ON THE RESIDUAL FINITENESS OF PERMUTATIONAL PRODUCTS OF GROUPS

R. B. J. T. ALLENBY

(Received 20 January 1969)
Communicated by G. E. Wall

1. Introduction

In a recent paper Gregorac [1] has posed the following question: if P is a permutational product of the amalgam $\mathscr{A}=A \cup B \mid H$ and if P is residually finite are all the permutational products of \mathscr{A} residually finite?

The present note gives an example answering the question in the negative.
The notation will be that introduced by B. H. Neumann in [3]. In particular for elements $a \in A, b \in B, \rho(a), \rho(b)$ will denote the corresponding permutations in the permutational product under consideration. We use $\}$ to denote groups, \rangle for sets, () for the permuted symbols of the permutational products and also for permutations themselves.

I should like to thank the referee for his comments.

2. Preliminaries

In our example below we shall need the following information which is easily deduced from $\S 4$ of B. H. Neumann [3].

Let

$$
\begin{aligned}
X & =\left\{x, k ; x^{3}=k^{2}=(x k)^{2}=1\right\} \\
Y & =\left\{y, k ; y^{3}=k^{2}=(y k)^{2}=1\right\} \\
K & =\left\{k ; k^{2}=1\right\}
\end{aligned}
$$

and let \mathscr{X} be the amalgam $X \cup Y \mid K$. Take $X_{1}=\left\langle k, x, x^{2}\right\rangle$ as a set of left coset representatives of X modulo K and Y_{1}, Y_{2} as the sets $\left\langle 1, y, y^{2}\right\rangle$ and $\left\langle k, y, y^{2}\right\rangle$ respectively of left coset representatives of Y modulo K. If P_{1} is the permutational product of \mathscr{X} using X_{1} and Y_{1} then in $P_{1} \rho(x)$ and $\rho(y)$ generate a subgroup S_{1} of permutations which is soluble of length 2. If P_{2} is the permutational product of \mathscr{X} using X_{1} and Y_{2} then $P_{2} \cong S_{2} \times Z_{2}$ where $S_{2}=\{\rho(x), \rho(y)\} \cong A_{9}$, the alternating group on nine symbols, and Z_{2} is a cycle of order 2.

3. The example

We construct \mathscr{A} as follows. Take

$$
\begin{aligned}
& A=\left\{a, h ; a^{3}=h^{2}=(a h)^{2}=1\right\} \\
& B=\left\{h, b_{1}, b_{2}, \cdots ; h^{2}=b_{\imath}^{3}=\left(h b_{\imath}\right)^{2}=\left[b_{\imath}, b_{j}\right]=1\right\} \\
& H=\left\{h ; h^{2}=1\right\} .
\end{aligned}
$$

and
To construct a permutational product Q_{1} of \mathscr{A} which is residually finite choose, as (left) coset representatives of A modulo H, the elements $1, a, a^{2}$ and, as (left) coset representatives of B modulo H, the elements of $C=\left\{b_{1}, b_{2}, \cdots\right\}<B$. It is easy to check that in Q_{1} the equation $\left[\rho(a), \rho\left(b_{\imath}\right)\right]=1$ holds for all b_{1}. Hence $W_{1}=\left\{\rho(a), \rho\left(b_{1}\right), \rho\left(b_{2}\right), \cdots\right\}$ is the direct product of a countable infinity of 3-cycles and is consequently residually finite (see Lemma 1.1 [2]). Further W_{1} has index 2 in Q_{1} and so, as an extension of a residually finite group by a finite group, Q_{1} is residually finite (Lemma 1.5 [2]).

To obtain a permutational product Q_{2} of \mathscr{A} which is not residually finite we choose, as coset representatives of A and B modulo H, the same systems of representatives as above except that we choose the representative of H in each system to be ' h ' rather than ' 1 '. To prove Q_{2} is not residually finite we show that Q_{2} contains a subgroup isomorphic to the alternating group on a countable infinity of symbols. Clearly no residually finite group can contain an infinite simple group.

Let C be as above. First we select an arbitrary generator b_{ι} in C and split the set of coset representatives of B modulo H into disjoint subsets $\left\langle h, b_{\imath}, b_{\imath}^{2}\right\rangle$, $\left\langle t, t b_{i}, t b_{\imath}^{2}\right\rangle$ where t ranges over all non-identity elements of $C_{\imath}=\left\{b_{1}, b_{2}, \cdots\right.$, $\left.b_{\imath-1}, b_{\imath+1}, \cdots\right\}<C$. We now fix on such an element t and consider the effect of the elements $\rho(a), \rho\left(b_{l}\right)$ firstly on the set of triplets $(\bar{a}, \bar{b}, \bar{h})$ where $\bar{a} \in\left\langle h, a, a^{2}\right\rangle$, $\bar{b} \in\left\langle t, t b_{\imath}, t b_{\imath}^{2}\right\rangle, \bar{h} \in\langle 1, h\rangle$. It is not difficult to see that the subgroup $T_{\imath}=\{\rho(a)$, $\left.\rho\left(b_{t}\right)\right\}$ permutes this set of 18 triplets amongst themselves in precisely the same way that $S_{1}=\{\rho(x), \rho(y)\}$ permutes the corresponding triplets ${ }^{1}$ in P_{1}. Since S_{1} is soluble of length 2 the elements of the second derived group $T_{\imath}^{\prime \prime}$ of T_{ι} all map the 18 triplets under consideration identically. This argument clearly holds for any element $t(\neq 1)$ of C_{l}.

We now consider the effect of $\rho(a), \rho\left(b_{\iota}\right)$ on the 18 triplets $\left(\bar{a}, b^{*}, \bar{h}\right)$ where \bar{a}, \bar{h} are as above and $b^{*} \in\left\langle h, b_{\imath}, b_{\imath}^{2}\right\rangle$. Clearly T_{\imath} permutes this set of triplets amongst themselves in precisely the same way that S_{2} permutes the corresponding set of triplets in P_{2}. Since $S_{2} \cong A_{9}, S_{2}=S_{2}^{\prime \prime}$. Thus any element of S_{2} can be written as a product of commutators of the form $[[\alpha, \beta],[\gamma, \delta]]$ where each of $\alpha, \beta, \gamma, \delta$ is a product of $\rho(x), \rho(y)$ and their inverses.

If we now consider the corresponding elements in $T_{\iota}^{\prime \prime}$ (obtained by replacing

[^0]$\rho(x)$ by $\rho(a)$ and $\rho(y)$ by $\left.\rho\left(b_{\iota}\right)\right)$ the above considerations show that $T_{\iota}^{\prime \prime}$ generates a copy of A_{9} on the (\bar{a}, b^{*}, \bar{h}) and maps the $(\bar{a}, \bar{b}, \bar{h})$ identically.

Finally we select a subset of the set of all triplets on which Q_{2} acts and label them as follows.
(1) $\cdots(h, h, 1)$
$\left(1^{\prime}\right) \cdots(h, h, h)$
(2) $\cdots\left(a^{2}, h, h\right)$
(2') $\cdots(a, h, 1)$
(3) $\cdots(a, h, h)$
(3') $\cdots\left(a^{2}, h, 1\right)$
and, for each integer $n=1,2,3, \cdots$ label

$$
\begin{array}{ll}
(6 n-2) \cdots\left(h, b_{n}^{2}, h\right) & \left(6 n-2^{\prime}\right) \cdots\left(h, b_{n}, 1\right) \\
(6 n-1) \cdots\left(a^{2}, b_{n}^{2}, 1\right) & \left(6 n-1^{\prime}\right) \cdots\left(a, b_{n}, h\right) \\
(6 n) \cdots\left(a, b_{n}^{2}, 1\right) & \left(6 n^{\prime}\right) \cdots\left(a^{2}, b_{n}, h\right) \\
(6 n+1) \cdots\left(h, b_{n}, h\right) & \left(6 n+1^{\prime}\right) \cdots\left(h, b_{n}^{2}, 1\right) \\
(6 n+2) \cdots\left(a^{2}, b_{n}, 1\right) & \left(6 n+2^{\prime}\right) \cdots\left(a, b_{n}^{2}, h\right) \\
(6 n+3) \cdots\left(a, b_{n}, 1\right) & \left(6 n+3^{\prime}\right) \cdots\left(a^{2}, b_{n}^{2}, h\right) .
\end{array}
$$

Now given any integer $m>3$ write $m=6 n+r$ where $-2 \leqq r \leqq 3$. The above considerations showed that $T_{n}^{\prime \prime}=\left\{\rho(a), \rho\left(b_{n}\right)\right\}$ generates a copy of A_{9} on (1), (2), (3), $(6 n-2), \cdots(6 n+3)$; ($\left.1^{\prime}\right),\left(2^{\prime}\right),\left(3^{\prime}\right),\left(6 n-2^{\prime}\right) \cdots,\left(6 n+3^{\prime}\right)$ and leaves all other triplets invariant. In fact it is not difficult to check that $T_{n}^{\prime \prime}$ (and hence T_{n}) contains each of the permutations of the form $(12 k)\left(1^{\prime} 2^{\prime} k^{\prime}\right)$ where $k \in\langle 6 n-2, \cdots, 6 n+3\rangle$ (that is, a permutation moving $1,2, k, 1^{\prime}, 2^{\prime}, k^{\prime}$ as shown and fixing all the other triplets on which Q_{2} acts), and also the permutation (123) $\left(1^{\prime} 2^{\prime} 3^{\prime}\right)$. Hence in Q_{2} the subgroup $W_{2}=\left\{\rho(a), \rho\left(b_{1}\right), \rho\left(b_{2}\right), \cdots\right\}$ contains all permutations of the form $(12 m)\left(1^{\prime} 2^{\prime} m^{\prime}\right)$ with $m \geqq 3$. Hence W contains a subgroup isomorphic to the alternating group on a countable infinity of symbols thus proving that Q_{2} is not residually finite.

References

[1] R. J. Gregorac, 'Residual finiteness of permutational products', J. Aust. Math. Soc. 10 (1969), 423-428.
[2] K. W. Gruenberg, 'Residual properties of infinite soluble groups', Proc. London Math. Soc. 7 (1957), 29-62.
[3] B. H. Neumann, 'Permutational products of groups', J. Aust. Math. Soc. 1 (1960), 299-310.

School of Mathematics
The University
Leeds, England.
LS2 9JT.

[^0]: ${ }^{1}$ That is the set of 18 triplets (\bar{x}, \bar{y}, k) where $\bar{x} \in X_{1}, \bar{y} \in Y_{1}$ and $\bar{k} \in\langle 1, k\rangle$.

