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PROOF OF THE RADICAL CONJECTURE FOR
HOMOGENEOUS KAHLER MANIFOLDS

JOSEF DORFMEISTER

Introduction

In 1967 Gindikin and Vinberg stated the Fundamental Conjecture for
homogeneous Kahler manifolds. It (roughly) states that every homogeneous
Kahler manifold is a fiber space over a bounded homogeneous domain for
which the fibers are a product of a flat with a simply connected compact
homogeneous Kahler manifold. This conjecture has been proven in a
number of cases (see [6] for a recent survey). In particular, it holds if the
homogeneous Kahler manifold admits a reductive or an arbitrary solvable
transitive group of automorphisms [5]. It is thus tempting to think about
the general case. It is natural to expect that lack of knowledge about
the radical of a transitive group G of automorphisms of a homogeneous
Kahler manifold M is the main obstruction to a proof of the Fundamental
Conjecture for M. Thus it is of importance to consider the Kahler algebra
generated by the radical of the Lie algebra of G. Computations in this
context suggest that one rather considers Kahler algebras generated by
an arbitrary solvable ideal. In this context the Radical Conjecture for
Kahler algebras was formulated [6]: Assume that the Kahler algebra
(&A*j>p) is generated by a solvable ideal x of g, i.e. g = r+yr + ϊ, then
g = 3 + ϊ, where gΠϊ = 0, j&a§ (after an inessential change of j), and §> is
a solvable Kahler algebra.

If x is abelian, a direct proof of the Radical Conjecture can be given
(following closely a proof of Gindikin, Piatetskii-Shapiro and Vinberg [8].
A proof of the Radical Conjecture proceeds by induction on dim r. It was
started in [6]. Since the case that x is abelian was already settled one
considers a maximal ideal n of g properly contained in r and sets g/ = n
+7'n + ϊ. For this Kahler algebra the Radical Conjecture already ho]ds.
Generalizing constructions of Gindikin, Piatetskii-Shapiro and Vinberg it
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was shown in [6] that only three cases have to be considered (one is that
n +jn is essentially an abelian Kahler algebra, the other two are character-
ized by the distributions of eigenvalues of a maximal idempotent in &',
where %' is associated with g' via the Radical Conjecture, g'=£' + !).

In the present paper, we continue and finish the proof of the Radical
Conjecture.

The details are rather technical and involved. We thus only want
to point out that in Case 1 (where n+jn is essentially abelian) we prove
a statement which is stronger than the Radical Conjecture. In Case 3 we
combine the description of the representations of sl(2f Z) with results on
the Kantor-Koecher-Tits construction of Lie algebras with more standard
techniques of Kahler algebras to prove the Radical Conjecture.

Finally, we would like to note that the Radical Conjecture and a
substantial part of its proof have been used in the recent proof of the
Fundamental Conjecture (jointly with K. Nakajima).

I would like to thank K. Johnson for making me aware of [16] and
E. Neher for helpful discussions and information about Jordan triples (the
structure of which is used in case 3).

I would like to express great appreciation to K. Nakajima for his
careful reading of a preliminary version of this paper, in particular for
many critical and helpful remarks and for simplifying Lemma 1.5, Lemma
2.17 and section 3.7. He also pointed out to me a subcase of case 3 which
was not discucssed originally.

§ 1. Case 1: The Lie algebra n+jn is the modification of an abelian
Kahler algebra

1.1. As in [6; 4.33] we consider a Kahler algbra (g, ϊ,j, p) and a
solvable ideal x of g satisfying Q = x+jx + ϊ. We assume that the Radical
Conjecture holds if dim x<N— 1. We assume dim x=N and we may assume
xCnil(g). Moreover we can assume that the dimension of r is minimal
among those solvable ideals u of g for which g = u-K/u+ϊ holds. We choose
an ideal n of g which satisfies x^2nZD[x,x] and is maximal with this pro-
perty. Because the case of an abelian x has been settled in [6] we can
also assume nφO.

We set q'=n+jn + l and apply the Radical Conjecture to g'. Hence
fl; = α + t + ϊ where α+t is a solvable Kahler algebra. The case under
consideration in this paper is defined by t = 0, i.e. g ' = α + ! where α is the
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modification of an abelian Kahler algebra. Such algebras have been in-

vestigated in [5].

1.2. From [5; 3.3] we know α = n + jn = a0 + δt where α0 is an abelian

ideal of a and άj is an abelian subalgebra. Moreover α0 == [a, a]. Because

n acts nilpotently on g we have [n, n] = 0. Set n0 = α0 Π n and ^ = δj Π n.

LEMMA, n = n0 + tv

Proo/. Let τι e n and ra = α0 + α1? α7 e α r From the fact that a is the

modification of an abelian Kahler algebra we get [&, n] = D(b)n — D(n)b

for all b e α. As αdπ, is nilpotent we have D(n) = 0. Further, from [5: 3.3]

we know Dφ)^ = 0. Therefore [6, rc] = D(b)aQ e n for all 6 e α. Using α0

= [α, α] we derive from this α0 e n. The lemma follows.

1.3. We note that n0 + jn0 is contained in the commutator α0 = [α, α]

of the solvable Lie algebra α. Hence ad(n0 + jfn0) is a commuting family

of nilpotent derivations of g. In particular we have [nQ + 7"π0, n] = 0.

In contrast to this the family adO^ + jn^ is abelian but does not

consist in general of nilpotent derivations.

1.4. Consider g7 — a + ϊ. From the Radical Conjecture we know αΠ ϊ

= 0 and α is a solvable Kahler subalgebra of g'. Let ϊ o c ϊ be an ideal of

g'. We know that ϊ is the Lie algebra of a compact group and ϊ0 is an

ideal of ϊ. Hence ϊ = (zλ + Z^®1[@IQ where ϊ0 = io®8o> ϊί, ϊo semisimple,

go g! abelian. Let § be a maximal semisimple subalgebra of g; containing

ϊίφϊό. Then ϊ'Q is an ideal of § and we get § = ζίθϊo Moreover, [radg'

+ Vi, ϊό] = 0. Since nCradg' we can assume w.r.g. that n projects trivially

onto ΪQ. Hence [α, %] = 0 and g7 = (α + gi + 30 + ϊ ί)θϊί is a direct sum

of Lie agebras. Moreover, §0 is an ideal of gr and goCradg7. But g0Π

ni^g') = 0 since nil(gθ operates nilpotently on g whereas ϊ0 acts semisimply.

From this we conclude [g', g0] = 0.

Therefore, when considering g7 only, we may assume that ϊ does not

contain any ideal of g;. But then we have a faithful representation ψ of

g' as affine transformations of the complex vector space α. The elements

of ϊ act linearly on α and the elements of a by z>-» α + D(ά)z, zea, aea

(see [5; 3.5]). Considering the linear parts of these transformations we

see that D(ά) + ψ(ϊ) = @ is a Lie algebra of skewadjoint endomorphisms

of α; moreover, D(a) is an abelian subalgebra, ψ(ϊ) is a subalgebra and

(possibly changing j inessentially) we also can assume D(ά)Γ\ ψ(ϊ) = 0. We

https://doi.org/10.1017/S0027763000001410 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001410


80 JOSEF DORFMEISTER

split © — φ ©i + 3 into simple summands @* and its center Q. Applying

[16: Theorem 1.1] to the projections D^α) and ψέ(ϊ) of D(α) and ψ(ϊ) onto

©, shows that D^^Cψ^ΐ) holds. Therefore D(α)cψ(ϊ) mod center (Z)(α)

+ ψ(ϊ)). This implies:

LEMMA. After an inessential change of j we can assume [D(ά), ψ(ΐ)]

= 0.

For the original Lie Algebra g' (ideal in ϊ permitted) this implies (after

some inessential change of j) :

COROLLARY 1. a) [ϊ, α] c α,

b) £>([ϊ,α]) = 0,

c) [Z>(α),adϊ|α] = 0,

d) [adϊ|α,/] = 0.

Proof. Write ϊ = g + ΐ( + % and represent α by affine transformations

on some complex vector space ( = a). Then [k, a] = [(0, ψ(£)), (#> J5(«))] =

(ψ(A)α, [ψ(*), D(a)]) - (ψ(A)σ, 0) = (ψ(A)α, D(ψ(k)a)) - (0, D(ψ(k)a)) where

the last summand has to be in ϊ. By our assumption, we may assume

a = jn for some wen, whence ψ(k)a = ί(ψ(k)ri). Changing j on ψ(k)n

inessentially we obtain D(ί(ψ(k)n)) = 0, proving a) and b). Part c) has

been known before and d) follows from a).

We retain the notation of 1.2 and 1.3 and write δj = α10 + 8n as in

[5: 3.3].

COROLLARY 2. a) [ϊ, α10] c δ10,

b) [ϊ,an] = o,

c) [ϊ, α0] c α0.

Proof. Since [ϊ, α] c α and α0 = [a, a] part c) is clear. We know that

ϊ acts skewadjoint on a, whence [ϊ, αj d ax. By Corollary 1 we have

[ϊ, cti] a aίQ and a) and b) follow.

1.5. Let nen{ and write ad jn = D + N where D is the semisimple

part of Siάjn and N its nilpotent part.

The proof of the following lemma is a simplified version of the author's

original proof. We follow a suggestion of K. Nakajima.

LEMMA. For n e nl5 the semisimple part D of &djn has only imaginary

eigenvalues.
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Proof. Let R be the real part of D and g = © g, be the decomposition
of g into eigenspaces for R. Because jD|g' has only imaginary eigenvalues
we get

(1) S'cg 0.

The integrability condition of g implies [jn,jxλ] = j[jn, xλ]moά$' for all
xλ € gA. Therefore

(2) JflaCβa + fl7.

Moreover, by an inessential change of j we may even assume

( 3) JQx c Qλ + n + jn.

Let /I be the eigenvalue of R with maximal absolute value. We may assume
λ > 0. Suppose λ > 0. Then [Q19 g J = 0. Therefore

(4) gA + n + jn is a solvable Kahler algebra.

By [5] we know that adjn has only purely imaginary eigenvalues in this
algebra. This is a contradiction; hence we obtain λ — 0, finishing the
proof of the lemma.

1.6. In the last section we have seen that the semisimple parts of
elements of nt have only imaginary eigenvalues. In the following sections
we show that, by a change of p and a modification, we can remove these
semisimple parts entirely.

We consider the eigenspace decomposition of g relative to — D2, D
the semisimple part of ad771, n e nx. Then there exist subspaces gα, a > 0,
and an endomorphism I of g such that

1) P= - i d ,
2) D | f l β = α l ,

3) fl = Θ flβ.

From Corollary 1, a) of 1.4 we know that α is an ideal of g' = ϊ + ct.
Since α is solvable we have α c radg7. Therefore [ϊ, α] C [g;, g']Πradg'
= nilίg7). In particular ad[ϊ, α] is nilpotent on g. Moreover, from Corollary
1. d) we derive j [ϊ, nj = [ϊ,jnj c [ϊ, a]. Hence adj[ϊ, nj is nilpotent. Hence
we can (and will) assume that n is taken from some ϊ-invariant complement
of [ϊ, nj in tij. BwZ ίften [ϊ, n] = 0.

1.7. In this section we want to prove that (after an inessential change
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of j) we have

LEMMA, a) jfgα c gα for all a.

b) Djxa = jDxa for all a and all xa e gα.

Proof From the integrability condition we get

( 1) [jn,jxa] = j\jn, xa] mod g' for all xa e gα.

Because adjra leaves g/ invariant, we also have

( 2 ) Djxa=jDxamoάQ'.

This implies

(3) .7β«c:gβ + β'.

Hence, for xa e gα we have jxa = ya + gΌ + Σβ*ogβ where #,' e g$ and - w.r.g.

— go e α. We want to use this expansion of yxα in the integrability con-

dition [jn,jxa] = j[jn, xa] + j[n,jxa] + [n, xa] + k. Therefore, we have to

study [n9jxa]. It is easy to see that g£ c 60 fo r all β Φ 0- Hence [n, g£]

= 0 for all β Φ 0. From the description of α we derive immediately

flί = α1 + (g$na0) + ϊ.
But Tie au whence [n, δj = 0. Moreover, rce nil(g) implies [n, α0] = 0.

We have thus shown [nί9 a] = 0, and in particular

( 4 ) [n,jxa] e ĝ  for all xa e gα.

But ĝ  is y-invariant for all λ, whence

( 5 ) [jn, jxa] - j[jn, xa] e g« + ί.

From Corollar 1, d) of 1.4 and our choice of n we know [jn, ϊ] = j[n, ϊ]

= 0. In particular, Dϊ = 0. Because [jn, g£] c g£ we derive from (5)

( 6 ) Djxa = jDxa + g': + k" f o r s o m e &'eg'a, k"el.

Applying D to (6) we get D2jxa = — a2jxa + g"f + k"f. We compare

the ^-components and see — μ\jxa)μ = — a2(jxa)μ for μ Φ a, 0. This implies

JQa C gα + g0 and in particular, jg0 c g0. Let α =£ 0. Comparing for ^ = a

and ^ = 0 gives &' = 0 and OX)0 e ϊ. This implies ;gα c gα + ϊ. After

an inessential change of j we can assume (proving a)).

( 7) ;gα c gα for all a .

It is easy to verify that for every a, Q(a) = ® n e ^ίW is a jf-invariant
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subalgebra of g. Moreover, gλ = r̂  + jxλ for λ Φ 0 and g0 = r0 + ;r0 + ϊ.

Therefore we can apply the induction hypothesis to g(ά) when g(α) Φ g.

In case g(α) Φ g for all or, the lemma follows. Assume now g(a) = g.

We can assume α = 1. Applying the induction hypothesis to g(m), m

= 2, 3, we see that the lemma holds for all m Φ 1. We write ad 7^

— D + N, where N is the nilpotent part of a.d jn9 and use the induction

hypothesis for g(2) to see for xl9 3Ί e gt: {dldt)p(eMίnxl9 eMiny^ = p(jn, etΆdjn

X [Xi, yiϊ) = p(jn,etDetN[xlyyJb = ρ(jn, etlr[xl9 yj). Here the last term is a

polynomial in t. An integration yields

( 8 ) p(etaΔjnx» etadjn

yi) = pfo, y,) + Clί + c2f + .

We have e t a d j n = eίNetD where etDx is bounded for all x e g and etNy is a

polynomial in t. Comparing like powers of t on both sides gives

( 9 ) ρ ( e t D x u e t D y ύ = p(x19 y , ) f o r a l l x19 y 1 e q ί .

In particular, we obtain ρ(Dxίy yt) + p(xl9 Dyt) = 0 for all xi9 yί e gt. Applying

this to y 2egi and ^ e g j 1 = {^eg^ p(xl9 gθ = 0} we get ΰg^cgf (since

DQΊ C gί anyway). We also have j$f- C gf. Finally, from (6) and (7) we

know Djxx = jDxi + gί,, where g[ e g(. For xx e gf we obtain g[ e ϊ. If

Xi € Qx, λ Φ 0, then g[ = 0. If x1 e g0, then g( = 0, since Z) commutes with

j in g0, This finishes the proof of the lemma.

1.8. Let 2 be the closure of {expD; D is the semisimple part of some

ad 771, n e αj in Gl(g). Then ^ is an abelian compact group of automor-

phisms of g. Moreover, 3f acts trivially on ϊ and commutes with ad ϊ on

α by Corollary 1, c) of 1.4 and with j by 1.7. Also, if x £ ΐ then Wx έ ϊ

for all We@.

We consider the skew from p on g given by

( 1 ) P(u,ϋ)= f

where dW denotes the normalized bi-invariant Haar measure of 2.

It is easy to verify (3.4) through (3.7) of [6; § 3]. Hence we have

LEMMA, a) (g, ΪJ, p) ίs a Kάhler algebra.

b) The semisimple parts of aάjn, n e &l9 are skew-symmetric relative

to p and commute with j .

1.9. We want to consider modifications of g, for which &djn is
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nilpotent for all nen. The modification map has to vanish on [g, g]. We
therefore prove

LEMMA. After an inessential change of j we may assume that

ad(jnΠ [g,g]) consists of nilpotent elements.

Proof. Suppose jn e [g, g] and denote by D the semisimple part of

adjn, then adjra e [adg, adg] =• m. But m is an algebraic Lie algebra,

whence D e m. Hence, by the appendix we can write D = Dh + Dr, [Dh, Dr]

= 0 and we can find a maximal semisimple subalgebra ΐj of g and Λo e ϊ)

such that ad/ι0 DΛ. Moreover, D r erad[adg, adg]. But this radical con-

sists only of nilpotent endomorphisms, whence Dr = 0. Clearly h0 e g0

where g0 is defined in 1.6. If D Φ 0 we have g0 Φ g. Moreover, from 1.7

we can easily derive that g0 is a Kahler algebra and g0 = (rΠβo) + J(*Πg0)

+ ϊ. We can apply the induction hypothesis to g0. Since ad/ι0 is skew

adjoint relative to p we have p(h09 [g, g]) = 0 by the closedness condition.

This implies in particular ρ(h0, ϊj + nil(g)) = 0. Let q be a complement of

nil(g) in radg which is ^-invariant. Then β, g] = 0. But then β(q, §) =

p(c\, R, ζ]) = 0. In particular β%, g) = 0. Therefore p(hQ, g) = 0. In par-

ticular 0 = β(jh0, h0), whence hQ e ϊ. From [h0, ϊ] = Dl = 0 we get hQ e

center(ϊ). Now we introduce an inessential change of j by redefining j

on a ϊ-invariant complement bx of [ϊ, n j in nu For nehi we set jfn = jn

— /ι0. Then ad/τι is nilpotent for all nen such that adjίi e ad [g, g]. We

will also assume that the center of ϊ is /-invariant.

We claim that n + j'n is a solvable algebra having all properties of

Corollary 1 of 1.4. We note α0 + [ϊ, QJ C n + j'n and [n + j % n + /n] c

[α -f- ϊ0, α + ϊ0] where ϊ0 denotes the center of ϊ. Hence the last commu-

tator is contained in α0 + [ϊ0, a]. But [ϊ0, a] a a0 + [ϊ, δj and n + i'π is a

solvable subalgebra of g. Moreover, [ϊ, n + j'n] d [ϊ,a + ϊ0] = [ϊ, a] c α0

+ [ϊ, 8J C n + j 'n and [k,j'x] = [kjx + ^0] = [kjx] = j[k, x] = j[A, Λ] for

all xen + j'n since ad[ϊ, α] consists of nilpotent endomorphisms. There-

fore, using j ' instead of j we may assume that jnΠ [g, g] operates nilpotently

on g. This proves the lemma.

1.10. From 1.9 we see that the elements of ad(jn(Ί[g, g]) have no

semisimple parts. Denote by t> an algebraic complement of jn Π [g, g] in

jn. We can assume t) C δj. We split ad jn = D(jή) + N(jή) for every

jn e t> into semisimple part D(jή) and nilpotent part N(jή) and define a

(modification) map D:g->Derg by D([Q, g]) = 0 and D(\S) as above and
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trivial otherwise. It is easy to verify the properties (3.1) to (3.4) of [5]

for the map D and the Kahler algebra ($,l9j,β). Moreover, as D(jri) is

the semisimple part of adjrc we know D(jή)§ C [g, g]. Hence [5: 3.5] is

satisfied.

We define a new algebra structure on g by setting [x, y]1 = [x, y] —

D(x)y + D(y)x,x,ye§.

A straightforward computation shows

LEMMA, (g, [ , Ύ,ΐ,j,p) is a Kahler algebra.

It is clear that r and n are also ideals of (g, [ , -]1). The subalgebra

n + jn is now abelian and acts nilpotently on g. Moreover, it is easy to

verify that the Radical Conjecture holds for (g, [ , •], ϊ, j , p) iff it holds for

(β,[ , ΎJJ,p)-
Therefore, from now on we assume (w.r.g.) that a = n + jn is abelian

and ad a is nίlpctent for all a e a.

1.11. We want to follow the proof of [5; § 6]. Therefore, we consider

the set ΪΌ = {xe&; a d x | n and adjx |n are skew adjoint relative to < , •)

= p(j-, •) and commute with j}. Put ΪΌ = {xe ΪΌ; [X, n] = 0}. Clearly, ΪΌ

is ./-invariant (since ϊ is skewadjoint on a and commutes with j.)

LEMMA, [α, g] c ΪΌ.

Proof. Note [[jn, x], m] = [jn, [x, m]] = 0 for all n, men, x e g. Also

[j[jn, x], m] = [[jn, jx] — j [n, jx] — [n, x] — k, m] = — [k, m] for all n,men.

Hence [jn, g] c ΪΌ. Clearly, [n, g] c n c ΪΌ. Hence the lemma.

1.12.

LEMMA. p([a, ΪΌ], a) = 0.

Proof. Let w e ΪΌ and n, n\ m, m1 e n. Then p([nι + jn, w], m1 + jm)

= p(ljft> ^ ] ? wi1 + jm) = — /o([u;, m1 + jm],jή) = — p([w, jm], jπ.) where we

have used the fact that a is abelian. Using the integrability condition for

8 we get p([w,jm]),jri) = -p(j[w,jm], ή) = -ρ([jw,jm] - j[jw, m] - [w, m]

— k,n) = — p([jw, jm], ή) - p([jw, m], jn) = p([n, jw], jm) - p([jw, m], jn) = A.

Set S(jw) = adjα;|n. Then we get A = — p(S(jw)n,jm) — p(S(jw)m,jn)

= — p(S(jw)n,jm) + p(jS(jw)m, n) = 0 because S(jw) is skewadjoint rela-

tive to (n, m) = p(jn, m).

COROLLARY, ^((ad α)2g, a) = 0.
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1.13. Using the above corollary we see

LEMMA. p(etaΛAx9e
taύhy) = at2 + bt + c for h e α, x,y e Q and some

a,b,ce R.

Proof. We know -^τp(et9Λhxf et&άhy) = ^p(h, e ίadΛ[x, y]) = p(h, (ad hf*)

= 0. Hence the lemma.

1.14. Next we want to prove the following easy

LEMMA. (aάa)rjx = j(ada)rxmodQ' for all ae α, xe g.

Proof. The claim is trivial for r = 0. For r = l w e split a = nf + jn,

n, nf e n and see that it suffices to consider a = jn. But here the claim

follows immediately from the integrability condition. Let now r > 2 . Then

(ad a)rjx = (ad α)(ad α T 1 ; * = (ad α){j(ad άf'xx + g'} = j(ad a)rx + g" with

some g ;, g" e β'

1.15. The trivial results above can be combined to give.

LEMMA, (ad α)2g c ϊ.

Proof, bt2 + ct + d = p(etΛΛa[a9 [a, x]], etΆάaj[a,y]) = p(e>«a[a, [a, x]]9

jVadα[α, y] + g1) = - <eίadα[α, [α, x]], eZadα[α, y]> where x, y e g, α e α. With

y = [a, x] we see that B = |e ίadα(adα)2x|2 is a quadratic polynomial in Z.

We know that adα is nilpotent, hence 5 is a polynomial in t. Let adα

be nilpotent of degree s, i.e. (adα)s = 0, (adα)8"1 Φ 0. Then B is a poly-

nomial of degree < 2(s - 3) and the coefficient of *2(s"3) is Kadα)5"1*!2. If

2(β - 3) < 2, then s < 4. If 2(s - 3) > 2, then (ad a)8'1^ c ϊ and the

highest term in B is at most of degree 2(s — 4). Suppose also 2(s — 4) > 2,

then by the same argument as above, (adα)s"2g C ϊ. But then (adα) 8 "^ c

[α, ϊ] Π ϊ = 0. Therefore 2(5 — 4) < 2, i.e. s < 5. As seen above, this implies

(adα)4g c ϊ. Hence in both cases, 2(s — 3) < 2 and 2(s — 3) > 2, we have

(ad α)4g c ϊ. Choosing y = x above and again comparing highest terms in

t we get even (adα)3g C ϊ. Finally, we consider C = - <eίadα[α, x]9 β
ίadαx>

= /?([α, x] + t[a, [a, x]], jx + tj[a, x] + (Il2)?j[a, [α, x]]. We know [α, x] =

[α, x] + £7 and ;(ad α)2x = (ad afjx + ̂ / 7 where g\ g" e g7. We note that the

coefficient of f equals - (l/2)|(adα)2x|2 = (l/2)^((adα)2x, (aάafjx) by Corol-

lary 1.12. Hence, altogether, we get C = p(etB&a[af x], etΆάajx) + p(t) where

p(t) is a quadratic polynomial. Applying Lemma 1.13 we see that actually

C is a quadratic polynomial. Therefore (adα)2g C ϊ.
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1.16. Later we will frequently use the following.

LEMMA, a) ad rad(g)

b) [a, β] c nil(g).

c) (adα)2 = 0.

Proof. It suffices to prove a) for an element of type jn, nen. We

work in g = g/radg. Suppose a.d jn Φ 0 on g. Then 0 Φ x = jn mod rad(g)

is nilpotent in the semisimple algebra g. Therefore, by the Jacobson-

Morozov-Theorem there exist y, h e Q such that Rx + Rh + Ry = 5/(2, /?).

In particular (ad ic)2;y = 2x. On the other hand we know (adj?ι)29 C ί

modrad(g). Hence xeϊmodrad(g). Since ϊ acts semisimple on g (and on

g) and x acts nilpotent, x = 0. This is a contradiction and £ = 0 follows,

whence a). Part b) is a trivial consequence of a). To prove c) we combine

α c rad(g) with Lemma 1.15 and get(adα)2g c nil(g)lΊϊ = 0.

1.17. Eventually we want to generalize the proof of [5; §6] to our

setting. We therefore consider g(1) = [jn, g] + g7. Note [jn, g] c nil(g) by

1.16.

LEMMA, a) g(1) is a Kάhler algebra.

b) 8 ( 1 )

Proof, a) Clearly [n, g(1)] c g(1). Because (aάjn)2 = 0, we also have

[jn, g(1)] c [jn, g'] c g/ c g(1). For ket we get [*, [ n, g]] c [j[k, n], g] +

L/tt, 9l c g(1). Finally [[jn, x], [jm, y]] = [jn, [x, [jm, y]]] e g(1) because (ad jn)2

= 0. This shows that g(1) is a subalgebra of g. The integrability condition

implies that g(1) is ./-invariant.

b) We have [jn,jr] +j[jn, r] modg'. Therefore [jn, x] + n +j([jn, x]

n) + t = g(1). From this the assertion follows.

1.18. From the definition of g(1) it follows g(1) c nilo(g) + ϊ, where

nilo(g) denotes the greatest nilpotent ideal of g[2; § 4.4 and § 5.3]. We may

assume that α(1) = g(1)Πnil0(g) is invariant under j . In particular, as ad α(1)

consists only of nilpotent derivations of g, we see that α(1) is abelian.

We would like to point out that α(1) = [jn, g] + n + jn c nilo(g) holds.

1.19. Next we want to consider g(0) = {xeq; [x, g(2)] C g(2)} where g(2)

= n + jn. Before we can show that g(0) satisfies the induction hypothesis

we have to consider the vector space xf)jx.

Let to = {xex jxex + ϊ}.
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After an inessential change of j we can assume j x e x for all xeb . We

note that this can be done without changing j on x(Ίg(1).

LEMMA, a) b = xΠjx

b) jt> c b

Proof Let xeb, then x, jx e x and j(jx) = — x + k. Therefore jxe^.

But then j(jx) e x, whence kex and k = 0. Hence x = j(— jx) e x Π jx and

b c xίΊjx. Let xe xΠjx; then xe x and x = jy for some y e x. Hence jx

— — y + k and x e b follows. This proves the lemma.

1.20. LMMA. xΠjx + n is an ideal of g.

Proof We have to verify that b is mapped into b + n by ϊ, x and jx.

Let x e b = xΠ jx and y e x such that x = jy holds. Clearly [ϊ, x] c x; more-

over, [k, jy] = j [k, y] + kf by the definition of a Kahler algebra. Hence

j[k, y] + k' e x, yielding [k, y] e b. Therefore kf = 0 and [A, x] = j[£, y] e x Π jx.

Next note [x, x] c n. Finally, we consider [/>, b]. Then, with x and y as

above, we have [jrjy] = j([jr,y] + [r,jy]) + [r,y] + kex. Because [r,y]

e n, we obtain jz + ke x, where z = [jr, y] + [r, jy] e x. This yields z e b

and ft = 0. Therefore [jr, jy] ejb + n(Z\) + n. This finishes the proof.

1.21. From the last lemma we see that n d b + n c x is a chain of

ideals. We had chosen n maximal. Therefore either xΠjx c n or xf)jx

+ n = x. In the latter case we get g = x(Ί jx + n + jn + ϊ. Hence g =

rad g + ϊ. After an inessential change of j we may assume that rad g is

j-invariant and the Radical Conjecture holds.

Hence, from now on we will assume xΠjx C π.

1.22. Now we can return to the consideration of the subalgebra g(0)

= {x e g; [x, g(2)] c g(2)} where g(2) = n + jn. Clearly, g; c g(0).

LEMMA, a) g(0) is a Kahler subalgebra of g.

b) g(0) = (β(0)nr)+j(g ( 0 )nx) + ϊ.

Proof a) Let xeg ( 0 ). Then we have to prove that jx leaves g(2)

invariant. This follows from [jx, n] c n C g(2) and [jx,jn] — j[jx, n] +

j[x,jn] + [x, n] + k; note that in the last expression all summands but k

are in the greatest nilpotent ideal of g. Therefore ad k = 0. Hence k — 0,

because we have assumed that g acts effectively on some manifold. But

this implies [jx, jn] e g(2).
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b) Because ϊ c g(0) we have only to consider elements of type x — f

+jr e g(0). Then [jn, x] e g(2), i.e. [jn, r] -f [jn,jr] = [jn, r] +j[jn, r] +j[n,jr]

+ [n,r] + ke g(2). Therefore [jn, r] + j[jn, r] e g'. Hence there exist a, b

en, k' eϊ such that [jn, r] +-j [jn, r] = a +jb + k'. This implies j([jn, r] — b)

— a — [jn, r] + k', whence [jn, r] — b e t) and kf = 0. In particular [jn, r]

— ben. Hence we obtain [jn, r], [jn, r] e n. This implies [r, g(2)] c g(2)

and [r, g(2)] c g(2), whence r, feg ( 0 ). We have shown g(0) c (g(0)Πr) + j(g(0)

Π r) + ϊ. The opposite inclusion is trivial and the lemma is proven.

1.23. To be able to use the induction hypothesis for g(0) we have to

exclude the case rΠg ( 0 ) = t. But in this case g = g(0) and g(2) is an abelian

ideal of g. Consider u = {xeg, ρ(x; g(2)) = 0}. Then u is a Kahler sub-

algebra of g and uίΊg(2) = 0. Clearly u ^ g/g(2). Therefore we can apply

the induction hypothesis to u. So after an inessential change of j on u

we get a solvable Kahler subalgebra S of u satisfying u = i + ϊ , i Π ϊ = 0 .

But the the Radical Conjecture follows with 3 = g(2) + S.

Hence, from now on we will assume g(0) Φ g. From the last lemma it

follows that we can apply the induction hypothesis. So after an inessential

change of j we have g(0) = t(0) + α(0) + I, where t(0) + α(0) is a solvable

Kahler algebra, t{0) is a modification of a normal j-algebra and α(0) is a

modification of an abelian Kahler algebra.

From 1.18 we know α(1) c nil0(g)ίΊg(0). Therefore also α(1) + [α(i), g] C

nilo(g)(Ίg(O) c nilo(g(O)). It is easy to see that one can choose t(0) + α(0) so

that nil0(g(0)) c t(0) + α(0) holds.

LEMMA, a) α(1) c α ( 0 ).

b) g(1) is a subalgebra of g(0).

Proof It suffices to prove [jn, g] c g(0). It is easy to ssa that we only

have to note [jn, [jn, g]] = 0 c g(2).

1.24. We want to generalize the proof of [5; §6] to our setting. We

define g (- υ = g, g(0) - t ( 0 ) + α(0) + ϊ, g(1) = α(1) and g(2) = n + jn.

We have seen above g("1} ZD g(0) 3 g(1) z> g(2). Also, ;g(fc) c g(fc). By the

definition of g(1) and g(0) we have [g(-1}, g(2)] c g(1) and [g(0), g(2)] c g(2). Further

we know [g(1), g(1)] = 0 and [g(0), g(0)] c g(0) hence, in particular [g(1), g(2)] = 0.

LEMMA. The subspaces g(ί) form a j-invariant filtration of the Lie

algebra g.
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Proof. We have only to consider two types of commutators.

fe(0), Q(1)] c g(1): let x0 e g(0) and xx e g(ί). Because [g(0), g(2)] c g(2) c g(1) we

can assume x1 = [jn, x] for some ra e n, x e g. Then [x0, xj = [x0, [/n, x]] =

[jn, [x0, x]] - [\jn, x0], x] e g(1).

[g(-J>,g(1)] c g ( 0 ) : let x e g and ^ e g(1). Then for all nen we have

[jn, [x, xj] = [[jn, x], xj + [x, [jn, xj] = 0 since g(1) is abelian. This proves

the claim.

1.25. From this point on we can use large parts of the proof of

[5; §6]. We have the obvious identifications: g(ί)«->3(ί), aφ)<->a, tφ)*+§D

= E) and n«-*g.

( 1 ) Let x e α(0) and ad x = S + N be the decomposition of ad x into

semisimple part S and nilpotent part N. Then JVg C g(0).

Proo/. See [5].

( 2 ) We denote by 3 the principal idempotent of t(0) and define HQ,

gΛ, g, Qiμ) as in [5]. For an arbitrary nen we define (as in [5]) {abc} =

[[\]ή, a], b], c], a, b, c e &-".

(3 ) {abc} is invariant under permutations of α, b, c.

Proof. As in [7] one notes {abc} — {bed} = [[[yX α], 6], c] — [[[/ra, 6], α], c]

= [L/Λ, [α, 6]], c] = 0 since [g("υ, g("υ] = 0. Hence {abc} = {6αc}. Moreover,

[[[Jϊϊ, α], 6], c] - [[[.//I, α], c], b] = [[jn, α], [6, c]] = 0.

We also have

( 4 ) L/m, {abc}] = [[[/n, α], 6], [jίή, c]] for all m e n .

( 5) Hjna = — ajήa where a e {0, ± 1/2}, τzα e nβ.

The standard argument yields:

(6) fegΠcg^.
This implies

( 7) λ e {a, a ± 1/2} where ae{0, ± 1/2} if [jna, gi'1^ Φ 0. Eventually

we want to prove {abc} — 0 for all nen. It clearly suffices to prove this

for n = rcα e nβ, α e {0, ±1/2.}. If yrc € n, then {α&c} = 0. This implies that

we can assume a e {0,1/2} since for a = — 1/2 we have jn = [s, n] e n.

Suppose now that we can choose αegjf1^ 6eg^"1}, cegί~1}, so that

{abc} Φ 0. From the definition and the symmetry of {abc} we derive that

the commutators [jnay α], [jwα, b] and [ X , c] do not vanish. Hence, by (7),

( 8 ) λ, μ, v e {a, a ± 1/2} where a e {0, 1/2}.

The argument of [5] carries over without change to prove

( 9) λ + μ, μ + v, v + λ e {a, 1 + a, 1/2 + a}9 where a e {0, 1/2}.
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Next we prove a result similar to [5; §6.15].

(10) b , g(1)] a{ae α(0) ad a | α(0) + t(0) is nilpotent} + [t(0\ t ( 0 ) ] .

Proof. Let x e [g, g(1)]. Then a e nil0(g(0)) c 3(0) = t(0) + α(0) by the con-

vention 1.23. Hence [g(0), x] c £(0). We write Λ: = t + a; since αdx|£ ( 0 ) is

nilpotent, t e [t(0), t(0)] and ad a | 3(0) is nilpotent. This proves the claim.

The next result is [δ; 6.16] and is proven as there. Let

(11) Let gv e gv, uη e g™, vζ e qf) and assume

? + £ > 0 o r 9 = £ = 0 , then [[&, uηl vξ] = 0.

This implies

(12) [[g^1), QV], gα>] = 0if J ? + f > 0 o r ) 7 = f = 0 .

We want to apply (12) to [/m, {abc}]. First we note that there exists

some m = mβ e nβ so that Q = [jm, {α6c}] ̂  0; otherwise all representatives

of {abc} are in g(0), whence {abc} — 0. We note that Q is symmetric in

α, 6, c and in n, m. Therefofre β φ — 1/2. Moreover, (8) and (9) hold for

B as well and comparing (4) and (12) we see that

(13) (λ - a) + (v - β) < 0 a n d λ-aφ0orv-βφ0.

The same relations hold for every permutation of λ, μ, ι> and transposition

of a, β.

If a Φ β, then we can assume a = 0, β = 1/2. In this case relations

(8), (9) and (13) become

(8 Y λ,μ,ve {0, ± 1/2} Π {0, 1/2, 1} = {0, 1/2}

( 9 Y λ + μ, μ + v, λ + v e {0, 1/2, 1} Π {1/2, 1, 3/2} = {1/2, 1}

(13)' λ + u, μ + v, λ + v < 1/2.

Hence λ + μ= μ + v = λ + v = 1/2. Using (8/ we get a contradiction.

Therefore, we can assume a = β e {0, 1/2}. For a = 0 the relations (8),

(9), (13) give

( 8 ) " λ,μ,ve{0, ±1/2}

( 9 ) " λ + μ, μ + v, λ + ve{0, 1/2, 1}

(13)" λ + μ, μ + v, λ + v<0.

Hence λ + μ, μ + v, λ + v = 0. Therefore ^ = — λ and v = — μ = λ Since

(13) also implies A =£ 0 or v ̂  0, λ9 μ, v φ 0. Therefore λ + y = 2λ Φ 0, a
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contrradiction.
Finally, for 1/2 we get

(8) '" J ^ ^ e {0,1/2,1}
( 9 ) ' " λ + μ,μ + ι>,λ + i>e{ll2,l,SI2}

(13)'" λ + μ, μ + v, λ + v < 1 and at most one of the numbers λ, μ, v is

equal to 1/2.

This implies in particular that 1 is not attained in (13)'". Therefore λ + μ

= μ + »= λ + v= 1/2. Hence λ, μ, v e {0, 1/2}. By (13)'" two of these

numbers have to be 0, but then their sum is not 1/2, a contradiction.

Therefore we have proven altogether

(14) {abc} = 0 .

This implies

(15) [fe(1),g],g]cS<°>.

From this one derives as in [5]

(16) [fe(1),0],β(1)] = O.

1.26. We consider a = Z(g(1)) = {x e g; [X, g(1)] = 0}. Because g(2) c g(1)

we have in particular [x, g(2)] = 0 C g(2) for aΠ x e g. Hence 3 c g(0). Again

we can take over the first part of the proof of [7; part III, Lemma 18]

without change and get

( 1 ) a C g(0) is an ideal of g.

Obviously

( 2 ) g ( 1 ) c δ .
( 3 ) The Radical Conjecture holds for g.

Proof. We consider the solvable ideal a(Ίr of g. From (2) we know

n c g ί i r c r . Hence we obtain that a (Ί r coincides either with n or with r.

In the latter case r C a C g(0) and g = g(0) follows. But we have settled

this case already in 1.23 and are considering here only the case g Φ g(0).

Therefore aΠr = n. Because g(1) C a we obtain g ( 1 )Πr C n. In particular

[jn, r] C n. But then [jn, jr] = f X r] + j[n, ;>] + [λi, r] + k with some

fc € ϊ. It is easy to check that here all summands but k are contained in

nilo(g). Hence ad£ = 0, whence k = 0. Therefore [jn,jr] cg ( 2 ) . Finally,

[jn, ϊ] = j[n, ϊ] C jn c g(2) (where we have used once more Corollary 1, d)
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of 1.4). Altogether we have shown [jn, g] a gf2). From this we obtain

[g(2), g] C g(2). Hence g c g(0), a contradiction. This finishes the proof of

(3) and also shows that the Radical Conjecture holds in "Case 1".

§2. Case 2: g = g0 + gx

2.1. In this section we use g, r, n, g', t and α as introduced in 1.1.

Here t is a modification of a normal j-algebra and α the modification of

an abelian Kahler algebra. Let e be the principal idempotent of t and

8 = θg* the eigenspace decomposition of g relative to Re (ad ye). In this

section we consider the case where Re(adjV) has only the eigenvalues 0

and 1. We know that adje leaves invariant t, α, x, n and g'. Therefore

these spaces have an eigenspace decomposition as well.

2.2. In [6; 4.10] we have seen tλ = nle Here we want to prove

LEMMA. nx = xλ = gi.

Proof. Clearly, gt is an abelian ideal of g. Therefore (independent

of the induction) q1 + faλ + ϊ is a Kahler algebra for which the Radical

Conjecture holds. Hence (after an inessential change of jf) we can assume

that gt + faλ is a solvable Kahler algebra. Let e be the maximal idem-

potent of 8i + 7fli Then e = xλ + jyx and [je,je] = 0. But this implies

yx = 0 and e 6 gx. Therefore [je, e] — e. Hence we obtain e = e and gx = nx

follows.

COROLLARY, gj + j ^ is α modification of a normal j-algebra with

principal idempotent e.

2.3. Let c be a minimal idempotent in glβ Then [/c, c] = c and (in

the underlying normal ./-algebra) {x6g t; (jc, x) = x} = i?c.

We consider the eigenspace decomposition of g relative to Re(a.άjc),

8 = ©αei2 8(α) Where necessary we write g(α) = g(Ω)(c). We recall that

subscripts refer to weights relative to aάje, Q[a\ etc.

We know that jc leaves gl5 g0? r, n, i, α and gr invariant. Hence we

also have a decomposition of each of these spaces relative to adjc.

Note that the weights of aάjc in gx + JQX and inj^ + I are 0, ± 1/2, 1.

Hence, if a Φ 0, ±1/2, 1, then g(α) c g0. Moreover, by the usual argument

fa™ c ^ + 8r.

2.4. We can use the proof of [9; Lemma 4.2] and obtain
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LEMMA ([9]). Let g e g(α) and jg = g+x+jy + k where g e g(α), x, y

€fli andket Then x,ye(a™ + tfa+1))n&.

2.5. In this section we prove

LEMMA. g(α) = 0 if a g — Z .

Proof. Let I = { ί i g (l/2)Z;g(α) =£ 0}. We choose α e l s o that \a\

is maximal. Then [g(α), gj = 0 and in particular [g(α), c] = 0. We will

show that ad(i? + JRJC) is a "symplectic representation" of Re + Rjc on

g(α). Then, by [8, sect. 2,3] we know that adjfc has only the weights 0,

±1/2 on g(α) yielding a contradiction and proving the lemma.

( 1 ) M{a) c g(α) + ϊ .

This follows from Lemma 2.4. From (1) we obtain that (after an inessential

change of j) we can assume jg(α) c g(α) for the chosen ae M. Since |α| is

maximal in M we also have

( 2 ) [g(α),g(α)] = 0 if 2a e —Z.

( 3 ) ι»(fe<β),9(β)Ljc) = 0 i f 2 α e l - Z .

To prove (3) we note first g(α) c go> since aeM. Hence fe(α), g(α)] C g(2α)

Πg0 c g = ®δG(i/2)zδ(δ) Since g; c g, Lemma 2.4 shows 'g c g. Hence g is

a Kahler subalgebra of g. By assumption, g(α) Φ 0, β g (1/2)Z; therefore

g =£ g. Finally, g(δ) = t ( δ ) + j r^modg 7 since g = t + j x + ϊ. Hence we

can apply the induction hypothesis to g. Therefore /o(gΠg0,ic) = 0 and in

particular p([&a\ Qw],jc) = 0. From (3) it follows immediately that adjrc is

symplectic on g(α):

(α)(4) p([jc, x], y) + p(x, [jc, y] = 0 for all x,ye g

Since [g(α), c] = 0, adc is symplectic on g(α) as well. Because [jc,c] = c,

we have only left to verify (and do it by a straightforward computation)

( 5 ) [j, ad jc - 1/2 [/, ad c]]β<*> = 0 .

This finishes the proof of the lemma.

2.6. We sharpen the last result and get

LEMMA. g(α) = 0 if a £ {0, ±1/2, ±1}.
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Proof. Let a e (1/2)Z, σ £ {0, ± 1/2, ± 1} and suppose g(α) ^ 0. We

assume that \a\ is maximal. Then [g(α), gj = 0, since adyc has only the

weights 0, 1/2, 1 in glβ Moreover, jg(α) c g(α) + ϊ follows from Lemma 2.4

since g(α)lΊgi = O and g(α+1)(Ίgi = 0. We can again assume that even

;g(α) c g(α) holds. From [g(α), c] = 0 and [g(α), g(α)] = 0 we conclude that

adc and adjc are symplectic maps of g(α). As at the end of the proof of

the last lemma one finishes the verification that ad is a symplectic

representation of Re + Rjc on g(α). Hence a e {0, ±1/2}, a contradiction.

2.7. From Lemma 2.4 it is easy to derive that after an inessential

change of j we can assume JQ C g where g — g(~1} + g(0) + g(1). Therefore

§ is a Kahler subalgebra of g. Moreover, gU ) = τ{n) + jτ(n) mod(g/Π§).

Hence we can apply the induction hypothesis to g in case g Φ g. In this

case we have g ("υ = 0, whence

β = δ ("1 / 2 ) + δ(0) + s(1/2) + s(1) if g ^ g .

Before we continue to consider this case more closely we want to finish

the possibility g = g.

LEMMA. // g = g, then the Radical Conjecture holds.

Proof. By our assumption, jc has only the weights 0 and 1 in g^

Hence gt = gί0) + gί0) and since c is a minimal idempotent g{1} = Re. Because

there is no weight 1/2 we know that the underlying normal y'-algebra

βi +J01 is the product of the subalgebras Re + Rjc and g{0) + jgί0). Since

the modification derivations D(x) annihilate c and jc we conclude that

Qi0) + J9ί0) is a subalgebra of the given Kahler algebra qλ + j ^ . We also

know that ϊ leaves both algebras invariant. Set g* = g(-1) + jgί0) + gί0) + ϊ.

Then Lemma 2.4 shows that g* is ./-invariant. It is easy to verify that

g* is a subalgebra of g. It is straightforward to check that g(-1) + gί0) is

an ideal of g*. Clearly, g(-1) and gί0) are both abelian and since [g(~1}, gί0)]

= feo"1)

J9ίO)] c gί"15 = 0 w e see that g(~υ + gί0) is an abelian ideal of the

Kahler algebra g*. Therefore the Radical Conjecture holds for g*. Next

we want to show g("1} = 0. We consider the idempotent e — c of g{0) + jgί0).

It is easy to see that the real part of adj(e — x) acts are identity map

on g("υ. From the solvable theory, applied to g*, we know that yg(-1) is

annihilated by the real part of adj(e — c). But from Lemma 2.4 we obtain

ίgc-n c g(-!) + gf} + J8<°> + ί, whence ig -̂1^ cig{0) + ϊ and q^ c gί0) + ϊ.

This implies g(-1) = 0. Hence, by our assumption g == g0 + gi = g(0) + g(1)
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To finish our argument we consider as in [8; sect. 2.5] the space u =

{xeg; [x, c] == 0, [jx, c] = 0}. Clearly, I c u and jn c u. Since Re is a

one dimensional ideal of g we have for x e g: [x, c] = ac and L/x, c] = 6c

for some a, b e R. A straightforward computation shows x — α/c — 6c e u.

Hence g = u + Re + /?/c. From the definition of u we derive gί0) C u,

whence g{0) + ygί0) + I c u . Next we show [jc, u] c u. Let weu, then

[L/c, w], c] = 0 and [j[jfc, a], c] = [[jeju] —j[cju] - [c, u] -k,c]= 0. There-

fore u = u(0) + u(1). Since g(1) = Re, u d g(0). Let u == ux + u0, ut e g<.

Then ueu iff [uQ, c] = 0 and [y^ + jfι/0, c] = 0. In particular u0 e b =

{x e go; [x, c] = 0}. On the other hand, let v βv, then [v, c] = 0 and [jι;, c]

= 6c. Therefore u — 6c e u. But u c g(0) and u 6 g0 c g(0), whence 6 = 0.

Therefore u = gί0) + b. To see that u is a Kahler algebra we have to

show [b, gί0)] c g{0). But this follows since u c g(0), g(0) is a subalgebra

and £(0)ΓΊ£i = g}0). Finally, r0 = r Π g0 acts nilpotently on g, therefore

[t0, c] = 0 and r0 c b c u follows. Now it is easy to see that u = (x0 + δί0))

+ i(^o + δί0)) + I holds, where r0 + g{0) is a nilpotent ideal of u. This

implies that the Radical Conjecture holds for u. From this we will derive

that the Radical Conjecture holds for g. Let § be a maximal semi simple

subalgebra of g0. Then ζ is maximal semisimple in g. Moreover, [Γ), Re]

C Re implies [ζ, c] = 0, i.e. ϊj c b. Let tΛ be a maximal split solvable

subalgebra of §. Then tu = tΛ + rad(b) + gί0) is a solvable subalgebra of

u and u = ϊu + ϊ by the Radical Conjecture applied to u. Moreover,

ζ C tft + ϊ. Therefore, t0 = tΛ + rad(g0) is a solvable subalgebra of g0 and

g0 = t0 + ϊ holds. Hence t = t0 + $x is a solvable subalgebra of g and

g = t + ϊ. From this the Radical Conjecture follows.

2.8. In the last subsection we have seen that the Radical Conjecture

holds if g(c) = g for some minimal idempotent c of glβ Therefore, from

now on we can assume g Φ §(c) for all minimal idempotents c of g^

Hence g = g("1/2)(c) + g(0)(c) + g(1/2)(c) + g(1)(c) for all minimal idempotents

ceβi. Applying the induction hypothesis to g(c) = g(0)(c) + g(1)(c) once

more shows g(1)(c) c &. Therefore g$α)(c) ψ 0 implies - 1/2 < α < 1/2. This

shows that [9; Lemma 4.3] holds. This together with Lemma 2.4, (which

is [9; Lemma 4.2]) enables us to carry out the rest of the arguments of

[9; §2] with few changes.

We choose minimal tripotents cl9 , ck in βj satisfying

( 1 ) Ci + + ck = e
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( 2 ) [jCi9 Ck] = δίkCk.

These conditions determine the cfc's uniquely (up to permutation). For

the purposes of this subsection we order cu ,cfc as in [9]. From the

solvable theory (applied to gx + j$i) we know

( 3) L/c,, jck] = 0 for all i, k.

Therefore we get a simultaneous eigenspace decomposition of g relative to

Rl9 '.-,Rl9Rk = Re(adjcfc). We thus get g - Θg ( i ) where R,xiA) = Λ(i)x{Λ)

for all xiΛ)e^Λ\ Clearly, g(^ = g£» + ĝ >.

We know Λ = 4 or Λ = (1/2) ( 4 + z/;) on QX where 4(&) = δίk. More-

over, we have seen above that A(k) = 1 for some k e {1, ••-,/} implies

gw> c β! and that Λ(£) e {0, ±1/2,1} for all k.

As in [9] we introduce the subalgebra 3 of g0, ^ = {ieg 0; [x, e] = 0}.

Since x — j[x, e] e 3 for each x e g0 we have g0 = ^ + 7Gi

Using these fact and definitions, the proof of [9; Lemma 4.4] carries

over and yields

(4) gw> c s i f i ^ 1/2(J, - JJC) for all i, A .

Next we consider s e 3 and decompose it relative to g = ®QiΛ). From

(4) we conclude that s(0) + Σ ^ δ s«1/2)'a-m2)Jb) e §. It is easy to see that

[s(0), ct] e Rc7 holds. Moreover, assume 0 Φ x = [s^1/2^*-^2^^, c4], α ̂  6, is a

multiple of some cfc. Then an application of Rk yields 1 = (l/2)(5αfc — ^δfc)

+ δίk. Hence i = k, ί Φ α, 6. But then i?αx = (l/2)x, whence x = 0, a

contradiction. Therefore x is perpendicular to ©JUi ^cfc. Altogether

[s(0), e] = 0 follows. We thus have proven

( 5) ([9]) Let s € §, then s(0) e 3.

Next we show

(6) ([8], [9]) Let A = (1/2)(Δa - Δb\ a < b, then we have

QP = GW) + <JQiYΛ) •

For /ί = 0 this follows from (5) and the case A Φ 0 can be shown as in

[8; Sect. 4.4].

We set σ(x) = trace (ad x ^ ) , x e g. The proof of [9; Lemma 4.6] carries

over without change and yields {y% denoting the ^-component of y)

( 7) ([9], [8]) let A = l/2(Jα - Δh\ a<b, and let s e § Π gt>Λ) Then σ([s, ;x]g)

= 0 for all x e gle
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LEMMA ([8]). trace(ads|βj) = 0 for all se§.

Proof. By (5) we can assume s e 3(0). Using (6) and (7) we can carry
out the proof of [8; Lemma 8, sect. 4] without further changes and obtain
the claim.

2.9. We collect the properties of 3 which will be used in the following
sections.

LEMMA, a) 3 = {xeg0; [x, e] == 0} is a Kάhler subalgebra of g0 and

b) 9o — 3 + JQ is a direct sum of vector spaces.
c) trace (ad 31 βi) = 0
d) ad^lβj is a contained in the isotropy algebra of the homogeneous

cone K in §! which is associated with the Kdhler algebra ĉ  + 79i and the
point e e K.

Proof, a) Following [8; Sec. 2, 5] we let m = {xeg; [x, e] = 0,
[jx, e] = 0}. Clearly, ym c m. As in loc. cit. one proves g = m + gt + j ^
and [je, m] C m. Hence m = m0 + tΠi But from the definition of m it
follows 0 = [jml9 e] = mί9 whence m c g0. Obviously, m c §. But m and
^ have the same dimension since both are algebraic complements of jqt in
g. Therefore m = § and a) follows, b) and c) have been shown in the
last subsection, d) This follows from [17; Proposition 4] and c).

2.10. Put I = {x e 8; [x, gj = 0}. Then I c 3 is an ideal of g.

LEMMA. £ = $ + JS + Ϊ ami r0 c I + JQt.

Proof. Let r e r0 = x Π g0 then r = s + jgu se§, gxe glβ From Lemma
2.9, we know adgo|g! C Lie Aut K, the infinitesimal linear automorphisms
of the cone K. Hence ad xo|9i is an ideal in adgjgj which consists of
nilpotent endomorphisms. This implies adro |g! C adygjgi, whence. r0 c I
+ jβlβ But this implies § c r0 + ;r0 + Bi + 70i + ϊ c δ + jδ + ϊ + βi + jffli
C § + Bi + Jβi and the assertion follows.

2.11. Set % = {jgx; s + jg1 e x0 for some s e I}. Denote by p the Kahler

subalgebra of βi + Jβi generated by %. Then p = (png0) + (pίΊβi).

LEMMA, a) J is an ideal o

b) [δ ,p]CH})

https://doi.org/10.1017/S0027763000001410 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001410


RADICAL CONJECTURE 99

c) p + § is a Kάhler subalgebra of g.

d) Pi =

Proof, a) Let jb e £ and s e I so that s + jb e r0. Then [ja, s] + [/α, 76]

= \ja>> s + jb] e x0. Since [ja, s] e I and L/α,.7&] ejδi we conclude [/α, jίfe] 6 jc.

b) First we prove

(1) Let u be a subalgebra of g satisfying [§, u] c u + 3. Then the

Lie algebra ΰ generated by u + ju satisfies [3, ΰ] C ΰ + 3.

Proof. Since I is an ideal of g the condition [3, u] c u + § is equi-

valent to [/<!, u] c u + 3 and [ϊ, u] c u + 3. But then [/§, j'w] = L/s, w] +

j[s,iw] + [s, u] + k shows [jl, ju] C jn + §> and [kju] = ,/[Λ, w] + &' implies

[ϊ, ju] c jn + §. Hence altogether [§, u + jn] c u + u + s. A simple

induction finishes now the proof of (1).

From (1) follows immediately

(2) Let u be a subalgebra of g satisfying [3, n] d n + §. Then the

j-algebra u generated by u satisfies [§, n] d n + §.

To prove b) it suffices now to show

(3) [g, ί ] c ϊ + §.

Proof. We note that [k, s + jgx] = [k, s] + kf + j[k, g j e r0 if s + ^

er 0 ; clearly [/e, s] e I if s e l , whence ^ e I by Lemma 2.10. Hence

[ϊ, I] a I. Also, [js', s + jgx] = [jV, s] + [ V, jgx] = [ V, s] + jL/V, ̂ ] +

i t ^ jgi] + [s\ gx] + k = ([js', s] + j[s', jgt] + k)+ j[js\ gx\ e r0 Π (§ + JQd for

all s' 6 δ and 5, gί as in the definition of £. By Lemma 2.10, we conclude

[js\ s] + j[s', jgλ] + k e δ. Hence t s', ^J e £. This finishes the proof of

(3) and thus of b).

c) Since p and 3 are Kahler algebras the assertion follows from b).

d) We know x c nil(g). Therefore adr is nilpotent for all r e t .

Since & is an ideal of g we derive from ad(s + jgdnb — (ad./g1|g1)
n&, be$u

that adjgjlgj is nilpotent for all jgί e 5. This implies that £ is perpen-

dicular to all jcί9 Ci a minima] idempotent in g^ We order the minimal

idempotents as in [4; p. 5] and see that the last minimal idempotent

c is perpendicular to the clan generated by j%. From this it follows that

I + jι is contained in the j-algebra of elements of q^ + jqt which are

perpendicular to Re + Rjc. Therefore c is perendicular to px and d)

follows.

2.12. We have r 0 C H ϊ C H P and ft = p Π Qt C r1# It is easy to
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verify that r0 + ^ is a (solvable) ideal of p + §. Moreover, dim(r0 + p,)

< dim x. Consider the Kahler subalgebra ΪΌ = (t0 + Pd + j(x0 + pd + ϊ of

$ + p.

LEMMA. 3 c ΪΌ = $ + p.

Proof. Let s e §. Then s = r0 + jr'o + x, + JΊ + A where r0, ΓQ e r0,

*i, JΊ eg!, £ e ϊ. We can write r0 = s0 + ^ , ΓQ = So + jg[ with s0> ^ e I,

^ , ^ί e p,. Hence s = 50 + js'o + k + j(g, + yx) + (xt - ^ί) and x1 = ̂ ί e p^

3Ί = —^i e pl9 Therefore seϊv. To finish the proof it suffices to show

pdϊΌ. But p = po + Pi C 8i + jβi where ^, = p Π 8i Hence p0 = ./ĵ  and

p C ϊv follows.

It is clear that we can apply the induction hypothesis to tυ = p + 3.

COROLLARY 1. a) § = %s + ϊ where $s is a solvable subalgebra of §>.

b) After an inessential change of j, which does not alter j on & + j$u

we can assume j§s C §s.

Proof, a) Let ζ be a maximal semisimple subalgebra of 3 containing

[ϊ, I]. From the Radical Conjecture applied to lυ 3 § it follows that a

maximal compact subalgebra of ϊ) is already contained in ϊ. From this

the claim follows.

b) follows from a) and the facts § Π (fli + ifli) = 0, j§> C §> and

Mi +j&i) C8i +Jf8i.

COROLLARY 2. a) ad(^)|8i is abelian

b) [ δ f > δ j c δ .

Proo/. Since ads|βi, se§, is skewadjoint relative to some inner

product on βi we know that ad(^e)|g! is solvable and skewadjoint, whence

abelian, proving a).

b) follows immdiately from a).

Remark. The importance of Corollary 2 is, that it deals with all of 3

(modulo the isotropy part ϊ).

2.13. Let sQ be a principal idempotent of the Kahler albebra §s

satisfying [ΐ, s0] = 0. Since [js0, s0] = s0 we know from Corollary 2.12.2

that s0 e 3 holds.

Let D = Re(adjfs0) and g = © δ € βS [ δ ] be the eigenspace decomposition

of g relative to D. Then ϊ c gco].
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Since adjsQ\Q1 is skewadjoint (realtive to some inner product on &)

we have

(1) ^cfl
(2) D has only the eigenvalues 0, ±1/2, 1 and the eigenspaces for

the eigenvalues ±1/2, 1 are contained in §s.

Proof. For ge^ we have [js09 jg] = j[jsQ, g] mod 3. Hence Djg ==

jDg mod 3 = 0 mod 3. This implies that nonzero eigenvalues of D can only

occur in 3. But ϊ c g[0]; therefore nonzero eigenvalues can only occur

in §8. Note that in %s only the eigenvalues 0, ±1/2, 1 can occur.

2.14. We want to apply the appendix to D = Re(ad;s0). Let q be

the algebraic hull of ad g c EndΛ(g). Then Z) e q is a semisimple endomor-

phism of g. Hence D = Ds + Dr where Ds eξ>, ξ> some maximal semisimple

subalgebra of q, and Dr eradq satisfy [Ds, Dr] = 0. Since [£>, φ] = £> we

have φ = adζ for some maximal semisimple subalgebra of g. Let h0 e ζ

so that adΛ0 = D s. Since ad^0 is semisimple with only real eigenvalues,

hQ is contained in some Cartan subalgebra of ζ. Therefore, if ad^0 has

an eigenvalue λ Φ 0, then it also has the eigenvalue — λ Φ 0. Moreover,

there exist x e ^ and ye§_λ such that [x, 3/] acts semisimply on g. Since

the eigenvalues of adΛ0 are also eigenvalues for Z) we conclude λ = ±1/2

But we have seen in 2.13 that the eigenvalues ±1/2 of D are only

attained in the solvable Lie aglebra §,. Hence [x, j] is nilpotent on g,

a contradiction. This shows

LEMMA, ζ c gco].

2.15. We consider the subalgebra m = gco] + g[1] of g.

LEMMA, a) m is a Kdhler subalgebra of g

b) m = (r Π m) + j(x Π m) + ϊ.

Proof. From 2.10 we know that I is an ideal of g. We have seen

above g w c § if λ Φ 0. Replacing β by 30, n by I, ft by l[1/2] and denning

q = {xeg; [x, so]en, [jx, 50]en} it is straightforward to check that with

the exception of 4.17 the results of 4.13 through 4.22, of [6] still hold.

It is easy to verify that the proofs of 4.25 and 4.23 of [6] can be applied

in our situation as well and we obtain the assertion.

2.16.
LEMMA. If g[0] + g[1] Φ g, then then Radical Conjecture holds.
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Proof. By our assumption and Lemma 2.15, we can apply the induc-

tion hypothesis to g[0] + QE1]. Therefore, there exists a solvable subalgebra

3[0] so that 3[0] + ϊ = Q[o] holds. But then q = 3[0] + radg is a solvable

subalgebra of g satisfying q + ϊ = g. Since r C nil(g) we have r c q.

Hence, after an inessential change of j we see that r + jx is a solvable

Kahler subalgebra of g and the assertion follows.

2.17. It is clear that we have only to consider the case g = gco] + gci].

Here we assume — i n addition to our previous assumptions— that n is

chosen so that the rank of the maximal idempotent e of g' is maximal.

LEMMA. // g = gco] + gci], then the Radical Conjecture holds.

Proof. (1) We can assume that gci] + jgci] is a solvable Kahler

algebra with principal idempotent s0.

(2) Let u = {x e g [x, s0] = 0, [jx, sQ] = 0}. Then jn c u and as in

[8; sect. 2.5] one proves g = jβc i ] + g[1] + u and [ys0, u] C u. Then u =

U[o] + uci] a n d o = [/uw, sQ] = u[1]. Hence g r a = ;g[1] + u.

(3) g[1] c r ί l s : We know s0 = x + jy + a + jb + k where x,ye t[1],

a, bexco] and Ae ϊ. We split b = jd + u, degci], ueu. Then s0 == x — d

and [6, s0] = \jd + u, s0] = de rci]. Therefore s0 e r[]], whence g[1] = [jgci], s0]

c r[1] n i.
(4) From (3) and Lemma 2.2, we know gt + g[1] c r. We consider

A = β l + g w + [r, r] = βi + δ [ 1 ] + [t r a, r^] + β l + flw + [rra, ^ ^ if A = r >

then 8i + MF, t^0]] = rco] and r^0] = 0 follows. But then r = fli + 9[1] is, by

(3), an abelian ideal of g and the Radical Conjecture follows. If A Φ r,

then we can find an ideal ft of g satisfying A c f l ξ r. But then the

rank of a maximal idempotent e associated with ft is greater than the

rank of e if gci] Φ 0. This would be a contradiction to our choice of n.

Therefore g[1] = 0. This implies §Q = 0 and §s is a modification of an

abelian Kahler algebra. The rest of this proof is a simplification of a

previous version. The present version is due to K. Nakajima. We con-

sider radw(l) = {xerad(l); adx|g is nilpotent}

(5) t0 c rad?ι(l) + [JΰuJQiV Let x e r0. Then x = s + z where s e I

and ze [JQuJQά by Lemma 2.10. Note that B = r0 + L/fli, jflj is a solvable

subalgebra of g0 and that x and z are contained in the ideal Bn =

{Λ;6JB; adx|g is nilpotent} of JB. Hence seBn. Let ζ be a maximal

semisimple subalgebra of I and decompose s = s' + s", where s € rad(i),
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s" e ϊ). Then ads"|ϊ) is nilpotent since s e Bn. But since g[1] = 0we know

that g corresponds to a flat homogeneous Kahler manifold. Therefore §

is a compact semisimple Lie algebra. Hence ads" |5 — 0, whence s" = 0,

s — s' and (5) follows.

(6) radn(l) is an abelian ideal of g: Since I is an ideal of g we

know that rad(<S) is ideal of g and [g, rad(i)] c nilo(£) C radTO(l) follows

by [2; §5, Proposition 6], where nilo(l) denotes the maximal nilpotent

ideal of I. Therefore radre(g) is an ideal of g. Moreover, since I cor-

responds to a flat homogeneous Kahler manifold, radTO(l) is abelian.

From (6) we obtain

(7) radTC(l) + QX is an abelian ideal of g. To prove that the Radical

Conjecture holds for g it suffices now to note that g = (radn(§) + g^ +

ΛracLd) + fli) + I holds.
This finishes the proof of "Case 2".

§ 3. Case 3. g = g_1/2 + g0 + gV2 + βi

3.1. We use the notation of [6] as before (see 2.1). Since —1 is not

a weight for adje, we have from [6; Lemma 4.19]

(3.1) p(e,q) = 0.

Then Lemma 4.21 of [6] simplifies to

(3.2) p(etΆdjeu, etΆdjev) = e'pije, [u, v]ί) + const,

for all u, v e g, t e R. In particular, we have

(3.3) ^ , 8 ^ = 0 if λ + μφθ,l.

We also recall from [6; Lemma 4.26] that the Radical Conjecture holds

for the Kahler subalgebra g0 + & of g. Note ϊ c g0. Moreover, we have

g0 = tt>o + to + JQi + ϊ where to0 + t0 is a modification of a split solvable

Kahler algebra and \υQ + t0 + JQt + g is a solvable Kahler subalgebra of

Go + βi

As in Lemma 2.2 one proves

(3.4) Qί = n1 = x1.

3.2. We consider the subspace ϊυ = g1/2 + g_i/2 + ϊ of g. Then jtv C ΪΌ

since j$λ C g; + g' and p(ΐυ, g0 + gi) = 0 by (3.3). Therefore, after an ines-

sential change of j , we can even assume 7*(g1/2 + β-1/2) C β1/2 + g_i/2.
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3.3. Let c be the vector space of real parts of ad/c, c e gx + t0, [jc, c]
= c. Let c c b c Endg be a maximal abelian subalgebra of the algebraic

hull adg which consists of semisimple endomorphisms. Since Re(adje) e c

it follows 6 C adg0. From the appendix it follows that there exists a

maximal semisimple subalgebra ζ of g and an abelian subalgebra Sic

rad adg such that b c adϊj + 21 and 2IΪ) = 0. The maximality of b implies
b = (b (Ί ad5) + 2ί, where b Π adϊ) is a Cartan algebra of adϊj ^ §. In
particular i? = Re adje = ad/ι0 + i?r where i?rϊj = 0 and h0 e !). Hence the
eigenvalues of &dh0 in ϊj are also eigenvalues of R in g. Moreover, if
λ Φ 0 is an eigenvalue of ad/ι0 in ζ, then also —A is an eigenvalue of
ad/ι0 in ϊj. Since i? has only the eigenvalues 0, ±1/2, 1, this implies
λ = ±1/2. If ad/ι0 has only the eigenvalue 0 in \ then the Radical
Conjecture follows by the argument of [6; Lemma 4.32].

Hence from now on we assume that adΛ0 has a nonzero eigenvalue
in \

Then ή = ί)_1/2 + ί)0 + \β and \ Φ 0 for all λ. (We will show in the
rest of this paper that this assumption leads to a contradiction). Moreover,
we can assume that tv0 + t0 + j ^ contains a maximal split solvable sub-
algebra of ξ0 and that it also contains the Cartan algebra of ζ which
corresponds to b Π adΐ).

Let ( , •) denote the product in the unmodified algebra underlying
g0 + gj and denote by ad its adjoint representation.

Then Re (ad/c) = aάjc in g0 + gj for all minimal idempotents c of
βi + to-

LEMMA. Let x e g0 such that adx e b holds. Then there exists a linear
combination y of idempotents of gt + t0 and w e ΪΌ0 such that x = jy + u
and

a) [x, to0] c too,
b) [x, w] = 0, [xju] = 0, [JM, α] = 0,
c) O*c,y] = 0 for all idempotents ce§x + t0,
d) [adx, Re(adjc)] = 0 for all idempotents cegx + t0,

Proof. Let xeg0 and adxeb, then adx lies in the span of all
Re(adjc), c a minimal idempotent of Qλ + t0. This implies x = jy + u
where y is a linear combination of minimal idempotents and z/eg0 + Qt

such that (jc, u) = 0 for all idempotents c. Moreover, we can assume
that u is perpendicular to all jc. Then w e to0. Since the modification
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derivations D(v) of g0 + 0! annihilate all idempotents we already get a).

We also note that c) and d) are clear as well. In particular (x, u) = 0.

To see that also [x, u] = 0 holds we note D(x) = 0, since adxe b, whence

[x, u] = (x, u) — D(u)x = —D(ύ)u. Since adx is selfadjoint and D(ύ) skew

adjoint relative to the inner product p(a,jb) on ίυ0 we obtain D(u)u — 0

and [x, u] = 0. Let ΪΌQ = ft)0 + fi^ as in [5; 3.3]. Then adjc leaves tΐ)0 and

β>! invariant. Hence [x, ι/J = 0 and (jc, ut) = 0 where u = w0 + w1? i^ e β)*.

But then O'c, jz/J = 0 and [x, juQ] = (x, juQ) = 0 follows. Finally, [x, juJi =

(XijUi) — D(jul9 x) = —D(ju^uϋ. But [x, ώ] c &! implies [x, u J = (x, wj —

D(wx)x = (jy, ẑ O + (M, wO — D(wλ)u e fti for all lϋj e it)!. Since (jy, wλ) e ft1?

(u, tod — 0 and D(w^)u e Ao we obtain D(w^)u = 0. From this we derive

[x,7Wi] = 0 and [ju, u] = 0.

Remark. In what follows we will use frequently the representation

theory of si (2, R). We will only consider such copies of si (2, R) which

are of type si(2, R) ̂  Rf.ί/2 + Rf0 + Rfw, ad/0 e b Π adζ and /0 e lυ0 + t0

It is clear that we can apply the above lemma to /0.

We would like to point out that we can actually find fλ e Qλ, λ — ±1/2,

0, so that in addition to the above properties fλ is a simultaneous eigen-

vector for all b e b.

We will make it explicitly clear where we use //s with this additional

property. The other properties will always tacitely be assumed.

3.4. In this section we consider the action of si(2, R) = Rf-ί/2 + Rfo

+ Rfi/2 o n β We know that ad/0 has only integral eigenvalues and

in an irreducible representation all integers m, m — 2, , — m occur.

Moreover, starting from an appropriately chosen eigenvector xx in 0X we

get a basis of an irreducible representation of s/(2, R) in 0 by applying

ad/_1/2 to Xj. The eigenvalues of ad/0 in ĉ  are therefore all non-negative

or all non-positive (depending on the sign in [/0, /_1/2] = ±2/_1/2) and only

the integers 0, 1, 2, 3 can occur (for simplicity we assume that only

non-negative integers occur in 0X; the other case follows by the same

arguments). Thus we get the following chart indicating the chains of

eigenvalues that can possibly occur in some irreducible representation of

si (2, j?) in 0. Note that the vector space corresponding to the various

integers in the same row all have the same dimension.
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3.5. We write /0 = jd + t0 + ιυ0 where d e Q19 t0 e t0, wQ e ft>0. We

know that <2 is a linear combination of idempotents, d = 3c?3 + 2d2 + du

[jdχ> dx] = dλ, λ = 1, 2, 3. We set dQ = e — dx — d2 — d3. Here some of

the dλ may be 0. In what follows we use the algebra si on ĉ  associated

with ee$λ and the tube domain ĉ  + jQj in [4].

LEMMA, si = sί^d% + c?i) Θ si^d^ + c?0) as product of algebras.

Proof, (1) d3 Φ 0, d2 ^ 0 implies <srfm{dz, d2) = {x 6 J / ; (jrf3, x) = (l/2)x

- (;d2, Λ)} - 0 since [f0, x] = (/0, x) - 3(;d3. x) + 2(jd2, x) = (5/2)x and 5/2

is not an eigenvalue for ad/0. Similarly one proves

(2) j/1/2(d2, dλ) = 0, sim(dly d0) = 0, siιn(dzy d0) = 0.

From (1) and (2) we get the claim.

3.6. We will need some information on the eigenvalues of

LEMMA. Let ce^ satisfy [jc, c] — c and [!, c] = 0. Then adyc has

only the weights 0, ±1/2, 1 or the weights 0, +1 in g.

Proof. Let xeg. Then x — xr + q where x' e g/ and q e q. Since

8i c g' we can assume q = qQ + q1/2 + g_1/2 where qλ e q Π g*. We also

write xr = Σ χ ί

(1) p(jc9e
taΔJex) = p{jc9e

tΛ&Jexΐ).

Proof, From [6; Corollary 4.22] we know p(jc, g1/2 + g_1/2) = 0. We also

have p(jc, g0) = 0. Hence p(jc, Wx[ + Wx[/2 + ΨxL,l2 + Wx'o) = ^jfc, Wxί)

where ψ = β ί a d j c.

Decomposing x[ further into weight vectors of adjc we get x[ = ^co]
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y:v2] and

(2)

From this we derive, using [7; chap. Ill, Lemma 9]

(3) p(etaΛjeu, et&d3cv) = aeι + b.

In particular, we obtain from this for the weight spaces g w of L = Re (adjc)

in g:

(4) />(g M , g M ) = 0 i f λ + μ Φ θ , l .

Next we prove (that after an inessential change of j)

(5) j βw c g™ if * =£ 0, ±1/2, ± 1 , 3/2.

Proof. From the integrability condition and gx = tii we get as usual

j g w c g w + g'. Hence for x e g w we have jx = y + z where y e g w and

2;eg7. We note that λ + {0, ±1/2, 1} e {0, 1} implies λ e {0, ± 1 , ±1/2, 3/2}.

But we have excluded these values for λ, whence /o(gw, g7) = 0. In par-

ticular 0 = p(x, z) = p(jxjz) = p(y + zjz) = p(z,jz). Hence zeϊ. But then
ygw C gc;] + ϊ and the assertion follows.

Since 2λ Φ 0, 1 if λ φ 0, ±1/2, ± 1 , 3/2 and k c 3C0] we obtain from (5):

(6) gw = 0 if I Φ 0, ±1/2, ± 1 , 3/2.

Using (4) we prove as in [6; Lemma 4.25]

(7) mM C g w + g/[1] + g'[0] for all neZ.

Now we can repeat the proof of [6; Lemma 4.30] and obtain

( 8 ) GC 3 / 2 ] = 0 .

Finally, the argument of [6; Lemma 4.26] is applicable in our situation

and yields

(9) — gc~1] + gco] + £C1] is a ./-invariant subalgebra and

= ( r Π g ) + j(τ Π g) + ϊ.

We consider the two possibilities g = g or g Φ g. In the latter case

we can apply the induction hypothesis and obtain gc~1] = 0 (and from this

the assertion). If g = g, then we have again two subcases. The first,

g£-^ = 0, is exactly what we want. The second case, c$[~1] Φ 0, allows us

to argue as in [6; Lemma 4.32] so that the Radical Conjecture holds in
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this case. But then jc does not have the eigenvalue —1 in g, so that

this case actually does not occur. This proves the claim.

3.7. By the result of the last section we can assume that aaj(d3 + d,)

and adj(d2 + d0) have only the (real) eigenvalues 0, ±1/2, 1 in g. More-

over, these weights occur in the eigenspaces of ad/0 in the spaces g,. In

the proof of the last section we have also seen that for g[0] + gci] the

Radical Conjecture holds, where g[1] is defined for jc as in 3.6. We can

assume g[1] + gc~1/2] ψ 0,

The following argument is a simplification of a previous version of

the proof. We use ideas of K. Nikajima.

First, it is easy to see that JQ1/2 is invariant under je. Hence jqί/2 —

O51/2)Πg1/2 + (jfgi/2)ng-1/2 and g1/2 = u1/2 + ft>1/2, where u1/2 = {x e g1/2, jx e g_1/2}

and ίυ1/2 = {xe g1/2, jx e g1/2}.

A direct computation shows that tυ1/2 is invariant under jg1# There-

fore jgi + ΪΌ1/2 + Gi is a Kahler algebra of domain type. In particular for

d = c?3 + ĉ  and c2 = d2 + rf0 we know that jc^ jc2 have only the eigenvalues

0 or 1/2 on to1/2 and the sum of their eigenvalues adds up to 1/2.

Next we consider u1/2. We know ju1/2 C g_1/2 and ./g_1/2 C g_1/2 + g'.

From this it follows u1/2 C gί/2, whence u1/2 = [e,ju1/2] C u1/2.

Since u1/2 C n1/2 we know that every h1/2 e ζ1/2 — gi/2Πζ has a non-zero

component in lυ1/2. This implies that 5 (Ί gξ/ ί̂Ci) ^ Omodn for d or for c2.

If 5i/2 Π gcl/2](Ci) ^ 0 mod n only for one of the idempotents c1? c2, then denote

by c the other idempotent. If this space is nontrivial for cx and for c2,

then choose c = cx.

We consider the Kahler subalgebra g = g[0](c) + g[1](c); as mentioned

above we know that for this algebra the Radical Conjecture holds. Since

e — c e Q we can form the weight space decomposition of g relative to

j(e — c). From our construction it follows that there exists a semisimple

subalgebra % of g such that ϊ C gco](β — c) and ζ Π g[1/2](e — c) ^ 0 mod rad g

holds. But by the Radical Conjecture this is not possible. Hence we

have shown

dz + d1 = 0 or d2 + dQ = 0.

3.8. We refine the description of f0 = jd + tQ + w0. We know that t0

is a linear combination of elements of type jqi9 where qt is an idempotent

of t0, to = ΣadQi- Since [/0, q{] atqu we have αf e {0, ± 1 , —2} by 3.4.

If at = —2, then there exists xec^ such that qt = (ad/_1/2)
2x. Then qt e n.
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Since e e gt is the maximal idempotent in n, this case cannot occur.
Hence

LEMMA. £O = jqx — jq2 where qt are idempotents in t0.

3.9. In this section we want to prove c?3 = 0. Otherwise (ad/_1/2/d3

en_1/2 is an eigenvector of f0 for the eigenvalue —3. We note that as

in 2.9 we get g0 = 3 + j ^ where ^ = {xeg0; [x, e] = 0} is j-invariant. Since

Qi, Q2> woe$ it is easy to see that the Kahler algebra generated by ql9 q2f

w0 acts symplectic on the abelian Kahler algebra to = n_1/2 + jn_1/2. Note

jn_1/2 = [e, n_1/2]. Therefore, jqx and jq2 have only the eigenvalues 0, ±1/2

on to and wQ has no real eigenvalues on to. Next we consider the elements

jd3 and j(d3 + dj). We know that they leave the flat part of g' invariant

and have only the eigenvalues 0, ±1/2 there. Hence, fQ = 2jd3 + j(d3 + d^)

+ JQi — jq% + wo cannot have the eigenvalue —3 on n_1/2.

3.10. In this section we show d2 = 0. Suppose not, then (ad/_1/2)
2cί2 e n0

is an eigenvector of /0 for the eigenvalue —2. Let x e n 0 and write x =

«o + k + jxi where α0 is in the flat part to0 of g = g0 + gx and t0 is in the

domain part i0 of g. Notiί lυ0 + t0 c % (see 3.9). Then [/0, x] = — 2x implies

D(x) = 0 and ( j ^ — ;g2, ί0) = — 2t0, (j(2d2), jx^ = —2xλ follows, where ( , •)

denotes the product in the underlying unmodified algebra. But j(2d2)

has only the eigenvalues ± 1 , 0 in jg1? whence xx = 0. A similar argument

shows that jqt — jq2 does not have the eigenvalue —2 in t0. Hence x is

contained in the flat part tυ0 c g0 of g. But there the idempotents jd2,

j(d2 + <3Ί) and jq2 have only the eigenvalues 0, ±1/2. Hence —2 cannot

be obtained.

3.11. By the last sections we have only to consider the cases d1 = e

and d0 = e. In this section we consider the case dQ = e and fQ = wQe ΪΌQ.

This is impossible as follows from

LEMMA. Let w0 e ϊvQ such that adft)0 is semίsίmple and has only real

eigenvalues. Then adz#0 = 0.

Proof. From [7; Chap. Ill, Lemma 9] we know

(ϊ) -^p(et&dwou, etΆάwov) = ^ o , etΆdW0[u, v]).
dt

Since wQ e g0, only the component of [u, v] in g0 + gx wwill contribute to

the right hand side by [6; Corollary 4.22]. Using the induction hypothesis
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shows that only the component in g0 can contribute. But we know

[w0, a0 + jxt] = (w0, Xj) — D(a0 + jx^Wo, whence (ad M;0)
2 | β0 = 0. Since adw0

is semisimple we obtain

(2) adw0 |g0 = 0.

Therefore the right hand side of (1) is just p(wQ9 [u, v]). An integration

yields

(3) p(etadw°u, et&άw°v) = tp(w0, [u, υ]) + p(u, v).

By assumption a.άwQ is semisimple with only real eigenvalues. Let u = uXy

v = vμ be eigenvectors for adw;0. Then (3) yields eHλ+μ)ρ(u, v) = tp(w0, [u, v])

+ p(u, u). This implies

(4) p(wQ, [u, v]) = 0 f o r a l l u , v e $ .

This shows that adι#0 is symplectic on g. Moreover, [jw0, wQ] — 0 by (2).

Now we apply the proof of [7; chap. Π, Lemma 3]. Let A(x) denote the

j-linear part of adx, xeRw0 + Rjw0, and B(x) the y-antilinear part. As

in loc. cit. one shows

(5) J3(M) = JB(w0) and 2B(w0)
2 = [jA(jwQ), A(wQ)].

This yields trace B(wQ)2 = 0. Finally, since adiί?0 is symplectic, it is

easy to see that B(wQ) is selfadjoint and A(wQ) is skewadjoint relative to

{u,v} = ρ(ju, v) modulo ϊ. Altogether this implies B(wo)$ C ϊ. Thus

adu;0 = A(w0) is skewadjoint on g/ϊ, whence adκ;og c ϊ, since the eigenvεilues

of adwQ are assumed to be real. From this the lemma follows

3.12. In this section we exclude the case e — dx and f0 = je + w0.

LEMMA. The case /0 = je + w0 does not occur.

Proof. We note first that adtt>0|g0 is skewadjoint since [wo,je] = Q

and &dje \ g0 is semisimple as well as ad/0 = ad w0 + adje.

Let nm denote eigenspace for the eigenvalue λ of the real part of

adẑ o on u = g1/2 + g_1/2.

We start again from the equation

(1) - 4 - ρ(e*ad wou, eι ad w°v) = p(w0, e
ι a l w [w, υ]).

at

As before we only have to consider the component of [u, v] in g. But

https://doi.org/10.1017/S0027763000001410 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001410


RADICAL CONJECTURE 111

from above we have ad wQ | g0 = D(wQ) | g0 where D(wQ) is the modification

derivation of wQ in g0 + glβ This implies that the right hand side of (1)

is p(wQ9 [u, υ]). Therefore an integration yields

(2) p(et&άwou, et&άwov) = ta + b.

For u e u w , ι> e u w , /I + μ =£ 0 the left side grows here like eta+μ) and the

right side is polynomial. This is a contradiction. Hence we obtain

(3) p(uM, uM) = 0 if Λ + a ^ O .

From above we know that ad/0 attains only the eigenvalue 0 in go-

Hence, from 3.4 we derive that ad/0 can only have the eigenvalues —1,

2,0 in g1/2 and —2,0 in g_1/2. Since adje has the weight 1/2 and —1/2

there respectively, the real part of a.dw0 has the eigenvalues —3/2, 3/2,

— 1/2 in g1/2 and —3/2, 1/2 in g_1/2 (in the same order as above). Since p

is nondegenerate on u = g1/2 + g_1/2 we derive from (3) that the weight

spaces with opposite signs have the same dimension. Therefore dimgξ%2]

- dimgϊ/i3^ + dim gLl%2] and dimg<2

2 = dirngf3/^ = dimg^ 2 = d i m g ^ where

we have used 3.4 and the notation g^ for the eigenspaces of ad/0 in g*.

But then, again by 3.4, we have 0 = dim gξ/"2

3/2] = dimg{^1} = dimgίυ = dimgt.

This is a contradiction, proving the lemma.

3.13. In this section we start to look at g0 more closely.

Using the induction hypothesis we see that ΪΌ0 + ϊ and fa + t0 + ϊ

are subalgebras of g0, to0 + ϊ is j-invariant. By 1.4, we can even assume

(after an inessential change of j) that [ϊ, ft)0J c tυ0 holds. We can write

ϊ = ϊα + ϊ0 + ϊj such that ϊj + y'gj and ϊ0 + t0 are subalgebras where ί* does

not contain any ideal of the corresponding algebra. Moreover, we can

assume that [ϊ0, ϊ0 + t0 + ϊx + jgj = 0 holds. This implies that (fx + jg) +

(ϊo + to) contains a maximal noncompact semisimple subalgebra ζ0s of g0.

We can assume that a Cartan algebra of ζ0s is contained in the span of

the jc, c a minimal idempotent of t0 + gx + jg^ From this it is easy to

derive that hOs is contained in the subspace ζ0 of the maximal semisimple

subalgebra I) = ζ_1/2 + ζ0 + ζ1/2 of g considered in 3.3. Clearly we have

ΐjo, = WosΘΨos where ΐ)°0s C Ϊ 0 + t0 and ψ0s C ϊ , + fa.

Assume t> = [ζ_i/2, §1/2] Π (ϊi + fa) contains a nontrivial, noncompact

simple subalgebra §". We can assume that ξ" is maximal in t> and an

ideal of t). Then there exists a simple ideal ψ c \ V = 5'_1/2 + Vo + 5ί/2

satisfying ίj" c 5$ and §'±lβ Φ 0. Since ζ 7 / ^ 0 we can choose /0 6 5o so
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that it has a nontrivial component f" in ή". But we have reduced the

discussion before to the case /0 = λje + jq' + wQ where λ = 0,1, q' e10,

w0 e ΪΌ0. This shows that f0 commutes with ψ on QU whence f" = 0. This

is a contradiction and implies that ψ0s commutes with β_1/2, §in] and with

ζ-i/2 + W Moreover, β_1/2, ϊj1/2] c ϊ0 + t0 + ϊ holds.

3.14. We continue investigating g0 by considering rad(g0).

First we prove

LEMMA. rad([g0, β0]) c nil (a).

Proof. The maximal semisimple subalgebra ϊ) under consideration can

be written as sum of ideals ϊj = § * θ | where §* = ζ_1/2 + β_1/2, ϊh/2] + §i/2

By construction, K_1/2, ϊ)1/2] + ζ C g0 and p)_1/2, ζi/2] = 5o + δ is a reductive

Lie algebra with center g and semisimple part ζ£. It is clear that g0 =

5 Π 8o + (rad(g))0 holds, where (rad(g))0 = g0 (Ί rad(g). Therefore rad(g0) =

3 + (rad(β))0 and [g0, β0] = % + ζ + [g0, (rad(g))0]. Since ζj + 5 is semisimple

and fc> = [g0, (radg)0] is a solvable ideal, we have t) = rad([g0, go]) Clearly,

t) C nil(g). Hence the claim.

3.15. We had chosen n to be maximal in r. Therefore, since [nil(g), r]

ξ ΐ is an ideal of g, we c a n — a n d will—assume that n 3 [nil(g), r]

holds.

Moreover, if x is an element or a subspace of x which is invariant

under the family b of endomorphisms chosen in 3.3, and if u(x) is the

ζ-module generated by x, then u(x) + n c x is an ideal of g and x = n(x)

+ n follows.

3.16. To complete the proof of this "Case 3" we need detailed

information on t0 + ϊ. We recall that, by the induction hypothesis, t0 + ϊ

is a ./-invariant subalgebra of g0 which corresponds to a homogeneous

Siegel domain.

LEMMA. nil(t0 + ϊ) c rad([g0, g0]) c nil(g).

Proof. It is clear by 3.14 that we only have to prove the first inclu-

sion. Since nil (t0 + ΐ) is invariant under modification derivations and

since the nilradical does not change when considering the algebraic hull

of g0 + βi, we can assume that g0 + gx is algebraic and ft>0 + t0 is split

solvable. But then [ϊ, ϊυ0] c tt>0

 a n d nil(t0 + ϊ) is a solvable ideal of g0.

Therefore nil(t0 + ϊ) c rad([g0, g0]) as claimed.
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3.17. An application of the last section yields

LEMMA. t0 corresponds to a symmetric tube domain.

Proof. Let q be the maximal idempotent of t0. Then u = g0 + qt splits

into Uj + u1/2 + u_1/2 + u0 relative to jq where ^ +JQX C u0. Set rtt = ΐ ί l π.

We have seen in [6; Lemma 4.26] that u = xu + jxu + ϊ holds. Clearly

xM = Θ(Oa where (xu)λ = xu (Ί uλ. We can use the proof of [6; 4.10] and

obtain ut = (xu\. Moreover, since jn_1/2 = [q, u_1/2], 7*u_1/2 C (xu)1/2 holds.

Therefore, if t0 Π u1/2 Φ 0, then t0 (Ί (rα)1/2 Φ 0. But since t0 + u1/2 C nil(t0 + ϊ)

this implies [j(t0 Π (O1/2), t 0Π(O 1 / 2] c [nil(to + k)9 xΠq0] C [nil(g), x] C n by

3.15 and 3.16. Therefore nΠu! # 0. But then 1̂  contains an idempotent

which is already contained in n. This is a contradiction to the choice

of e. Hence t0 Π u1/2 = 0. This proves that t0 corresponds to a tube domain.

To finish the proof it suffices to show that (t0 + ϊ) Π u0 is reductive.

But otherwise t) = nil(t0 + ϊ) Φ 0. Since t) is invariant under all jυi9 vt

a minimal idempotent of t0, we obtain b = Θ \>i$ where (oίj = (t0)^. Note

[bij9 u j c [nil(g), r] c n by 3.15 and 3.16. Finally, if &<, ̂  0, then it is

easy to see that [bip u j c n contains an idempotent of n, again a con-

tradiction. This proves the lemma.

3.18. Let ϊj = ϊ ) * 0 ζ where ϊj* = ϊj_1/2 + R}_1/2, ζ1/2] + ζ1/2 and ζ c g0 is

an ideal of ζ. We set ζ? = ϊj* Π fl^.

LEMMA. Let % be a simple noncompact summand of !j satisfying

% c to + ϊ. TΛerc

a) f̂  is ίΛe noncompact part of ζ Π (t0 + ϊ).

b) ξ* Π So &*s reductive with compact semisimple part

c) t0 corresponds to the irreducible symmetric tube domain associated

with %.

Proof. Denote by p the ideal of i0 + ϊ associated with fj*. Then

p = p! + pQ where pi C r , f 0 D jpt and p! is an fjί-module and invariant under

b. Moreover, ζz acts irreducibly on pt and trivially on all other ideals of

t0 + ϊ. Finally, ξ commutes with ήf for ^ = 0, ±1/2 and [ί)f, p,] c fc.

Set X = E ffiβlB.t, , Rtr> M . ] where e< e {±1/2} and r > 0. Then

X is an ζ-module and l e t . Since pί C X we have X ςzί n and x = n + X

follows. Clearly, X = X_1/2 + Xo + X1/2 + ^ where X, = XΠ & and Xo

corresponds to the summands satisfying εί + + εr = 0. Since fj* com-

mutes with 5±1/2 = 5ίi/2, Xo is a sum of irreducible ζ rmodules isomorphic
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tO p t .

Next we note that n ΓΊ Qo C ίυ0 + jfβi holds. Otherwise there exists

some w e n Π δo, n = α + t + jx, where a e ft>0, a; e gx and 0 f̂c £ e t0. It is

easy to see that we can even assume t e (to\ where (to)fc, k = 0, 1/2, 1,

are the weight spaces in t0 of a maximal idempotent of t0. Since n is

invariant under all Re(adyc), c a minimal idempotent in t0, we can even

assume n Ω (to)i = 0. But now it is easy to derive that n contains a

minimal idempotent of t0. This is a contradiction since e was chosen

maximal in g'.

Now suppose R = Re(adjc) where c is the maximal idempotent of

some summand t> of t0 + ϊ which is different from the one associated with

%. Then Kί)±ί/2 C ζ±1/2 by our choice of ζ (see 3.3) and Rpx = 0. Hence

RX c X. Since R and adζ< commute, RX is also an ξΓmodule. Moreover,

the eigenspaces X^ of R in Xo are ξrmodules. By the remark above

they are even a sum of modules isomorphic to plm Therefore, since

XP C t), XP = 0. This shows that r = X + n has no component in ift).

But we have seen in the proof of 3.17 that r Π i?b φ 0 holds. This is a

contradiction, proving the lemma.

3.19. We consider p — t0 + ϊ more closely. First we split p = ®ip0

+ ϊ0 where each $ corresponds to an irreducible symmetric tube domain

and ϊ0 is an ideal of p contained in ϊ. Hence tp = ipQ + tpx and tpx contains

a maximal idempotent pt of tp.

Let iψ = Λ_1/2 + $? + î/2 be a simple summand of ζ*. Then (^1/2, *ϊj_1/2)

carries naturally the structure of a simple Jordan pair [11; chapter II].

Using a Cartan involution of this Jordan pair [12; §5], we even get the

structure of a compact Jordan triple system on 7 = $ι/2 [12; §5]. Then

^0* is the "structure algebra" of V.

LEMMA. The Jordan triple V has rank V < 1.

Proof. Suppose Vhas rank >2, then there exist at least two minimal

orthogonal idempotents υ19 v2 of V. Using the Peirce decomposition of

V relative to υl9 v2 it is easy to see that gl(2, R) c M such that its off-

diagonal parts are contained in some rootspace of $f (relative to some

maximal jR-split toral subalgebra). We can choose (different) subalgebras

sl(2, R) of I) so that the corresponding Cartan algebras are spanned by

/o, f'o and /0 + fί which corresponds to the matrices En = diag{l, 0},

E22 = diag{0, 1} and E = diag{l, 1}. These facts can be derived easily from
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[15; IV, §2]. Since f0 and f'o have only the eigenvalues 0, ± 1 , on tp and

since gl(2, R) splits into rootspaces of 4ήjf it is easy to see that there

exist minimal idempotents cu cz in tpx such that fQ = λje + jcx — jc2 — jq

+ r, /o = λje + jc2 — jcλ — jg + r', where λ e {0,1}, q = p* — d — c2 and r'

acts trivially on fp le Since /0 + f'o has also only the eigenvalues 0, ± 1

on ipu λ — 0 follows. Similarly we get q = 0. This implies in particular,

that the cone corresponding to tp has rank < 2 . But then /0 + f'Q cen-

tralizes, JE)? whence f0 + /£ has only the eigenvalues ± 2 on $±1/2. Moreover,

ad(/0 + fo)\ipi = 0 and there exists a k such that ad(/0 + fo)\uPi Φ 0. We

recall that ad(/0 +/o) has only the eigenvalues 0, ± 1 in g0.

Consider the vector space Ό spanned by "monomials" of type

ίn^et, Wε2, -9iPi]- ' ], where rk is arbitrary, εt = ±1/2 and i is fixed.

It is easy to see that U is an ^-module and invariant under 6. Moreover,

/0 + /o has only the eigenvalues 0, ± 2 on U. Hence ad(/0 + f'0)\ UΓ\Q0 = 0.

This implies that U has no component in kpu if ad(/0 +/o)|*Pi =̂= 0. As

in the proof of 3.18 we consider r = U + n and obtain a contradiction,

since kpx C r. This proves the lemma.

3.20. We continue the investigations of the last section. We assume

that ζ has a simple subalgebra $ = ^_1/2 + ^ + $1/2 such that ^ 0 has a

noncompact simple subalgebra. We have seen in the last section that

V = ίϊh/2, considered as Jordan triple, has rank V = 1.

V is said to be of "algebra type" if there exists some subalgebra

sZ(2, R) of ^ such that the corresponding f0 has only the eigenvalue 2 on

flj1/2, - 2 or ^_1/2 and 0 or ^ 0 .

LEMMA. V = $ι/2 is of algebra type.

Proof. Suppose this is wrong, then our assumptions imply that there

exists a subalgebra s/(3, R) ^ ^ C tή such that I)' = E)'_1/2 + ήί + ϊ)ί/2 where

(we may assume w.r.g) V-^^{(°a I); aeR*}, « s {("f ( A ) Jj), Ae

gl(2, R)>, ζί/2 = jirv Q ); 6eJ?2>. Moreover, we can assume that the

rootspaces of s/(3, R) are contained in rootspaces of <§ (relative to some

maximal /?-split toral subalgebra). This follows from [15] and [12; §3.2].

We consider the two copies of s/(2, R) inside ϊ)' = s/(3, R) spanned by

/-i/2> /o> Λ/2 and /_1/2, /o, Λ/2 respectively, where one has the following corre-

spondences: /1/2 «-• (1, 0), /1/2 ^> (0, 1), /_1/2 <-* (1, 0)*, /_1/2 <-> (0, 1)', /o = [A/2, f-i/z]
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«-»diag{l, — 1, 0}, fo = [fί/29 f_1/2] <->diag{l, 0, —1}. Moreover, we know that

the subalgebra 5/(2, R) C % acts on a selfdual cone in $. We may assume

that it acts in the natural way on a three dimensional subspace H of

tp realized as 2 X 2 symmetric matrices. We denote Cj = diag {1, 0}, c2 =

diag{0,1}, x12 = ί -, Q] eH. Since f0 and fQ are selfadjoint (with integral

eigenvalues) we can label elements in g by the pair of eigenvalues cor-

responding to /0 and fQ respectively. We also note that fQ and fQ have

only the eigenvalues 0, ± 1 , in g0. Thus we may assume that cλ belongs

to (1, -1) , c2 to (-1,1) and x12 to (0, 0).

A straightforward computation in sl(S, R) shows [/0, /±1/2] = ±2/ ± 1 / 2 ,

[fo, f±iβ] = ±Λ/2, and [/o, /±i/2] = ±/±i/2, [fo, f±m] = ±2/ ± 1 / 2 . Moreover, for

x — [f_1/2, f1/2] we have [x, f-ί/2] = 0 and [x, c2] = 0. The eigenvalues of

y = [fι/2, c2] are (1, 2). Since c2 has eigenvalue — 1 relative to /0, y Φ 0.

Also note that y has eigenvalue 2 for fQ, whence [f-i/2,y]φθ and

[f-i/2, [Λi/2, y]] 9̂  0. But [/:_1/2,3
/] = [Λi/2, [/i/2, C2]] = [X, C2] + [f1/2, [f_ί/2, C2]]

= [A/2, [(-1/2, c2]], hence [f_1/2, [/_1/2,^]] = [f-m, [fm, [f-m, c2)]] = [x, [/_1/2, c2]]

+ t/i/2, [f-i/2, [f-i/2, c2]]] = 0, a contradiction. This proves the lemma.

3.21. By the results of the last sections we know that for each

simple summand ^ = ^_1/2 + ^ 0 + Aβ of ϊj, ^ ± 1 / 2 =£ 0, on the space V= ^ 1 / 2

we obtain naturally the structure of a simple Jordan triple of algebra

type and of rank 1. This implies [14; Lemma 2.1] that V is isomorphic

to a Jordan triple of a quadratic form [Rn; Id], n > 1. Moreover, in all

these cases the "structure algebra" ^ 0 = [$-iβ, Aiβ] is isomorphic to

R®iϊ where tϊ = ϊf] J£)o [13; § 5]. It is easy to see that tϊ = 0 if and only

if Λ = sl(2, R).

Finally, in all the cases except [R; Id] above, the Jordan triple C is

naturally a subtriple of V.

3.22. As a corollary of the last section we see that the noncompact

part of B-i/2, §1/2] is also the center of this Lie algebra. In particular, a

"/o" a s considered before, contained in R_1/2, I)1/2], commutes with ζ Π go-

Therefore such an /0 has only the eigenvalues 0, ± 2 on Ij (see also Lemma

3.20). Moreover, by 3.11 and 3.12 we can assume that /0 has a non-

vanishing "g-part".

LEMMA. /O = /Ijβ + jqλ — jg2 + α;0, where λ e {0,1}, qt is a sum of max-

imal tripotents of irreducible factors of t0 and qί + q2 is the maximal
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ίdempotent of t0.

Proof. Suppose there exists an idempotent 0 Φ c e t0, [/Ό> c] = 0, where

/0 e sZ(2, R) = Rf-1/2 + Rfo + Rf1/2. Let U be the ^-module generated by c.

It is easy to see that fQ has only even integral eigenvalues on U Π Go-

Hence [/o, U Π g0] = 0. As before we consider r. = n + U and see that

no element of r has a component in Re(adi/g)t0. This is a contradiction

since [Re(adjg)t0] Π x ^ O as shown in 3.17 and the assertion follows.

3.23. In this section we reduce further the possibilities for ϊj.

LEMMA, ψ = ϊj_1/2 + [Ij_1/2, ϊj1/2] + ί)1/2 is simple.

Proof. Suppose there exist different simple summands $ and 2ζ of ή*.

By 3.20 we know that these Lie algebras have real rank one. Let fl9 f2

be corresponding elements "of type /0". Then, by Lemma 3.22, ft = λje

+ jq'i + wOi for £ = 1, 2. Since we can assume that also /Ί + /2 is "of type

/o", ad(/Ί + f2) has only the eigenvalues 0, ± 1 in g0 and 0 or 1 in βj.

But Λ + /2 = (^ + Λ)./e + ;(gί + ^D + (Woi + 0̂2) and q[ + q'2 = 0 follows.

The remaining case f1+f2 = λ'je + w'Q was already excluded in 3.11 and

3.12. This proves the lemma.

3.24. From 3.17 we know that t0 corresponds to a tube domain.

Hence t0 = u + u where u C r. By 3.18, if t0 + ϊ contains a noncompact

semisimple ideal of ΐ), then u corresponds to an irreducible cone. Other-

wise all occuring cones are one dimensional by 3.22.

LEMMA. t0 corresponds to an irreducible symmetric tube domain.

Proof. Let c be the maximal idempotent of an irreducible summand

of t0. By the remarks above we can assume that the corresponding cone

is one dimensional. Since [ζ0, c] c Re we see that U = Σ [ϊjei[ [ΐ)ε, c] •],

εt = ±1/2, is an ^-module and invariant under b. We recall ϊj = §* + ξ

where ψ = ζ_1/2 + R_1/2, ή1/2] + ζ1/2 and ζ c g 0 . Moreover, by 3.23, ψ is

simple. Since i? = Re(ad./cO leaves ζ invariant by construction 3.3, we

see that for every idempotent & of u the derivation R of ή is s/ for some

value s on ζ1/2 and then — si on I)_1/2. Suppose that also L/V, c] = 0 holds,

then [jV, t/ Π go] = 0. Therefore r = n + U has no component in Re'.

But e ' e u c t , a contradiction.

3.25. The above considerations restrict the possibilities for £)* = \l2

+ R)-i/2> ̂ 1/2] + §1/2 quite a bit. But we can even show
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LEMMA, ψ ^ sl(2, R).

Proof. Suppose this is wrong. Then from 3.21 it follows that sZ(2, C)

aψ. (Since C is a subtriple of V this follows from [12; §3.2].) More-

over, the rootspaces of sZ(2, C) are contained in rootspaces of ψ (relative

to some maximal JR-split toral subalgebra). We choose /0 for the canon-

ically embedded sl(2, R) c sl(2, C). From 3.22 we know that f0 is of type

/o = λje + εjq + wQ, ε = ± 1 . Therefore, f0 has the eigenvalue 0 on ίυ0 +

jn + ϊ + j Q i and the eigenvalue ε on u. We also note, that f0 has on

ϊ)±1/2 the eigenvalue ± 2 . Let U denote the ϊhmodule generated by u. It

is easy to see that [§a, [ζα, u]] = 0 and ββ, β_α, u]] C u for a = ±1/2. This

shows that U= u + ffi*, u] holds. Let β_1/2, ζ1/2] ^ ΛΘϊ*, where ϊ* c ΐ.

Then [ϊ*, u] = 0 since u is either one-dimensional or it is associated with

some ideal 5^zg0 of ζ. Let Wd U be an irreducible sl(2, C)-submodule of U.

Then W=W0+Wa where W, = W Π Ba- Since /• e sZ(2, C) and WQdu, W

is not a trivial representation. Hence W = C2. The subalgebra b =

Cdiag{i, — ί} of sZ(2, C) corresponds to a subalgebra of ϊ*. Considered

as subalgebra of sl(2, C) it acts non-trivially on Wo, but as subalgebra

of ϊ* it acts trivially on Wo c u. This is a contradiction.

3.26. From 3.24 we know that the cone C corresponding to t0 is

irreducible. Moreover, C is not one-dimensional only if it is associated

with an ideal ζ C g0 of ζ. In this case we set ϊ = f) Π ϊ. Then ϊ is

maximal compact in %

LEMMA. It suffices to consider the case where C is one-dimensional.

Proof. Since ψ ^ sZ(2, R), §a = 2?/α + bβ where bβ c radg, α = ±1/2.

Therefore fe_1/2, g1/2] C i?/0 + nilfe). We also note that g0 = ίΌ0 + t0 +781

is a solvable subalgebra of go> So + ϊ = βo It is easy to verify that g =

9-i/2 + So + fli/2 + 9i is a Kahler subalgebra of g satisfying g + ϊ = g.

Since g0 is solvable, the maximal semisimple subalgebra of g is ψ = sl(2, R).

In particular there is no ideal of Ij contained in g0. Therefore, applying

the previous sections to g shows that we can assume that t0 corresponds

to a one dimensional cone.

3.27. From 3.25 we know ψ = sZ(2, R). Let f0 denote the canonical

generator of the Cartan subalgebra of ψ. Then /0 = λje + εq + wQ. From

3.26 it follows that we can assume u = Rq. Moreover, as in the proof

of 3.25 we see that for the ζ-module U, generated by u we have U =
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RQ + R[fi/2,q], if e = - 1 and U = Rq + 2?[/_1/2, q], if e = 1. We also

know x = U + n and g = g' + U + jU. Note that (g1/2 + g_i/2) modulo

(sί/2 + 781/2) is at most two-dimensional.

In the following sections we will exclude the four possibilities for

f0: λ = 0,1, ε = ± 1 .

3.28. Since g/g' is of low dimension it is natural to consider some

of the cases ĝ  = gϋ.

LEMMA. The case g1/2 = gϋ does not occur.

Proof. Suppose g1/2 = gί/2. Then g1/2 = u1/2 + ft>i/2, where u1/2 and lυ1/2

are defined as in 3.7. Recall u1/2 — jn_1/2 = [e, n_1/2] C n, whence —in g'—

[ft>i/2, u1/2] = 0. Under our assumptions we also know that u1/2 is the

bilinear kernel of p restricted to g1/2. The closedness condition for p

implies that ίυ0 + t0 leaves u1/2 invariant. From this and the integrability

condition it follows that to0 + ί0 acts symplectically (in the sense of [7; § 6])

on gί/2/u1/2. Therefore ίυ0 has only the (real) eigenvalue 0 and jq has

only the (real) eigenvalues 0, ±1/2. Hence, the eigenvalues of/0 on g1/2

are λ/2 and λ[2 ± ε/2. It is easy to see that for λ — 0,1 and ε = ± 1 the

eigenvalue 2 does not occur. But then J)1/2 = 0, a contradiction.

3.29.

LEMMA. The case fQ = λje + jq + w0 does not occur.

Proof. By 3.28 we can assume g1/2 Φ g{/2. Since, by 3.27, (g1/2 + g_1/2)

modulo (gί/2 + g'_i/2) is at most two-dimensional, we know g_1/2 = g'_1/2 +

Rv-lβ. In particular /_1/2 = ju1/2 + bv_1/2 for some uί/2 e u 1 / 2 e n , beR. This

implies ρ{juU2, uί/2) = ρ(f-ίf2 — bv.1/2, u1/2). We want to show that this

expression vanishes. Then uι/2 = 0 and /_1/2 e ^ _ 1 / 2 C r Cnil(g), a contra-

diction. To see that ρ(juί/2, uί/2) vanishes we note that fQ has the

eigenvalue —2 on /_1/2 and —1 on t)_1/2. In the situation under considera-

tion /0 can only have the eigenvalues 2, —1, 0 on g1/2. We note that

(1; + μ)p(x%2, n$) = p{[L x'%1 rφ + p(x%2, [/o, n$\) = p(f0, [x%2, n$\)

holds. If n[% e n, then [x%2, n[%] e n(

o

v+μ). This expression vanishes if

v + μ Φ 0 as shown in 3.18. Therefore ρfa%2, nίf2) = 0 if v + μ Φ 0. This

applies in particular to v = — 2, — 1 and μ — 0, — 1. To finish the proof

of this lemma it suffices to show n[% = 0. But if n[% Φ 0, then also

0 Φ [/_1/2, [f-1/2, n[%]] C π(_i/J. To see that this is impossible we consider
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the space t> = n_1/2 = ;n_1/2. Since yn_1/2 = [e9 n_1/2] we see that b is in-

variant under lυ0 + t0. It is easy to see that the representation of ίυ0 + t0

on b is symplectic. Therefore jq has only the (real) eigenvalues 0, ±1/2

and w0 only the (real) eigenvalue 0 on t>. Thus f0 cannot have the eigen-

value — 2 on t). This contradiction finishes the proof of the lemma.

3.30. In this section we finish the proof of "Case 3" by showing

LEMMA. The case f0 — λje — jq + wQ does not occur.

Proof. By 3.28 we can assume g1/2 Φ gί/2. We also know U = Rq + Rvί/2

and Q = Q'+U + jU. In particular g_1/2 = g'_1/2 + R(jv1/2)_ί/2. Splitting

Vi/2 = U\p + wiβ where uί/2 e u1/2 C n and wί/2 e to1/2 (see 3.7) we see jv1/2 =

juί/2+jw1/2, hence (jvί/2)_1/2 --= ju1/2 eg'. Therefore 8-1/2 = flii/2 But then

78-1/2 = fo 9-1/2] and t) = 8-1/2 +79-1/2 is left invariant by ίυ0 + i0. From

this it follows that jq has only the (real) eigenvalues 0, ±1/2 and wQ

has only the (real) eigenvalue 0 on t). Therefore fQ does not have the

eigenvalue —2 on g_1/2 and the lemma is proven.

APPENDIX. We want to prove the following general result.

LEMMA. Let q be an algebraic Lie algebra of endomorphisms of some

vector space V and haq an abelian sabspace such that every beh is a

semίsίmple endomorphism of V.

Then there exists a maximal semisimple subalgebra § of q and an

algebraic abelian subalgebra αcradfe) that consists of semisimple endo-

morphisms such that

a) ffi,α] = 0,

b) bcHα.

Proof. We prove the assertion by induction on m = dim b. If m = 1

it suffices to consider some 0 Φ q 6 b. From [3, chap. VI, § 4, Proposition

18] we know that there exists a Cartan subalgebra c of q containing q.

Hence by loc. cit. Proposition 20 there exists a maximal semisimple sub-

algebra ΐ)' of q such that cf

h = ϊ)' (Ί c is a Cartan subalgebra of ϊj' and

c = c'h + (c Π rad(q)). We note that cf

h consists of semisimple endomorphisms

of V. From [3, chap. V, § 4, Proposition 5] we derive that we can write

rad(q) = α' + n where 0! is abelian, algebraic and commutes with ϊ)' and

where n C rad(q) is the greatest ideal of q consisting of nilpotent

endomorphisms. Then q = h + q + n and h + q is semisimple. We write
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n = nQ + fti where n0 is in the kernel of H = ad(/ι + α) and ^i is in the

sum ft) of the eigenspaces of if for eigenvalues Λ Φ 0. Clearly, ff is

invertible on ft). We denote by n(fc) the space of β-fold commutators of

elements from n, n ( υ = n. Then n(fc) is left invariant by H. Since n(fc) 3

n(fc+D there exists some //"-invariant complement u(fc) of n(fc+1) in n(fc). We

note that for every eigenspace Όλ of H we have )oλ Π n(fc) = fy Π u(fc) +

t),Πn( fe+1). We write n0 = ug> + nί2) and 7̂  = wί1} + nί2); then a(1), rc<2)

both are in the kernel of H and H is invertible on u(1) Π ft). Let A2 =

expSidiH-'u^). Then A(Λ + α + n) = Λ + α + n - [ Λ + α + n, H^u^]modn(2)

== A + a + uP + wίυ - a ( 1 )modn ( 2 ) = h + a + ^ υ m o d n ( 2 ) . We iterate this

procedure and assume that we have found already inner automorphisms

Au .>, Ar_x so that Ar_u , A,{h + a + ή) = h + a+ u^ + zz<2) + .

+ ^ r - 1 } + n(r) for some nir) e n ( r ). We write rc(r) = ^ r ) + n[r) and < } =

uf + ri[+1\ j = 0,1, with ^ r ) e ker H and nj r ) e ft). Set Ar = exp a d ί f f - 1 ^ ) .

Then Ar, , Λ^Λ + α + ή) = Ar(h + a + u^ + + u^r~l) + n(r)) = h +

a + u^ + + u(

o

r) + u[r) - [h + α + aίυ + , f ί " 1 ^ ] modn ( r + 1 ) = h +

a + ι/oυ + + u(

0

r)modn(r+1). Hence we find an inner automorphism of q

such that W(h + a + ή) = h + a + x where [h + α, x] = 0. But W(A + α + n)

and h + a are semisimple endomorphisms and x is nilpotent. Therefore

x = 0. We set $ = W"1^ and α = W"1^. Then q = W^A + W^α e ϊj + α

and the assertion follows.

Assume now dim 6 = m and the assertion holds for dimensions less

than m. We write b = h'@Rq and apply the induction hypothesis to £/.

The corresponding subalgebras will be denoted by ψ and a'. Hence

b' = h' + a', where h' e fy, a' e a', for all bf e V and q = h + a + n where

n is as above. Since [bf, q] = 0 we have

(1) [δ',A + α] = 0,

(2) [&',n] = 0.

Now we repeat the proof above and note that in every step the inner

automorphisms At fix V, From this the assertion follows.

Added in proof. The following paper builds on the present article:

J. Dorfmeister, K. Nakajima. The fundamental conjecture for homogeneous

Kahler manifolds, Acta Math., 161 (1988), 23-70.
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