ON THE RESIDUAL FINITENESS OF PERMUTATIONAL PRODUCTS OF GROUPS

R. B. J. T. ALLENBY

(Received 20 January 1969) Communicated by G. E. Wall

1. Introduction

In a recent paper Gregorac [1] has posed the following question: if P is a permutational product of the amalgam $\mathscr{A} = A \cup B | H$ and if P is residually finite are all the permutational products of \mathscr{A} residually finite?

The present note gives an example answering the question in the negative. The notation will be that introduced by B. H. Neumann in [3]. In particular for elements $a \in A$, $b \in B$, $\rho(a)$, $\rho(b)$ will denote the corresponding permutations in the permutational product under consideration. We use $\{ \}$ to denote groups, $\langle \rangle$ for sets, () for the permuted symbols of the permutational products and also for permutations themselves.

I should like to thank the referee for his comments.

2. Preliminaries

In our example below we shall need the following information which is easily deduced from §4 of B. H. Neumann [3].

Let

$$X = \{x, k; x^3 = k^2 = (xk)^2 = 1\},\$$

$$Y = \{y, k; y^3 = k^2 = (yk)^2 = 1\},\$$

$$K = \{k; k^2 = 1\}$$

and let \mathscr{X} be the amalgam $X \cup Y | K$. Take $X_1 = \langle k, x, x^2 \rangle$ as a set of left coset representatives of X modulo K and Y_1, Y_2 as the sets $\langle 1, y, y^2 \rangle$ and $\langle k, y, y^2 \rangle$ respectively of left coset representatives of Y modulo K. If P_1 is the permutational product of \mathscr{X} using X_1 and Y_1 then in $P_1\rho(x)$ and $\rho(y)$ generate a subgroup S_1 of permutations which is soluble of length 2. If P_2 is the permutational product of \mathscr{X} using X_1 and Y_2 then $P_2 \cong S_2 \times Z_2$ where $S_2 = \{\rho(x), \rho(y)\} \cong A_9$, the alternating group on nine symbols, and Z_2 is a cycle of order 2.

504

505

3. The example

We construct \mathscr{A} as follows. Take

$$A = \{a, h; a^{3} = h^{2} = (ah)^{2} = 1\},\$$

$$B = \{h, b_{1}, b_{2}, \dots; h^{2} = b_{i}^{3} = (hb_{i})^{2} = [b_{i}, b_{j}] = 1\},\$$

$$H = \{h; h^{2} = 1\}.$$

and

To construct a permutational product Q_1 of \mathscr{A} which is residually finite choose, as (left) coset representatives of A modulo H, the elements 1, a, a^2 and, as (left) coset representatives of B modulo H, the elements of $C = \{b_1, b_2, \dots\} < B$. It is easy to check that in Q_1 the equation $[\rho(a), \rho(b_1)] = 1$ holds for all b_i . Hence $W_1 = \{\rho(a), \rho(b_1), \rho(b_2), \dots\}$ is the direct product of a countable infinity of 3-cycles and is consequently residually finite (see Lemma 1.1 [2]). Further W_1 has index 2 in Q_1 and so, as an extension of a residually finite group by a finite group, Q_1 is residually finite (Lemma 1.5 [2]).

To obtain a permutational product Q_2 of \mathscr{A} which is not residually finite we choose, as coset representatives of A and B modulo H, the same systems of representatives as above except that we choose the representative of H in each system to be 'h' rather than '1'. To prove Q_2 is not residually finite we show that Q_2 contains a subgroup isomorphic to the alternating group on a countable infinity of symbols. Clearly no residually finite group can contain an infinite simple group.

Let C be as above. First we select an arbitrary generator b_i in C and split the set of coset representatives of B modulo H into disjoint subsets $\langle h, b_i, b_i^2 \rangle$, $\langle t, tb_i, tb_i^2 \rangle$ where t ranges over all non-identity elements of $C_i = \{b_1, b_2, \dots, b_{i-1}, b_{i+1}, \dots\} < C$. We now fix on such an element t and consider the effect of the elements $\rho(a), \rho(b_i)$ firstly on the set of triplets $(\bar{a}, \bar{b}, \bar{h})$ where $\bar{a} \in \langle h, a, a^2 \rangle$, $\bar{b} \in \langle t, tb_i, tb_i^2 \rangle$, $\bar{h} \in \langle 1, h \rangle$. It is not difficult to see that the subgroup $T_i = \{\rho(a), \rho(b_i)\}$ permutes this set of 18 triplets amongst themselves in precisely the same way that $S_1 = \{\rho(x), \rho(y)\}$ permutes the corresponding triplets¹ in P_1 . Since S_1 is soluble of length 2 the elements of the second derived group T_i'' of T_i all map the 18 triplets under consideration identically. This argument clearly holds for any element $t(\neq 1)$ of C_i .

We now consider the effect of $\rho(a)$, $\rho(b_i)$ on the 18 triplets (\bar{a}, b^*, \bar{h}) where \bar{a}, \bar{h} are as above and $b^* \in \langle h, b_i, b_i^2 \rangle$. Clearly T_i permutes this set of triplets amongst themselves in precisely the same way that S_2 permutes the corresponding set of triplets in P_2 . Since $S_2 \cong A_9$, $S_2 = S_2''$. Thus any element of S_2 can be written as a product of commutators of the form $[[\alpha, \beta], [\gamma, \delta]]$ where each of $\alpha, \beta, \gamma, \delta$ is a product of $\rho(x)$, $\rho(y)$ and their inverses.

If we now consider the corresponding elements in T'_{ι} (obtained by replacing

¹ That is the set of 18 triplets $(\bar{x}, \bar{y}, \bar{k})$ where $\bar{x} \in X_1, \bar{y} \in Y_1$ and $\bar{k} \in \langle 1, k \rangle$.

 $\rho(x)$ by $\rho(a)$ and $\rho(y)$ by $\rho(b_i)$) the above considerations show that T''_i generates a copy of A_9 on the (\bar{a}, b^*, \bar{b}) and maps the $(\bar{a}, \bar{b}, \bar{b})$ identically.

Finally we select a subset of the set of all triplets on which Q_2 acts and label them as follows.

$(1) \cdot \cdot \cdot (h, h, 1)$	$(1') \cdots (h, h, h)$
$(2) \cdots (a^2, h, h)$	$(2') \cdots (a, h, 1)$
$(3) \cdots (a, h, h)$	$(3') \cdots (a^2, h, 1)$

and, for each integer $n = 1, 2, 3, \cdots$ label

$(6n-2)\cdots(h, b_n^2, h)$	$(6n-2')\cdots(h, b_n, 1)$
$(6n-1)\cdots(a^2, b_n^2, 1)$	$(6n-1')\cdots(a, b_n, h)$
$(6n) \cdots (a, b_n^2, 1)$	$(6n')$ \cdots (a^2, b_n, h)
$(6n+1)\cdots(h, b_n, h)$	$(6n+1')\cdots(h, b_n^2, 1)$
$(6n+2)\cdots(a^2, b_n, 1)$	$(6n+2')\cdots(a, b_n^2, h)$
$(6n+3)\cdots(a, b_n, 1)$	$(6n+3')\cdots(a^2, b_n^2, h).$

Now given any integer m > 3 write m = 6n+r where $-2 \le r \le 3$. The above considerations showed that $T''_n = \{\rho(a), \rho(b_n)\}$ generates a copy of A_9 on (1), (2), (3), $(6n-2), \dots, (6n+3)$; (1'), (2'), (3'), $(6n-2') \dots, (6n+3')$ and leaves all other triplets invariant. In fact it is not difficult to check that T''_n (and hence T_n) contains each of the permutations of the form (12k)(1'2'k') where $k \in \langle 6n-2, \dots, 6n+3 \rangle$ (that is, a permutation moving 1, 2, k, 1', 2', k' as shown and fixing all the other triplets on which Q_2 acts), and also the permutation (1 2 3) (1'2'3'). Hence in Q_2 the subgroup $W_2 = \{\rho(a), \rho(b_1), \rho(b_2), \dots\}$ contains all permutations of the form (12m)(1'2'm') with $m \ge 3$. Hence W contains a subgroup isomorphic to the alternating group on a countable infinity of symbols thus proving that Q_2 is not residually finite.

References

- R. J. Gregorac, 'Residual finiteness of permutational products', J. Aust. Math. Soc. 10 (1969), 423-428.
- [2] K. W. Gruenberg, 'Residual properties of infinite soluble groups', Proc. London Math. Soc. 7 (1957), 29-62.
- [3] B. H. Neumann, 'Permutational products of groups', J. Aust. Math. Soc. 1 (1960), 299-310.

School of Mathematics The University Leeds, England. LS2 9JT.