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1. Introduction

In a recent paper Gregorac [1] has posed the following question: if P is a
permutational product of the amalgam j / = ^ u B\H and if P is residually finite
are all the permutational products of s4 residually finite?

The present note gives an example answering the question in the negative.
The notation will be that introduced by B. H. Neumann in [3]. In particular

for elements as A, be B, p(a), p(b) will denote the corresponding permutations in
the permutational product under consideration. We use { } to denote groups,
< > for sets, ( ) for the permuted symbols of the permutational products and also
for permutations themselves.

I should like to thank the referee for his comments.

2. Preliminaries

In our example below we shall need the following information which is easily
deduced from §4 of B. H. Neumann [3].

Let
X = {x,k;x3 = k2 = (xkf = 1},
Y={y,k;y3 = k2 = {ykf = 1},
K= {k;k2 = 1}

and let X be the amalgam Xu Y\K. Take Xl = (k, x, x2} as a set of left coset
representatives of X modulo K and Yt, Y2 as the sets <1, y, y2} and (k, y, y2}
respectively of left coset representatives of Y modulo K. If Pl is the permutational
product of 2£ using X1 and Y1 then in Ptp(x) and p(y) generate a subgroup St of
permutations which is soluble of length 2. If P2 is the permutational product of
SE using Xi and Y2 then P2 = S2xZ2 where S2 = {p(x), p(y)} = A9, the
alternating group on nine symbols, and Z2 is a cycle ot order 2.
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3. The example

We construct sf as follows. Take

A = {a, h; a3 = h2 = (ah)2 = 1},

B={h,b1,b2,---;h
2 =b\ = {hbt)

2 = [bt,bj] = 1}

and H = [h;h2 = 1}.

To construct a permutational product Qt of s/ which is residually finite choose,
as (left) coset representatives of A modulo H, the elements I, a, a2 and, as (left)
coset representatives of B modulo H, the elements of C = {blt b2, • • •} < B.
It is easy to check that in g t the equation [p(a), p(bt)] = 1 holds for all b,.
Hence W1 = {p{a), p(bt), p(b2), • • •} is the direct product of a countable infinity
of 3-cycles and is consequently residually finite (see Lemma 1.1 [2]). Further
W^ has index 2 in Qt and so, as an extension of a residually finite group by a
finite group, Ql is residually finite (Lemma 1.5 [2]).

To obtain a permutational product Q2 of s/ which is not residually finite we
choose, as coset representatives of A and B modulo H, the same systems of rep-
resentatives as above except that we choose the representative of H in each
system to be 'ff rather than ' 1 ' . To prove Q2 is not residually finite we show that
Q2 contains a subgroup isomorphic to the alternating group on a countable in-
finity of symbols. Clearly no residually finite group can contain an infinite simple
group.

Let C be as above. First we select an arbitrary generator A, in C and split
the set of coset representatives of B modulo H into disjoint subsets <A, bt, b2s),
(t, tbt, tb2} where t ranges over all non-identity elements of C, = {b1,b2, • • ',
&(_!,6,+ !,•••} < C. We now fix on such an element t and consider the effect of
the elements p(a), p(bt) firstly on the set of triplets (a, h, h) where a e </;, a, a2},
E e </, tbt, tb2}, H e <1, h}. It is not difficult to see that the subgroup Tt = {p(a),
p(bt)} permutes this set of 18 triplets amongst themselves in precisely the same
way that S1 = {p(x), p(y)} permutes the corresponding triplets1 in P1. Since Sx is
soluble ot length 2 the elements of the second derived group T" of Tt all map the
18 triplets under consideration identically. This argument clearly holds for any
element ?(# 1) of C( .

We now consider the effect of p(a), p(ftj) on the 18 triplets (a, b*, h) where
a, h are as above and b*e(h, bt,b

2}. Clearly Tv permutes this set of triplets amongst
themselves in precisely the same way that S2 permutes the corresponding set
of triplets in P2. Since 52 = Ag, S2 = S2. Thus any element of S2 can be written
as a product of commutators of the form [[a, jS], [y, d]] where each of a, /?, y, S is
a product of p(x), p(y) and their inverses.

If we now consider the corresponding elements in T" (obtained by replacing

1 That is the set of 18 triplets {x, y, k) where x e Xt, y e Yi and h e <1, ky.

https://doi.org/10.1017/S1446788700007953 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007953


506 R. B. J. T. Allenby [3]

p(x) by p(a) and p(y) by p(bt)) the above considerations show that T" generates
a copy of Ag on the (a, b*, h) and maps the (a, b, h) identically.

Finally we select a subset of the set of all triplets on which Q2 acts and label
them as follows.

(1) • ••{h,h, 1) (V) • - • (h, h, h)

(2) • • • (a2, h, h) (2') • • • (a, h, 1)

(3) • • • (a, h, h) (3') •••(a2,h,l)

and, for each integer n = 1, 2, 3, • • • label

( 6 n - 2 ) - ••{h,b1
n,h) (6n-2 ' ) - • • (A, bn, 1)

( 6 H - 1 ) • • • (a2, b2
n, 1) (6#i-l ') • • • (a, 6,, A)

(6n) • • • ( « , # , 1) ( 6 « ' ) •••(a2,bn,h)

(6/2 + 1)- • • (h,bn,h) (6n + l ' ) - • • (A, ^ , 1)

(6n + 2) • • • (a2, &„, 1) (6« + 2') • • • {a, b2
n,h)

••(a,bn,\)

Now given any integer m > 3 write w = 6n + r where — 2 ^ r ^ 3. The
above considerations showed that T'n' = {p(a), p(bn)} generates a copy of Ag

on (1), (2), (3), (6n-2), • • • (6« + 3); (1'), (2'), (3'), (6«-2') • • •, (6n + 3') and
leaves all other triplets invariant. In fact it is not difficult to check that T'n' (and
hence Tn) contains each of the permutations of the form (\2k)(\'2'k') where
k e <6« —2, • • •, 6n + 3> (that is, a permutation moving 1, 2, A:, 1', 2', fc' as shown
and fixing all the other triplets on which Q2 acts), and also the permutation (1 2 3)
(1'2'3'). Hence in Q2 the subgroup W2 = {p(a), p{bx), p(b2), • • •} contains all
permutations of the form (1 2m)(l'2'w') with m 2: 3. Hence W contains a subgroup
isomorphic to the alternating group on a countable infinity of symbols thus proving
that Q2 is not residually finite.
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