A Matrix Form of Taylor’s Theorem.
By Professor H. W. TURNBULL.
(Recetved 1st October 1929. Read 2nd November 1929.)

INTRODUCTION.

The following pages continue a line of enquiry begun in a work
On Differentiating a Mairiz, (Proceedings of the Edinburgh Mathematical
Society (2) 1 (1927), 111-128), which arose out of the Cayley operator

0 | . .. .
|Ql=|-— |, where z;; is the ij** element of a square matrix [z;] of
’ 0%j; |
order n, and all n? elements are taken as independent variables. The

present work follows up the implications of Theorem IIT in the
original, which stated that

0
HE] s X =[],
where s(X7) is the sum of the principal diagonal elements in the
matrix X7. This is now written Q; X7 =r X7-1 and Q; is taken as a
fundamental operator analogous to ordinary differentiation, but
applicable to matrices of any finite order n. In particular it leads to
a matrix form of Taylor’s Theorem (§8),

FX+A)=f(X)+ QAf(X) + 217

Qs(Xr)=rXr-1, Q—_—[

QAP f(X) + ...

where A is an arbitrary constant matrix which need not commute with
the variable X. The function f(X) is a scalar function of X, and is

not a general matrix function: even so, f(X + 4) is essentially a
function of two matrices X and 4, and therefore is vastly more

complicated than f(X) itself.

The question of change of variable arises and leads to various
results which generalize on the formulae y = f(x), dz _dz dy

dx dy dx

Incidentally it appears that the operator Q X — X Q is an absolute
matrix differential invariant for scalar functional transformations
Y =f(X), from a matrix X to a matrix ¥ of %2 independent
variables.

In the last paragraph the analogies and the disparities between
the present calculus and that of g-numbers in quantum algebra
receive attention.
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§1. CycLIC PROPERTIES OF THE DIAGONAL IN A MATRIX.

Let X =[z;] be a square matrix of order n whose elements
x; are scalar; then the sum sy of its leading diagonal elements is
Sx;. I Y =[y;] is a matrix of the same order, we may form the
product matrix XY = [Za;;1;]; and the sum of its leading diagonal
elements is given by

summed for both ¢ and j from 1 to n. Adopting the double suffix
convention of tensor analysis we can write

SXY =X Yz ="SYX tevvranennunennnos (2)

Under such a convention the further expression x; yji z1; denotes a
triple sum, with ¢, j, k¥ each running from 1 to n: and manifestly
yij 2 Xr; denotes exactly the same triple sum, whereas z; yu 2y
denotes a double sum which is the b representative element in the
product matrix XYZ. We infer the following cyclic property of the
triple product matrix XY Z:

SXYZ ==S8YZX T SZXY s v 0o s s v tesassssees (3)

Likewise for a matrix product of r factors XY....Z, the scalar
quantity sxy. zis unchanged by a cyclic permutation of these factors.
This quantity is given by

SXY..Z=FG Yk v o v cBgi e vrrrannnt (4)

and the summation on the right consists of n~ terms.

For the purpose of matrix differentiation this scalar function sy
of the elements in the diagonal of the matrix X is very important.
Let it be called the spur of X, and also be denoted by s(X). Thus

s(XY..Z) = s(Y..ZX) = .... = s(ZXY..). ...... (4)

The purpose of these r equivalent ways of writing the same function
of a product matrix will appear in the sequel. But for the present
it is worth noting that, in the ordinary differential calculus, we could
differentiate a product wvw, of functions of a single variable ¢, as
follows:

d(uvw) _ du .ow + d_ku -+ dﬂ.uv. ..... -(5)

dé dé dé dé

This may look artificial, but it serves to illustrate the more difficult
non-commutative case. It suggests a rule: to differentiate a product
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of r factors, form a sum of r terms by bringing each different factor
cyclically to the fore, and differentiate the first factor of each term, alone.

The transposition law. If X' =[x;] denotes the transposed
matrix of X, the corresponding functions, such as s(X'Y’), are
obtained by transposing suitable suffixes. For example

Sy = % Yi = SXY » SX'Y =&ji Yy = Sxy’ } (6)
§Zyx = Syxz = S§xzvy = Szyx = S§(xvzy,

There are obviously two ways round a circuit: and if we com-

pare (3) with (6), we see that the two ways round correspond with

the two modes of writing a matrix—the direct and the transposed.
The same is true for a product XY....Z of r factors.

The addition law. If Y =[y;] and Z=[z;] then Y+Z=[y; +2;],
so that

3(Y+Z):y“-}—z“:«s(Y)—}-S(Z). .................... (7)

Hence the process of forming the spur of a matrix is distributive
with the process of addition. Again, if a is a scalar number, we have

S(aY):ayéi:as(Y): ............................ (8)

and if I is the unit matrix and f(X) is a polynomial of a matrix X
with constant scalar coefficients

f(X)=al+a; X+, X2+ ..+ Xp, ... . ..., (9)
it follows that
s(f(X))y=0gn +a;8(X) + a8 (X?) 4 ..+ aps(Xr). ....(10)
§2. Tae OperaToRrRS Q, Q', Q,, Q.

If we treat the n? elements x;; as independent variables and
form the matrix differential operators

a-[2] @ [2] "

then we interpret Q Y by the product rule —

07 [ )] =[] oo @

and we interpret the effect of operating on a scalar quantity f by

ar=[-2]. T (3)

0xj;

The suffix £ in (2) is a dummy, denoting a sum of n terms in the
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1jth element of the matrix. In particular, let us operate on s(X7Y),
which may be written z,, ¥ (§1(2)). Then

0s (XY) Oxpg , oy,
( ) _ “-?/qp"‘qua_qu?/ij"’“qu

Y
- , 4
Oy oxjy 2 oxj; (4)

for all the other terms disappear. In fact 0x,,/0z; is zero unless
p =j,¢=1t. Hence by forming the whole matrix, we have

_fos (XY)] v [ 3yqp]
Qs(XY)_[ 2 =Y 4 quéa ............ (5)
Similarly, if 4 = {a;; ] is a matrix of constant elements, we have
oy oy
Qs (A7) =0 + [a, axjﬂ = [y, af] e (6)

and, for the transposed matrix X', we have

Qs(X'Y)z[Mﬁ] _ Y'—}—[xqp ay‘”’]. ..... (D

24 0x;;

It is preferable to rewrite (5) as

- [0ypq ] !
QS(XY)—Y—}—La?ﬁ e T (5')
where the last matrix is identically equal to the original [qu g@;}
Xji
More generally, if Z = UVW, and Z = [2; ] = [%iq Ver wrj], We have
Qs (Z)
_ [0 vgr wrp‘l - [aum ] [aqu :I [awm J
- [ Oxj¢ o 0x;; Vo Wrp |+ 87],, < War trp | 0x;; tar orp | (8)
and this puts into evidence the cyclic rule for differentiating a product,
given in §1. TIf, for example, Y, U, V, W are each equal to X, the
only non-zero terms in (5°) and (8) occur where p =3, ¢ =14 Con-
sequently these formulae give
Qs(X?) =X + [z;] = 2X,
Qs(X3)=XX + XX + XX = 3X?
and in general,!

Qs(X")y=rXr—t. L (9)

One object of the present communication is to extend this
formula (9) to the case when r is not merely a positive integer

1 Of. Proc. Edinburgh Math. Soc. (2) 1 (1928), 111-128 (128).
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but is any rational number, and X~ is replaced by any regular
function ¢ (X).

Next, we must modify the cyclic rule for differentiating a
product, so as to include #ransposed factors, such as occur in (7).
Comparing (5) with (7), we note that the cyclic rule is still at work,
provided only that when a transposed factor is differentiated, all
the other factors are transposed in the resulting term.

For, example, if Z = X'VW = [x,; vyr w,;], then

_[Prgpogrwnp| o . ‘:a”pq [awpq
Qa(2) = [ 220 | (uge ) [ 229 00 [ Z2 1,
={(VW) +ete. ... ..(10)

Here the effect of differentiating the factor X’ is to reverse the VW,
and the term could be written W'V’'. It is impossible to state the
other two terms more precisely, unless the characters of V and W
are defined. Let us confine ourselves to matrix products of factors
consisting entirely of X, X' and constants 4.

Examples. (i) Qs(X'X) = 2X".

For, by (7), the operation on X' deletes X' and transposes the
other factor X to X’; and by (5) the operation on X deletes X
without further alteration.

(i) Qs(X’AXBX')=(AXBX') + (BX'X'A) + (X'AXB)
~ XB'X'A'+ BX?4 + BX'A'X.

In this, two of the five factors in the operand are constants, giving
zero terms, by (6). .The cyclic rule is at work, together with
transposition of the cycle, for the two cases X’. The practical point
to bear in mind is to begin the cycle with the factor immediately
after the deleted factor.

Change of motation to Q,. Hitherto there have been separate opera-
tions—that of forming the spur s(Y) of a matrix ¥, and the
operation Q. We can merge these two processes and call the joint
operation Q : from a matrix Y it generates a derived matrix Y,.

Hence by definition, if ¥ =[y;], Q= laa :|,
%

QSY=Q3(Y)=[8_?’£”}=YI. creeeieeea(1D)

0x;;
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There is an analogous transposed matrix operator Q’, defined by
Q’SY:Q's(Y)_—_[aZ""?’] .......... (12)

but it d(;es not appear to have the ;Jundamenta.l importance of ;.

§3. FUNCTIONS OF MATRICES AND THEIR DERIVATES.

We must now distinguish between three types of function
occurring in non-commutative algebra:

I f(X) the scalar function of a single argument X,
II F(X) the matriz function of a single argument X,
III o(X) the scalar of X.

By I is meant a function composed of one matrix argument X
together with scalar coefficients. It may be a polynomial, a rational,
a regular function, and so on. For example
X2 X3 X
S hg toe T R (1)
is a scalar function. Strictly speaking f(X) is a function of two
matrices, X itself together with the unit matrix I. The unit in the
first term of the expansion of exp X is understood to signify the unit
matrix.

exp(X)=14+ X+

By 1I is meant a function involving several matrices, where X
alone is the argument and all others are constants. A capital letter ¥
will be used to distinguish this type of function from the scalar
function. For example

F(X)=4X?*4 XBX 4+ X*C . cev.... (2)
is a particular quadratic matrix function of X.

By III is meant a scalar quantity, such as s (X2?), whose value is
completely determined by the value of the matrix X. The spur of X
is a particular scalar of X.

It will be seen that, in the extreme case when »n =1, all
matrices revert to ordinary scalar algebra, and there is no raison
d’étre for distinguishing between these three types of function, any
more than between a matrix and its transposed.

We may obviously extend the above notation to include
functions of several matrix arguments, such as f(X, Y), F(X, Y),
o(X, Y). More generally there could be functions F(X,Y .., z;, ..)
where the scalar variables z;; occur among the scalar coefficients as
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well as implicitly in the matrix arguments. Such cases however are
hereafter left aside.

It may be observed that type I is a special case of II—when all
matrix constants are scalar multiples of the unit matrix.

We now come to certain fundamental theorems.

THEOREM I. The matrix derivate of a scalar function f(X) is the
ordinary derived function f'(X), which is also the derivate of f(X'). Or
QG XY=, f(X)=f(X). .ooeve... (3)
Proof jor the case of a polynomial. Since Q(Y +Z)=QY + QZ
and Q, X" = rXr-1, the result follows by operating with Q on f(X) in
§1(10). Thus
f(X)=a+a; X + .... 4+ 0 XP,
Q f(X) =03 + 20, X 4+ .... + po, X1 = f'(X)
in the ordinary sense of f' (X).
The second part of the theorem follows by the cyclic reversal

law of §2 (10); or simply because the spur of f(X') is the same as
that of f(X).

TaeoreEM 1I. The matrix derivate of a matriz polynomial function
F (X) of order p s a matrixz polynomial of order p — 1.

This follows immediately from the law of cyclic differentiation.
For example, the derivate of the general linear polynomial

ZAXB+C
is X BA. That of the general quadratic polynomial
XAXBXC + ZDXE + F
is the linear polynomial

2BXCA + ZCAXB + ZED.

TueoreMm III. The matriz derivate of a matriz polynomial
F (X, X') of order p in the two variables X and X' is another such
polynomial of order p — 1.

The proof again follows from the cyclic laws. For example

Q, (AXX' + X'BX)=X'A + (4X) + (BX) + X'B
=X (A4 + A"+ B+ B).

THEOREM IV. The special matriz geometrical progression
AX7-1 L XAXr -2+ .., + Xr-i4Xi-14 ...+ X714

s the matrix derivate of 4 X" .
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This is a particular application of Theorem II, presenting no
difficulties, once the cyclic law of differentiation is grasped.

‘We have
Q, 4X = A4, \
Qs AXZZAX+XA, l
Q, AX3 = AX2+ XAX + X2 A4, L. (4)
Q AXr = AX7 ' XAXr-2 4+ ...+ Xr-14 J

Further results. A few more examples of this operation may now
be quoted, before proceeding with the general theory. There is no
difficulty in establishing the following formulae, where r is a positive

integer:
Q; AX' =4,
Q, AX?= XA" + A'X, 1 (5)

Q AX" = Xr14"+ X 24X 4.... + 4 Xr? J
Q; (XX")= Qs (X' X) = 2X/,
Q(Xr X7)=2(Xr1X'"m + Xr2X""X + .. + X" X 1= Q, (X' X" ), } (6)
Q (XX') =2r X" (XX) -1 = 20 (X' X)X’ =Q, (X' X)"
Formulae involving Q' = [_8__]
oz

Q'AX =4", Q,/ AX*=X"44AX',ete. .......... (7)
Q-matrices. All these matrices on the left are of type Qo (X, ..),
where Q or Q' acts on a scalar of X, X', A. Let such matrices be
called Q-matrices. The formulae suggest that a large class of

functions F (X, X') can be expressed as (2 matrices. In particular
the last result of (6) shews that the recurring product

XX XX"....X

of an odd number of factors can be so expressed.

§4. THE SPECIAL GEOMETRICAL PROGRESSION,
The matrix polynomial .
G (X, 4, X)=AX 14 XAX -2+ X AX - 4 4+ X7-14 . .(1)
is called a special geometrical progression, whose fore and after ratios

are equal to X and X-1. It is obviously allied to a more general
function

A+ XAY + X2AY2 4+ .+ XiAY i ... . (2)
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which admits of satisfactory treatment analogous to the ordinary
elementary theory. To derive the special series we replace 4 by
AX -t and Y by X-?, taking the first » terms of the general series.
It will be seen that this special progression constantly occurs in the
theory of Q differentiation. An example of the general progression,
proved in the original communication, was

O Xr=Xr-14 X' Xr-2 ... X1 .. (3)

THEOREM V. Provided that X satisfies certain conditions to be
specified, the only value of A which satisfies the equation

AX -1 + XAX 24 ...+ X"1A=1
s A= lXl"f.
r

Proof. Multiply the given equation, fore and aft in turn, by X, and
subtract. Hence

AXr — XA =IX — XI = 0.

So A commutes with X~ and is therefore a scalar function of X,
provided that X7 itself satisfies no rational integral equation of order
lower than n.! Consequently A is a scalar function of X and
commutes with all integral powers of X. The equation can now be
written 4 X1+ AXX" -2+ ...+ 4X"-1 =1, or rAX"-'=1. Hence,

if X s non-singular, A = —i— Xi-r,

These limitations for the value of X may be stated otherwise: X
may have repeated, but not zero, latent roots: and if a root A occurs
exactly v times, its corresponding principal minor L in the canonical
form of X must contain v — 1 units in the over-principal diagonal.
For example

L . . P
X=H|. M .|H, L={. . a1

. LN .

§5. RatioNar Fuwcrions or X.

The formula Q; X7 = rX7-! has been proved when r is a negative
integer?, but we need a more general result embodying the cyclic

1 Cullis. Matrices and Determinoids, Vol. 3 (Cambridge, 1925) 483.
2 Proc. Edin. Math. Soc., loc. cit. 125.

https://doi.org/10.1017/50013091500007537 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500007537

42 H. W. TurNBULL

laws of §1. In §2(5) let Y = BX-! where B is constant. Then

Q,XBX-'— BX-1+ ayq”] e (1)

T, 2
Pq axﬂ

But s(XBX-!) = s (BX-1X) = s (B); and hence the left hand side
Qs XBX-1! vanishes. On the right, in (1), the last term can be

written [Bi Cpq Yop | » Where [cp,] is a constant matrix C, provided
Zji

that, after differentiation, C is replaced by X. Also
Cpq Yap =8 (CY) = (CBX-1).
Hence we replace (1) by the result
0= BX-1+ Q,(CBX-Y), C=X. ... (2)

But CB is a constant (for the operator €;) and can be written as 4,
so that B =C-14 = X ' 4 outside the operation. Hence

QAX 1= —-X-14X-1, ..., (3)
where A is a constant.! In particular, if 4 is the unit matrix,
Q;X-'=—X-2 We may now adjoin the following theorem to

theorem IV:

TueoreMm VI
QAX- 1= - X-14X1,
QAX-2=—-X-24X-1_X-14X-2

QAX-"=— X—AX-1— X-r+14X-2—
— X-rtiAX-i-1 . X-1AX-r

Proof. The first of these has just been proved: the rest follow by
induction. Case r follows from case r — 1 by substituting ¥ = BX -~
in §2 (5). Proceeding as before we have

Qs XBX 7=BX-"+ Q,CBX7, C=2X.
But s (XBX -7) = s (BX-7+1) by the cyclic law. Hence Q;, XBX-"is
—X-"+1BX-14. .. — X-1 BX-r+1 by the formula for case r — 1.

Putting 4 = CB as before the result follows.
In particular if 4 = I, then
QX-"=—rX-7t1 (5)

1 Cf. Weierstrass, Monatsb. d. Berliner Acad. (1858), p. 214. Frobenius, Orelle 84
(1878), 17, where a similar formula occurs, reached from another angle.
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CororLrLARrY. If X' replaces X throughout on the left of (4), then

X remains unaltered on the right, but A becomes A'. Also
Qe X'~r= —yX-r+1 ... (6)
The proofs are straightforward.

These results establish THEOREM I for the case when f(X) is a
rattonal scalar function ¢ (X) /¢ (X), provided that the function can
be developed as an ascending series

a s X T+ . oot agF XA+ Fa XL

which is finite or, when infinite, is convergent.

§ 6. FracTioNAL INDICES. CHANGE OF VARIABLE.
Let r be a positive integer and ¥ = X", or [yy] = [2;]”. With
the double suffix summation convention this gives
Yij = Fia, Taya, «« Bap _pap_ 3 Tap_y j.  ceernieereonis (1)
The n* quantities y;; may be taken to be n% new independent variables,
because their Jacobian ©(y) /0 (x)—a determinant of »® rows and
columns—will be shewn not to vanish identically. We may take Y
to be a new independent variable in place of X, and write

X =[a;], Y=[y;l, Q= [axjj - [ayﬂJ ........ (2)

TaeEorEM VII. The following relation holds
Q=X+ X 2X+ ..+ X wX 14 .. X1 .. (3)
where both right and left members are matrixz operators, and X 1is to be

treated as constant, in the right hand summation, as far as the operator
w s concerned.

Proof. Let f(x) be any ordinary regular scalar function of the n?
variables z;. Then the partial differential coefficients satisfy the
equation

o _ Z)f a?/q/?

ij, " Y axﬂ
with n? terms implied by p, ¢ on the right. But 0y, /dx;; consists of
r terms, due to differentiating the r successive factors in (1): and
these lead to » instalments for of / ox;;, say

aaf Ty Tyt e+ .
(7
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In Ty, we have by (1)

7. of 0wya, . z

1 aya,=eccta, L
Yqp 0ji

which vanishes unless ¢ = j, a; = ¢. Hence
of
Ti=%, % x —
1 dag Xayage e Tap_1sp -
Yjp

which is the ¢j*b element in the matrix
[T4] = X7 lof

as is at once apparent on writing this element out in full for this last
matrix. Similarly

0 0%y,
= ——— xga, 1%9 xaza:‘ ....xar_l,p

1

OYpy owji
which requires a, = j, a, = ¢, so that 7', is the ijth element in a matrix

Xr-2wXf. This goes on until 7', is reached, giving
Qf(x) =(Xrof + X7 2wXf+ .. + wX71f)
=X"1w+ X" wX + .. + X7 1) f. e (4)
Since f (x) is an arbitrary function this proves the theorem.
The function f on the right is of course to be expressed explicitly

as a function of the n2 new variables y. It will be seen that the
formula reverts to the elementary result

af _ v U -
% =7rx dy N Yy = X
when n = 1.

If 5;; and (2¥);; denote the typical elements in the unit matrix

and the matrix X», the above reduction gives

OYqp
a?v/c;] =8 (@ Nip .ok (Vg (@) ip+ o (8771 45 i

This series becomes equal to » if X is the unit matrix and if
g = j, 1 =p, because each factor is unity. The series is zero if
either ¢+ jor+ + p. Hence the Jacobian |0y,,/dx;;| of the n?
elements y with regard to x does not vanish identically, because in

this case it is equal to ot

TaroreEm VIII. If v is a positive integer, then
A 1 i
Qs Xv = ;‘ X~ 1.

This proves the fundamental formula § 2 (9) for a fractional case.
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1
Proof. Let X =Y, so that X = ¥”. The expression s(Y), which
1 1
is s(X v ), is a scalar quantity, and Q s(X v ) is a matrix, Z say.

Let w = [a—a—:] . Then, by (4) above,

Yji
1

ws(Y)=(Y"71Q 4+ ¥V 2QY4+ ..+QY" ) s(X )

where, on the right Y is constant for the operation Q, which acts.
1
merely on the scalar operand s(X »). But a scalar commutes with

Y. Hence
1 1

ws(Y)=Y"-1Qs(Xv)+ Y 2Qs(X»)Y +....+ Qs(X}rf) Yv-1
= Yr-1Z + Y»-2ZY + .... + ZY» 1
by the associative law. But ws(Y) = 1, hence
Yr-1Z 4+ Yv-2ZY + .... + ZY"-1 =1

and by Theorem IV, this may be solved for Z, giving Z =% Yi-»,
1

But Y = X », so that finally,

1 1 11
QsX v =Z=—,Y1-v== X
14

v

1

subject to the conditions stated in Theorem IV, and now governing
1

the matrix X *

THEOREM IX. If u, v are positive integers
3 3
o x5 = tx,
[ 4

e
Proof. Let X = Y,and X» = Y» = U. This gives three different
matrices each of n® independent variables, and three operators

=[], =[] o=[Z] o o

We form the spur s (1), so that

1

s(X3)=s(Y)=s(U”);
and we consider the matrix
Z—=Qs(X7)
In this case, by Theorem VII,
Xu-104 ... +0Xu-1=Q, ¥Yr-104+ ....+0Yr-1= ¢,
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Ii‘l‘

1 1_ 1 1
ByTheoremVIII,(is(UV)ngv 1=7XV . Hence
1 1
Z=Xr-10s(Uv))+ .. + (8s(Uv)) X*7!

_ ,u—l_l ;i—u

—px* X

byt

14

which proves the theorem.

THEOREM X. For all rational values of r, Q; Xr=r Xr—1i,

Proof. This follows from what has gone before by shewing that it
holds for r = — 1.

Let 2/ denote the ¢jth element in the reciprocal matrix 1/X.
We take
XY=1 Y=[yl=[1=X"1, .. ... (6)
and  Ypa Taqg =98y =0 or 1, according as p + g or p=gq.
By differentiation of yp.x.q we have

Ypa 0%aq
. Laq -+ Ypa 5 o 0, or
aypa aypa
oxj; %aq =0, ) and Oxj; Tag + Ypi = 0, ? .
q*1, q=1i.
Multiply these last by v¢ and sum for ¢ =1, 2, .., n. Then
0Ypa

Yp
8?,'; Zag XYY + ypjxv =0,

since the second (single) term only appears for the value ¢ of ¢.
But x4q ¢ = 84y, which only is non-zero if y = a, in which case it is
unity. Hence

Y pa i
I P et — O,
0xji tn
But S Y Y
0xji  Y,a Oxji
Hence of of )
T A

Rearranging the second term we find it to be the ij** element of a
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product matrix. Thus

Qf = [axﬂ ] - ,:xai sz;a ?/PJ] =—-X'wlf

Finally this can be written in the form

XQ+wY=0 ..., (7):
or, equally well, since XY =1,
w=—XQX, Q=-—-X-1uX"1 .. ......... (8)

In particular if the operand is s (¥Y”) or s (X -7), we have
QX "= - X", Y") X 1= —X-17Yyr-1 X-1= —pX-7-1
for all positive rational values of r, by Theorem IX. This demon-
strates Theorem X.
CoroLLARY. The law of transformation from Q to w, when Y is
any negative integral power of X, follows the rule of Theorem VI.

TaeorEM XI. If Y = f(X) is a scalar function of X, capable of

expression as a series Lo, X", where r is an integer and each ar 18 a
r

scalar constant, then the operators ws and (s are connected by the identity
Q= Qs (Y wy )

where, on the right, Q, acts solely on Y.

Proof. This follows directly from the results of Theorems VII and X.

Also if we write % for Q; and diY for w;, the result can be
expressed as:

4 _ 4 i)

X = dX( dy/’’
which may be regarded as the matrix generalization of the ordinary

formula dd; =Z—‘Z g- But the operator dii)—( is not associative with
Y and ddl : it is not true to write diX 3)12 ;;;—, Other results
which follow without difficulty are as follows:—
If Y =A4AX,then Q= wd. ..ol (9)
IfY=4A+X,thenQ=0w. ..., (10)
If Y =f(X), then QX — XQ=0wY — Yo,  .......... (11)

provided that, for purposes of operation, these factors X and Y are
maintatned as constants.
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This last follows from § 6 (4) by multiplying fore and aft in turn
by X and subtracting. The formula is true when Y = X7, and
therefore also when Y =X o, X7. It gives an interesting example
of a matriz differential invariant for a general scalar functional

transformation.
If Y = AXBXC, then Q = BXCwA + CwAXB. ...... (12)
If Y=AX} , then o = A-1YQA-14+ Q41741 ... (13)

In this case X =(A4-1Y)2=4-1YA4-1Y and the result (13)
follows straightforwardly. If operation takes place on the spur of
Y, it leads to the further result

1=ws(Y)=A-1YZA-1+ ZA-1 Y41,
where Z = Q, AX3. Hence, by a slight reduction,

if Z=Q,AX%, then vX.Z+Z/X=A4A. .. ... (14)
1
Similarly, if v is a positive integer and X = Y», Z — Q;AX v,
then A
YrQf . 4 Y QY 4 QY = w, l
and
VoG 4 AT =4, b e (15)
and
YWZ —ZYr=YA—AY. J
The corresponding results for Z = QSAXH.} » wWhen X = Yv are
as follows:
Y"—1Z+..+ZYV~1:Y#~1A+..+AY#—1,l 6
or  YvZ—ZYr—=Yud— AVs, [ (16)

§7. THE BinoMmIiAL THEOREM.

The operator Q, plays the part of ordinary differentiation in
developing a scalar function f(X 4 A4) as a power series in A4, so
giving a matrix form of Taylor’s and Maclaurin’s Theorems. We
first consider the case when f(X)= X7, and obtain the binomial
theorem :

(X + Ay = X7+ Q  AX7 + 2—1'-<(QSA)2XT for o xr s

v!
If r is a positive integer this series ends, with v=r, in v 41
terms. For example, if » = 3, by actual multiplication

(X + 4)3= X3+ (X?24 + XAX + AX?)4 (XA24- AXA + A%*X) + A3,

with its four groups of terms on the right, arranged in ascending
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degree of 4. By §3(4) the group linear in 4 is Q; AX3, and the next
group is $Q,4(X%4 + XAX + A4X?), as may be verified. Finally
L1(Q A4)»X?®*= A% and the theorem is true if r = 3.

By actual multiplication

(X + 4) = X+ SXUAX A DX AN AN aTN )

where a; -+ a,+ 1=, + By + B3+ 2= .. =,
and the summation extends to all different positive and zero values
of the integers a;, as, By, .. . By §3(4) the second term in the

expansion (2) agrees with ; AX” in (1). Again by § 3 (4),

Q AXUAX® = T X4 AX%AX T 0 E X AXmA X
7z=1 7=1
But a; + o, =r — 1: hence
r—1 r—-1 a .
S AXUAXT =2 3 % XU TAXT ?Thyx
aI:O a1:O 1=0

=23 XA AXP: AX5s,

Hence the third or B term on the right of (2) is 1(Q,4)Q, 4X",
which agrees with the third term in (1). Similarly by induction we
justify each step in the series (1). For the operation Q; A4, per-
formed on X" AXP24..AX"», by the cyclic rule of differentiation,
gives v series—one for each p,-—such as

Py . .
XPhTPAX eI A AKX p=1,2, .., v

i=1
and each of these v series gives the requisite terms of order v 41
in 4, when the p’s run through their values. Hence the operation
Q; A, performed on terms of order » — 1 in A4, produce the terms of
order v, multiplied by ». This proves (1) when r is a positive

integer.

Negative Exponent. For the negative exponent a similar proof
holds, provided that the infinite series, which necessarily arise, are
uniformly convergent. If the moduli of the latent roots of the
matrix AX -1 are all less than unity, we have

1

X+4
— XX 14X 1+ X MAX1AX 1~ X 14X TAX AKX -1 4. (3)
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as is easy to verify. By operating on both sides of this identity with

[Ai] , treating X as a constant, we deduce
05 s

1
(X 442
This operation is performed on the right hand member of the
identity by means of Theorem VI and the cyclic law. On the left
it requires an intermediate step, involving a new variable B = X -- 4.
Thus (§ 6 (10) )

] = L b oo [ = -
| = | — |: al — |B-t= - B-2:
[abﬁ] dan 4 0 Laby ’

8

X-2— X 2AX-1- X 4AX-2+ X-24X-14X-11.. (4

whence [aa J (X + 4)'= —(X 4+ A)-2 The process may be
Mji— s

repeated, and the terms of the same degree in 4 may be grouped
in ascending order; and the result is the theorem

X+ A)r=X 74 QAX "+ = (QAPX-rg . (5)

where 7 is a positive integer.
Fractional Exponent. For values less than unity, of the moduli
of the latent roots of X,, we have

A+X)y=aq+a; X +a, X2+ .. FaXv4+.. ........ (6)
where the coefficients «, are the ordinary binomial coefficients—
whether r is integral or fractional. Let

1 1
erA:l+Q5A+2—!—(QSA)2+—3—!(QSA)3+.. ...... (7)

denote the full operation implied in (1), so that (X - A)r = 2 4 Xv

at any rate when » is an integer. Changing X to X 4 4 in (6)
we have

l1+X+4)y=aq+o0 (X +A4A)+ .. +ayelsdXv | |
=ebsd(gg+ o, X + .. +ap X” + L) =elsd (14 X)r

provided that this alteration in the order of terms in the double

series is justified. If YV =1+ X, and w = [a—a—], then by §6(10),
Yji
ws = ;. Hence by substitution,

(Y - Ayr—evs 4 ¥r — Yf+w8AY7'+2—l'- (ws APY 4 .

where r may be fractional. In this way the binomial theorem
may be extended to cover all rational exponents.
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§8. TavrLor’s THEOREM.

If f(X) s a scalar function of X, which can be expanded in a finite
series of terms X a, X", where r is ralional, or is an infinite series
which converges and admits of rearrangement of its terms, then

JX 4 A) = e df(X) = J(X) + QAT (X) + 5 (@ ARFX) +., (1)

provided also that A and X are restricted to a suitable domain of values.

Proof. 'The presence of a scalar coefficient a, in the term «, X" leaves
the binomial theorem unaffected ; a, acts as a constant multiplier
throughout. If the binomial expansion of a,(X 4+ A4)" is applied
to each term of f(X), and the terms are regrouped in ascending
degree for 4, the result is formula (1).

This can only be regarded as a very crude proof, in the absence
of a more precise general theorem analogous to the mean value
theorem of the differential calculus.

CororrAaRY I.

FUA) =F(0) + QAf (X)x—0+ 2i, QA f (X)xmot oo ()

This gives a method of expanding a function as a power series,
corresponding to Maclaurin’s expansion.

Cororrary 1. If A4 is small, the approximate value of f (X + A)
is givern by the relation

FX +A)=F(X) +QAf (X) +0 (4.  ........ (3)

Here the notation O (A42) means that every element in the matrix
fX+4)—f(X)—QsAf (X) consists of second or higher orders of
small quantities a;. The formula is a direct consequence of
Taylor’s Theorem ; and it leads to a definition of the differential df (X)
of a scalar function of a matrix.

Definition of dX and df(X). By dX is meant the matrix of n2
independent differentials [dz;;]. By df(X) is meant the matrix
formed of the terms of degree 1 in dzy; in

f(X +dX)—f(X).
It follows that Q. dX f(X) us the differential of f(X).  ...... (4)
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Example. f(X)= X}. Here, when 4 is small,
(X +A4Ax =X +Z4+0(4%»,  .......... (5)

where Z = Q, AX?, and it may be verified directly that the value of
Z satisfying (5) is given, as it should be, by §6 (14):

A=vX.Z+ ZvX. ... (6)

In fact if (X + 4) = P,and X4 = Y, then P=Y + E where ¥ is
small. Hence A = P2 — Y2=FEY + YE + E2 1f E is of the same
order as A, this last agrees with (6) by taking Z = ¥, which in turn
agrees with (5). In general there is only one Z satisfying the

equation
EY + YE+E*=YZ+ 277,

and this value is E, if the term K? is neglected.
L 3
By taking f(X)=X* or X », the results of §6(15), (16) may be
utilized to illustrate (3) above.

§9. TeE OrEraATORs (QX — XQ) sxp Q(QX — XQ).

Certain other results may conveniently be added to what has
gone before. As was shewn in the original enquiry.! the operator
¥ = Q(QX — XQ) yields the result, analogous to that of Q,

VX)) =f(X).  eeia . (1)

But, unlike (), the W operator produces an essentially different
result when it acts on f(X’). In fact, if f(X') = X", then

WX7r=(n+ 1){X" 1+ XXr-2 4. . | Xr-1)
— Xt —s(X)Xr 22— s (X)) Xr-3— .. —s(XT-1). ... .(2)

In this operation ¥'=0Q (QX — XQ), the two X’s which enter are
treated as variables and are affected by the Q factors standing on
their left. There are, in fact, two subsidiary operators ® and @,
defined as

P=0X—-XQ, O.=0QX,—X.Q  .......... (3)

In @, X is variable, in @, the X, written X, , is treated as a constant
for the Q operation, as was the case in §6. So @, is the invariant

t Proc. Edinburgh Math. Soc., loc. cit. p. 128.
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operator, §6 (11), for transformations of the type ¥ = f(X). Typical
results are as follows:

OX = QX -XQX' =(n+ D)X —X,

X" = QX —XQ)X"=(m4+1)Xr—Xr,] (4)
OfX)=(r+1HfX)-f(X), L .(5)
Os(Xr)=mns(X7), Os(f(X))=mns(f(X)). ... (6)
@, X" = X7— X7, ) -
OfX)=fX)-f0O, [

q)cS(f(X)):O7 .......... (8)

PAXT = (nd —s(4)) X'+ s (AX"), B, AX" =5 (AXr) —s(4) X7 .. (9)

WAXr = AX72 F XAX -2+ ..+ Xt 1A 4
1) $(A) | gpoay SO sA) [y, o [s() s(4)
s(X) s(4X)| |8 (X?) s(AX?)! (X1 s(AXr-)

In this last s (1) is . If A4 = I, the unit matrix, all these two-rowed
determinants vanish, and the formula reverts to ¥ X7 = rXr-1,

§10. CONNEXION WITH QUANTUM ALGEBRA.

In the Proceedings of the Cambridge Philosophical Society, 23
(1926) 412-417, Dr P. A. M. Dirac developed a calculus of g-numbers,
involving the ideas of functionality and differentiation. Put into
the preceding notation, Y is defined as a function f(X) of a single
variable X, if every value of B satisfying the condition XB = BX
also satisfies YB=BY. If X, Y, are particular values of X, Y such
that Y, =f(X,), then every value of C satisfying X, = CXC-1 must
also satisfy Y, = CYC-1. These, which I call shortly the conditions
B and C, were shewn to characterize a particular function f quite
adequately. A further condition, here called D, was added to define
differentiation : Z = f’ (X) is the derivative of Y with regard to X,
if every value of P satisfying the condition

XP—-PX=1 i (1)
also satisfies the condition

YP—PY =Z=f(X). ... 2)

This was shewn to yield the ordinary results of differentiation
adequately. For instance if ¥ — X2 then Z, as defined by YP — PY,
is 2X. Unfortunately this remarkable algebraic theory of g-numbers
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breaks down in the case of matrices. For if X and P are matrices
of order n, then s (XP — PX)=s(XP)—s(PX)=0 by the cyclic
law ; whereas s(1) = n. Condition (1) above is accordingly impos-
sible for finite matrices, although it holds for certain matrices of
infinite order.

Nevertheless a close analogy can be revealed between this
g-number calculus of Dr Dirac and the preceding calculus of finite
matrices. It is easy to verify that the scalar function Y = f(X) of
the latter calculus satisfies conditions B and (' of Dirac. As for
the further condition D, suppose that 4 is a matrix of order =, such
that a value of P exists which satisfies the condition

XP—-PX=4, ... (3)
then it follows that

YP—-PY=QAY, ... ......... (4)
provided that A4 is treated as constant under the Q operation. This
is manifestly analogous to the relations (1) and (2) above. Granted
(3), the proof of (4) follows by an interesting use of the formulae
in §3 (4) and §5 (4). It is also true for fractional indices such
as occur in ¥ = X%, If for instance

XiP — PXt =B,

then XP — PX = BX: + X*B; and this expression is equal to
A, when B=Q,AX* (§6(14)). The details of a formal proof are
not difficult to supply.

It must however be added that, for a given X, condition (3)
imposes restrictions on the value of A-—which has hitherto been
taken to be an arbitrary constant matrix. If, for example, X is a
quasi scalar matrix, with n unequal diagonal elements A; all differing
from zero, and with zeroes everywhere else, then 4 must have zeroes
throughout its diagonal but is otherwise arbitrary. It would in fact
be difficult to find a matrix 4 which more completely contradicted
the requirements of the right hand member in condition (1) !
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