $\mathfrak{R}^A(x) > 0$ is possible for a \mathfrak{B}^* -negligible function in *B* but $\mathfrak{R}^A(x) = 0$ for every 2I*-negligible function in *B.*

The properties of the extended semi-norm \mathfrak{R}^A and of \mathfrak{F}^A for MT-spaces (6, § 12) extend to \mathfrak{R}^4 -extensible MT^* -spaces with A'-negligibility replaced by \mathfrak{A}^* -negligibility. In particular \mathfrak{F}^A is complete.

Generalizing (6) we define

$$
\Omega^A = \bigcap_{\eta \in \mathfrak{A}^*} \mathfrak{L}^1_C(E, \eta)
$$

for every MT^* -space A. We define $\Omega_0^A = \Omega^A \cap \mathfrak{F}^A$. Then Ω_0^A is an MT^* space with \mathfrak{N}^A (extended) as a semi-norm.

THEOREM 3.4. *If A is an %l^A -extensible MT*-space and if A* is complete* or, more generally, *tonnelé* (1, § 1), *then* $\Omega_0^A = \Omega^A$.

Proof. The argument of (8, Theorem 5.1) applies. We note in particular that $\Omega_0^A = \Omega^A$ for every \mathfrak{N}^A -extensible *MT**-space *A* if *E* is countable at infinity (Theorem 2.1, Corollary).

4. A-spaces generated by 9l^A -extensible MT*-spaces.

THEOREM 4.1. Let A be an $\mathfrak{N}^{\mathbf{A}}$ -extensible MT^{*}-space, μ a positive measure on E. Then \mathfrak{R}^A , extended by (3.2) , defines a length function for μ if and only *if every fx-negligible set is* 21**-negligible.*

Proof. By (3.1) and the subsequent remarks $\mathfrak{N}^A(x)$ is defined for every $x(t)$ that is defined almost everywhere (\mathfrak{A}^*) and valued in $\overline{\mathbf{R}}^E$ and therefore for every $x(t)$, μ -measurable and defined, non-negative and valued in **R** almost everywhere (\mathfrak{A}^*) . That \mathfrak{R}^A then satisfies Conditions $(L2)$ - $(L5)$ for length functions (5) is then easily verified. We verify (L5). If $x_n(t) \in \mathbf{R}^E$ is nonnegative and μ -measurable, $n = 1, 2, \ldots$, and if $x_n(t)$ increases to $x(t)$ as $n \to \infty$, then for each $\eta \in {\mathfrak{A}}^*,$

$$
\int^* x(t) \ d|\eta| = \sup_n \int^* x_n(t) \ d|\eta|,
$$

by (2, Theorem 3, p. 110). Thus

424 H. W. ELLIS

$$
\mathfrak{N}^A(x) = \sup_{\eta \in \mathfrak{N}_u^*} \int^* x(t) \, d|\eta| = \sup_{\eta \in \mathfrak{N}_u^*} \sup_{\eta \in \mathfrak{N}_u^*} \int^* x_n(t) \, d|\eta|
$$

$$
= \sup_{\eta \in \mathfrak{N}_u^A} \mathfrak{N}^A(x_n).
$$

If (L1) (5) holds every μ -negligible set is \mathfrak{A}^* -negligible. Conversely if every μ -negligible set is \mathfrak{A}^* -negligible, \mathfrak{R}^A is defined and non-negative for every $x(t)$ that is non-negative a.e. (μ) (and therefore a.e. (\mathfrak{A}^*)) and if $x(t)$ is μ negligible and $e = [t : x(t) \neq 0]$, *e* is *µ*-negligible (2, Theorem 1, p. 119) and therefore \mathfrak{A}^* -negligible. This implies that $x(t)$ is η -negligible for every $\eta \in \mathfrak{A}^*$ and (3.2) then shows that $\mathfrak{R}^A(x) = 0$ giving (L1).

We note that there exist \mathfrak{N}^A -extensible MT^* -spaces, in fact MT -spaces on a compact set E , for which \mathfrak{N}^A cannot define a length function for any measure μ . Consider the *MT*-space $A = \mathfrak{E}_c(E)$ of complex valued functions continuous in $E = [0, 1]$ with semi-norm $\mathfrak{N}^A(x) = \sup_{t \in E} |x(t)|$ and suppose that \mathbb{R}^4 defines a length function for some positive measure μ . Then, since \mathfrak{A}^* contains all the point measures, the empty set is the only \mathfrak{A}^* -negligible set and therefore, by the preceding theorem, the only μ -negligible set. For each $t, 0 \leq t \leq 1$, the set $\{t\}$ consisting of the point *t* is closed and therefore μ measurable and $\mu({t}) > 0$. For some $a > 0$ there is a collection of points t_i of *E* with $\mu({t_i}) > a$, $i = 1, 2, \ldots$. Thus for the characteristic function of E , χ_E ,

$$
\mu(\chi_E) = \mu(E) \geqslant \lim_{n} \mu(\bigcup_{1}^{n} t_i) \geqslant \lim_{n} na = \infty,
$$

contradicting the assumption that μ is a measure since $\chi_E \in \mathfrak{C}_C$.

The following theorem is a partial converse of Theorem 3.3.

THEOREM 4.2. Let A be an \mathfrak{N}^A -extensible MT^{*}-space, μ a positive measure *on E and suppose that all of the elements of* \mathfrak{A}^* *are of base* μ . Suppose that every *fi-negligible set is %*-negligible and that every* 21**-negligible set is locally [\x-neg](file:///x-neg-)ligible.* Then $A \subset \overline{A} \subset \mathcal{R}_{c^{\lambda}} = \Omega_{0}{}^{A} \subset \mathfrak{F}^{A}$.

Proof. By Theorem 4.1 \mathfrak{N}^A determines a length function λ for μ . We denote by ℓ_c^{λ} the λ -space determined by λ . By hypothesis every $\eta \in \mathfrak{A}^*$ can be written $\eta = g \cdot \mu$ where $g(t)$ is locally μ -integrable. We identify the functions $g(t)$ with A^* , the measures $g \cdot \mu$ with \mathfrak{A}^* . If $E(g) = (t : g(t) \neq 0)$, $E(g)$ is μ -measurable and, for every $x \in \Omega^A$, $x_{E(g)}(t)$ is μ -measurable (3, Proposition 3, p. 43). Given a compact set K in E with $\mu(K) > 0$ consider, for all $g \in A^*$, the collection of subsets $E(g)$ of K with $\mu[E(g)] > 0$. From this collection form a maximal collection of disjoint sets and let *B* denote their union. Since this collection will be at most countable *B* will be μ -measurable. If $g \in A^*$, $g_{K-B} \in A^*$ and $\mu[E(g_{K-B})] = 0$ for otherwise $B \cup E(g_{K-B})$ properly contains *B* contradicting the definition of *B*. Thus, for every $g \in A^*$, $g(t) = 0$ almost everywhere in $K - B$, $g \cdot \mu(K - B) = 0$ and $K - B$ is A^* -negligible and therefore, by hypothesis, $K - B$ is μ -negligible. If $x \in \Omega^A$, x_B is μ -measurable and therefore x_K is μ -measurable. It follows from (2, Proposition 4, p. 182)

that every $x \in \Omega^A$ is μ -measurable. If $x \in \Omega_0^A$, $\mathfrak{N}^A(x) < \infty$ and $x \in \Omega_c^A$. Thus $A \subset \Omega_0^A \subset \mathfrak{C}_c^\lambda$. Since \mathfrak{C}_c^λ is complete it is closed in \mathfrak{F}^A and contains \overline{A} , the closure of *A.*

To prove that $\ell_c \in \Omega_0^A$ we must show that every μ -measurable function $x(t)$ with $\mathfrak{R}^A(x) < \infty$ is in $\mathfrak{C}_c^{-1}(g, \mu)$ for every $g \in A^*$. Every $x(t) \in \mathfrak{C}_c^{\lambda}$ is μ -measurable by definition so that the Riesz components of $x(t)$ are μ -measurable (6, p. 168). The Riesz components are then measurable $(|g \, . \, \mu| = |g| \, . \, \mu)$ for every $g \in A^*$ (3, Proposition 3, p. 43). Thus $x(t)$ is measurable $(g \cdot \mu)$ for every $g \in A^*$. Since for each $g \in A^*$, $|g \cdot \mu|_e \in \mathfrak{A}^*$, it follows from (3.2) and **(6.** Theorem 9.4) that $x(t) \in \mathcal{R}_c^{-1}(g \cdot \mu)$.

We note that if to each compact set K corresponds $g(t) \in A^*$ with $g(t) \neq 0$ a.e. (μ) in K, every \mathfrak{A}^* -negligible set is locally μ -negligible. This is true in particular if \mathfrak{A}^* contains \mathfrak{R}_c or the characteristic function of every compact set.

THEOREM 4.3. Suppose that E is countable at infinity or that $E = E_0 \cup_i K_i$, *with each* K_i compact and E_0 locally μ -negligible, μ a positive measure. Let A *be an yi^A -extensible MT*-space for which all of the elements of A* are of base*

 \mathfrak{P}^A μ . Then, if E_0 is \mathfrak{A}^* -negligible, the normed spaces $\mathbf{L}_c^{\mathcal{H}}$ and $\Omega_0{}^A$ associated with $\Omega_0{}^A$ $2^{\alpha \alpha}_c$ and $\Omega_0^{\ A}$ are equivalent and contain A, the normed space associated with A.

Proof. As in Theorem 4.2 each K_i is the union of a μ -measurable set B_i and an \mathfrak{A}^* -negligible set. If $B = \bigcup_{i=1}^{\infty} B_i$, x_B is μ -measurable for every $x \in \Omega^4$. Every $g \in A^*$ vanishes a.e. (\mathfrak{A}^*) in $\bigcup_{i=1}^{\infty} K_i - B$. If not, for some g, i ,

$$
\mu[E(g_{K_i-B})] > 0,
$$

contradicting the definition of B_i . It follows that $B' = E - B$ is \mathfrak{A}^* -negligible. Thus for each $x(t) \in \Omega^A$, $x_B(t)$ is μ -measurable and $\Re^A(x - x_B) = 0$. If then $x(t) \in \Omega_0{}^A$, $x_B(t) \in \mathcal{R}_c{}^{\lambda}$, $\lambda = \mathfrak{N}^A$, with $\mathfrak{N}^A(x) = \mathfrak{N}^A(x_B)$ and $\tilde{\Omega}_0{}^A \subset \mathbf{L}_c{}^{\lambda}$. The proof that $\mathbf{L}_{c}^{\lambda} \subset \tilde{\Omega}_{0}{}^{A}$ is similar to the corresponding part of the proof of Theorem 4.2.

When *E* is countable at infinity $\Omega_0^A = \Omega^A$. The space *E* defined in (2, Exercise 4, p. 116) is of the form $D \cup_{i} {}^{\infty}K_i$ with *D* locally μ -negligible for the measure μ defined there. For the spaces $\bar{\mathfrak{C}}_{c}$, $1 \leqslant p \leqslant \infty$, *D* is \mathfrak{A}^* -negligible.

We note that if $\Re e$ is dense in $\Re e^{\lambda}$, $\bar{A} = \Re e^{\lambda}$ in Theorem 4.2 and $\bar{A} = \mathbf{L} e^{\lambda}$ in Theorem 4.3.

5. MT*-spaces of Cauchy type. If *A* is an Mr*-space, let *B* be the vector subspace of *A* over *R* of real mappings in *A,* B the associated real normed vector space. As in (8), with a natural definition of a partial order on B, B becomes a "Riesz space."

Definition 5.1. A complete \mathfrak{N}^A -extensible MT^* -space will be called an MT^* -space of *Cauchy type* if each subset H of B, bounded in norm and filtering for the relation \leq defines a Cauchy filter.

426 H. W. ELLIS

For a maximal MT-space the definition reduces to that given in $(8, \S 1)$. The theory of MT-spaces of Cauchy type given in (8) extends to MT^{*}-spaces of Cauchy type with A'-negligibility replaced by \mathfrak{A}^* -negligibility and with Ω^A replaced by Ω_0^A .

THEOREM 5.1. If A is an MT^{*}-space of Cauchy type then $A = \Omega_0^A$. If the hypotheses of Theorem 4.2 are then satisfied, $A = \mathcal{R}_c^{\lambda} = \Omega_0^A$ and, if the hypo*theses of Theorem* 4.3 are satisfied $\tilde{A} = L_c^{\lambda} = \tilde{\Omega}_0^A$.

We note that if $A = \mathcal{R}_c^{\lambda}$ is an MT^* -space of Cauchy type, the analogue of (8, Corollary 6.1) implies that λ satisfies (L9) (4, ((L9) as modified on p. 592)). Thus if $E = [0, 1]$, μ Lebesgue measure, the space \mathcal{R}^{∞} (*E*, μ) is not of Cauchy type.

REFERENCES

- 1. N. Bourbaki, *Éléments de Mathématique,* Fasc. XVIII, ''Espaces Vectoriels Topologiques," chaps, III-V (Paris, 1955).
- 2. *Éléments de Mathématique,* Fasc. XIII, "Integration," chaps, I-IV (Paris, 1952).
- 3. *Éléments de Mathématique,* Fasc. XXI, "Integration," chap, v (Paris, 1956).
- **4.** H. W. Ellis, On the MT^{*}- and λ conjugates of \mathbb{R}^{λ} spaces, Can. J. Math., 10 (1958), 381–91.
- 5. H. W. Ellis and I. Halperin, *Function spaces determined by a levelling length function,* Can. J. Math., *5* (1953), 576-92.
- 6. Marston Morse and William Transue, *Semi-normed vector spaces with duals of integral type,* Jour. d'Analyse Math., *4* (1955), 149-86.
- 7. *Products of a C-measure and a locally integrable mapping,* Can. J. Math., *9* (1957), 475-86.
- 8. *Vector subspaces A of* C^E with duals of integral type, J. Math. pures et appl., Series 9, 37 (1958), 343-363.

Queen s University,

Summer Research Institute of the Canadian Mathematical Congress