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On the Largest Dynamic Monopolies of
Graphs with a Given Average Threshold

Kaveh Khoshkhah and Manouchehr Zaker

Abstract. Let G be a graph and let τ be an assignment of nonnegative integer thresholds to the

vertices ofG. A subset of vertices, D, is said to be a τ-dynamicmonopoly ifV(G) can be partitioned

into subsetsD0 ,D1 , . . . ,Dk such thatD0 = D and for any i ∈ {0, . . . , k−1}, each vertex v inD i+1 has

at least τ(v) neighbors inD0∪⋅ ⋅ ⋅∪D i . Denote the size of smallest τ-dynamicmonopoly by dynτ(G)

and the average of thresholds in τ by τ. We show that the values of dynτ(G) over all assignments τ

with the same average threshold is a continuous set of integers. For any positive number t, denote

the maximum dynτ(G) taken over all threshold assignments τ with τ ≤ t, by Ldynt(G). In fact,

Ldynt(G) shows the worst-case value of a dynamicmonopoly when the average threshold is a given

number t. We investigate under what conditions on t, there exists an upper bound for Ldynt(G) of

the form c∣G∣, where c < 1. Next, we show that Ldynt(G) is coNP-hard for planar graphs but has

polynomial-time solution for forests.

1 Introduction

In this paper we deal with simple undirected graphs. For any such graph G = (V , E),
we denote the cardinality of its vertex set by ∣G∣ and the edge density of graph G by
є(G) ∶= ∣E∣/∣G∣. We denote the degree of a vertex v in G by degG(v). For other graph
theoretical notations we refer the reader to [2]. By a threshold assignment for the ver-
tices of G we mean any function τ∶V(G) → N ∪ {0}. A subset of vertices D is said
to be a τ-dynamic monopoly of G or simply τ-dynamo of G, if for some nonnegative
integer k, the vertices of G can be partitioned into subsets D0 ,D1 , . . . ,Dk such that
D0 = D and for any i, 1 ≤ i ≤ k, the set D i consists of all vertices v which has at least
τ(v) neighbors in D0 ∪ ⋅ ⋅ ⋅ ∪ D i−1. Denote the smallest size of any τ-dynamo of G by
dynτ(G). Dynamicmonopolies are in factmodeling the spread of in�uence in social
networks. _e spread of innovation or a new product in a community, the spread of
opinion in Yes-No elections, the spread of a virus on the internet, and the spread of
disease in a population are some examples of these phenomena. Obviously, if for a
vertex v we have τ(v) = degG(v)+ 1, then v should belong to any dynamicmonopoly
of (G , τ). We call such a vertex v self-opinioned (from another interpretation it can be
called vaccinated vertex). Irreversible dynamic monopolies and the equivalent con-
cepts target set selection and conversion sets have been the subject of active research
in recent years by many authors [3,4,6–8, 10–13].
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In this paper, by (G , τ)wemean a graphG and a threshold assignment for the ver-
tices of G. _e average threshold of τ, denoted by τ, is∑v∈V(G)τ(v)/∣G∣. In Proposi-

tion 2.2 we show that the values of dynτ(G) over all threshold assignments with the
same average threshold form a continuous set of integers. _emaximum element of
this setwas studied for ûrst time in [10],where the following notation was introduced.
Let t be a non-negative rational number such that t∣G∣ is an integer, then Dynt(G)
is deûned as Dynt(G) = maxτ∶τ=t dynτ(G). _e smallest size of dynamic monop-
olies with a given average threshold was introduced and studied in [13]. Dynamic
monopolies with given average threshold was also recently studied in [5]. In the def-
inition of Dynt(G), it is assumed that t∣G∣ is integer. In order to consider all values
of t, wemodify the deûnition slightly, but we are forced to make a new notation, i.e.,
Ldynt(G) (which stands for the largest dynamo). _e formal deûnition is as follows.

Deûnition 1.1 Let G be a graph and let t be a positive number. We deûne
Ldynt(G) = max{dynτ(G)∣τ ≤ t}. Assume that a subset D ⊆ V(G) and an as-
signment of thresholds τ0 are such that τ0 ≤ t, ∣D∣ = dynτ0

(G) = Ldynt(G) and D is

a τ0-dynamicmonopoly of (G , τ0). _en we say that (D, τ0) is a t-Ldynamo of G.

Ldynt(G) does in fact show theworst-case value of a dynamicmonopoly when the
average threshold is a prescribed given number. _e following concept is motivated
by the concept of dynamo-unbounded family of graphs, deûned in [12], concerning
the smallest size of dynamicmonopolies in graphs.

Deûnition 1.2 For any n ∈ N, let Gn be a graph and tn be a number such that
0 ≤ tn ≤ 2є(Gn). We say {(Gn , tn)}n∈N is Ldynamo-bounded if there exists a constant
λ < 1 such that for any n, Ldyntn

(Gn) ≤ λ∣Gn ∣.

_e outline of the paper is as follows. In Section 2, we show that the values of
dynτ(G) over all assignments τ with the same average threshold is a continuous set
of integers (Proposition 2.2). _en we obtain a necessary and suõcient condition for
a family of graphs to be Ldynamo-bounded (Propositions 2.4 and 2.5). In Section 3, it
is shown that the decision problemLdynamo(k) (to be deûned later) is coNP-hard for
planar graphs (_eorem 3.1) but has polynomial-time solution for forests (_eorem
3.8).

2 Some Results on Ldynt(G)

We ûrst show that the values of dynτ(G) over all threshold assignments τ with the
same average threshold are continuous. We need the following lemma from [11].

Lemma 2.1 ([11]) Let G be a graph and let τ and τ′ be two threshold assignments to
the vertices of G such that τ(u) = τ′(u) for all vertices u of G except for exactly one
vertex, say v. _en

⎧⎪⎪⎨⎪⎪⎩
dynτ(G) − 1 ≤ dynτ′(G) ≤ dynτ(G), if τ(v) > τ′(v),
dynτ(G) ≤ dynτ′(G) ≤ dynτ(G) + 1, if τ(v) < τ′(v).
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_e continuity result is as follows.

Proposition 2.2 Let τ and τ′ be two threshold assignments for the vertices of G such
that τ = τ′. Let also r be an integer such that dynτ(G) ≤ r ≤ dynτ′(G). _en there

exists τ′′ with τ = τ′′ such that dynτ′′(G) = r.

Proof For any two threshold assignments τ and τ′ with the same average threshold,
deûne δ(τ, τ′) = ∑v∶τ(v)>τ′(v)(τ(v)− τ′(v)). We prove the proposition by the induc-

tion on δ(τ, τ′). If δ(τ, τ′) = 0, then for any vertex v, τ(v) ≤ τ′(v). But the average
thresholds are the same, hence τ = τ′, and the assertion is trivial. Let k ≥ 1 and as-
sume that the proposition holds for any two τ and τ′ with the same average threshold
such that δ(τ, τ′) ≤ k. We prove it for k + 1. Assume that τ and τ′ are given such that
δ(τ, τ′) = k + 1 and τ /= τ′. DeûneW = {v ∶ τ(v) > τ′(v)}. Let w ∈W . _ere exists a
vertex u such that τ(u) < τ′(u), since otherwise by τ = τ′ we would have τ = τ′. De-
ûne a new threshold τ′′ as follows. For any vertex v with v /∈ {u,w} set τ′′(v) = τ(v).
Also, set τ′′(w) = τ(w) − 1 and τ′′(u) = τ(u) + 1. We have δ(τ′′ , τ′) = k, and the
average threshold of τ′′ is the same as that of τ. So the assertion holds for τ′′ and τ′.
By Lemma 2.1 we have ∣dynτ(G) − dynτ′′(G)∣ ≤ 1. We conclude that the assertion
also holds for τ and τ′.

Let G be a graph and let t be a positive number such that t∣G∣ is integer. Let τ
be any assignment with average t such that τ(v) ≤ degG(v) for any vertex v. Let
d1 ≤ d2 ≤ ⋅ ⋅ ⋅ ≤ dn be a degree sequence of G in increasing form. It was proved in [10]
that the size of any τ-dynamicmonopoly of G is atmost

max{ k ∶
k

∑
i=1
(d i + 1) ≤ nt} .

_e proof of this result in [10] shows that if we allow τ(v) = degG(v) + 1 for some

vertices v ofG, then the same assertion still holds. We have the following proposition
concerning this fact.

Proposition 2.3 Let t be a positive number. Assume that the threshold assignments in
the deûnition of Ldynt(G) are allowed to have self-opinioned vertices. _en Ldynt(G)
can be easily obtained by a polynomial-time algorithm.

Proof Let d1 ≤ d2 ≤ ⋅ ⋅ ⋅ ≤ dn be a degree sequence of G in increasing form. By the
argument wemade before Proposition 2.3, we have

Ldynt(G) ≤max{ k ∶
k

∑
i=1
(d i + 1) ≤ nt} .

Let k0 =max{k ∶ ∑k
i=1(d i + 1) ≤ nt}. We obtain a threshold assignment τ as follows:

τ(v i) =
⎧⎪⎪⎨⎪⎪⎩
degG(v i) + 1 i ≤ k0 ,
0 otherwise.

Let D = {v1 , v2 , . . . , vk0}. It is clear that (D, τ) is a t-Ldynamo of G.
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In [10], it was proved that there exists an inûnite sequence of graphs G1 ,G2 , . . .
such that ∣Gn ∣ → ∞ and limn→∞ Ldynє(Gn)

(Gn)/∣Gn ∣ = 1. In the following proposi-

tion,we show that a stronger result holds. In factwe show thatnot only the same result
holds for Ldynkє(Gn)

(Gn), where k is any constant with 0 < k ≤ 2, but also it holds

for any sequence kn for which kn ∣Gn ∣ → ∞. In the opposite direction, Proposition
2.5 shows that if kn = O(1/∣Gn ∣), then limn→∞ Ldynknє(Gn)

(Gn)/∣Gn ∣ /= 1.

Proposition 2.4 _ere exists an inûnite sequence of graphs {(Gn , τn)}∞n=1 satisfying
∣Gn ∣→∞ and є(Gn)/∣Gn ∣ = o(τn) such that

lim
n→∞

Ldynτ(Gn)
∣Gn ∣

= 1.

Proof We construct Gn as follows. _e vertex set of Gn is disjoint union of a com-
plete graph Kn and n copies of complete graphs Kn+1. _ere exists exactly one edge
between each copy of Kn+1 and Kn . Set τn(v) = 0 for each vertex v in Kn and τn(v) =
deg(v) for each vertex v in any copy of Kn+1. It is clear that any dynamicmonopoly of
Gn includes at least n vertices of each copy of Kn+1 and hence Ldynτ(Gn) ≥ n2. _en
we have

1 ≥ lim
n→∞

Ldynτ(Gn)
∣Gn ∣

≥ lim
n→∞

n2

n(n + 2) = lim
n→∞

n

n + 2
= 1.

To complete the proof we show that τn
∣E(Gn)∣/∣V(Gn)∣2

→∞:

lim
n→∞

τn

∣E(Gn)∣/∣V(Gn)∣2
= lim

n→∞

(n2
+ n + 1)/(n + 2)

(n2
+ n + n(n + n2))/2(n2

+ 2n)2
=∞.

Proposition 2.4 shows that if tn is such that є(Gn)/∣Gn ∣ = o(tn), then {(Gn , tn)}n
is not necessarily Ldynamo-bounded. In the opposite direction, the next proposition
shows that if there exists a positive number c such that tn satisûes tn ≤ cє(Gn)/∣Gn ∣,
then any family {(Gn , tn)}n is Ldynamo-bounded.

Proposition 2.5 Let G be a graph and let c and t be two constants such that t ≤ c є(G)
∣G∣

.

_en

Ldynt(G) <
c

c + 1
∣G∣.

Proof Let n be the order of G. If n < c/2, then ⌈cn/(c + 1)⌉ = n, and hence the
inequality Ldynt(G) < c∣G∣/(c + 1) is trivial. Assume now that n ≥ c/2. Let d1 ≤ d2 ≤
⋅ ⋅ ⋅ ≤ dn be a degree sequence of G in increasing form and set k0 =max{k ∶ ∑k

i=1(d i +

1) ≤ nt}. As wementioned before, by a result from [10] we have Ldynt(G) ≤ k0. _e

assumption t ≤ c(є(G)/n) implies that nt ≤ (c/2n)∑n
i=1d i and hence∑k0

i=1(d i + 1) ≤
(c/2n)∑n

i=1d i or equivalently

(2n/c) ≤ (
n

∑
i=1

d i)/
k0

∑
i=1
(d i + 1).
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Assume on the contrary that k0 ≥ cn/(c + 1). _en

2n

c
≤ ∑

k0
i=1 d i +∑n

i=k0+1 d i

(∑k0
i=1 d i) + c

c+1
n
≤ (∑

k0
i=1 d i) + n2

c+1

(∑k0
i=1 d i) + c

c+1
n
.

_erefore,

2n − c

c

k0

∑
i=1

d i ≤ n2

c + 1
−

2n2

c + 1
.

_e le�-hand side of the last inequality is nonnegative, but the other side is negative.
_is contradiction implies k0 < cn/(c + 1), as required.

3 Algorithmic Results

Algorithmic results concerningdeterminingdynτ(G),with various types of threshold
assignments such as constant thresholds or majority thresholds, were studied in [4,
6,7]. In this section, we ûrst show that to compute the size of D such that (D, τ) is a
kє(G)-Ldynamo of G is a coNP-hard problem on planar graphs. _en we prove that
the same problemhas a polynomial-time solution for forests._e formal deûnition of
the decision problem concerning Ldynamo is the following, where k is any arbitrary
but ûxed real number with 0 < k ≤ 2.

Name: LARGEST DYNAMICMONOPOLY (Ldynamo(k))
Instance: A graph G on say n vertices and a positive integer d.

Question: Is there an assignment of thresholds τ to the vertices of G with nτ =
⌊nkє(G)⌋ such that dynτ(G) ≥ d?

_e following theorem shows coNP-hardness of the above problem. Recall that
the Vertex Cover (VC) asks for the smallest number of vertices S in a graph G such
that S covers any edge of G. Denote the smallest cardinality of any vertex cover of G
by β(G). _e problemVC is NP-complete for planar graphs [9].

_eorem 3.1 For any ûxed k, where 0 < k ≤ 2, Ldynamo(k) is coNP-hard even for
planar graphs.

Proof Wemake a polynomial time reduction fromVC (planar) to our problem. Let
⟨G , l⟩ be an instance of VC, where G is planar. Deûne s = 4∣E(G)∣×max{1, 1/k}+ 14
and set p = ⌊(ks − 2)/(2 − k)⌋ − ∣E(G)∣. Construct a graph H from G as follows. To
each vertex v of G attach a star graph K1,s−1 in such a way that v is connected to the
central vertex of the star graph. Consider one of these star graphs and let y be a vertex
of degree one in it. Add a path P of length p − 1 starting from y (see Figure 1). _e

path P intersects the rest of the graph only in y. Call the resulting graph H. Since G
is planar, H is planar too.

We claim that ⟨G , l⟩ is a yes-instance of VC if and only if ⟨H, l + ⌊p/2⌋ + 1⟩ is a
no-instance of Ldynamo(k). We have ∣E(H)∣ = ∣E(G)∣+ s + p from the construction
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Figure 1: _e graph H.

of H. _en since p = ⌊(ks − 2)/(2 − k)⌋ − ∣E(G)∣, we have
p ≤ (ks − 2)/(2 − k) − ∣E(G)∣

⇒ 2p + 2∣E(G)∣ + 2 ≤ k(s + p + ∣E(G)∣)
⇒ 2p + 2∣E(G)∣ + 2 ≤ ⌊k∣E(H)∣⌋.

Also, from the value of p we have

p ≥ (ks − 2)/(2 − k) − ∣E(G)∣ − 1
⇒ 2p + 2∣E(G)∣ + 2 + (2 − k) > k(s + p + ∣E(G)∣)
⇒ 2p + 2∣E(G)∣ + 2 + ⌊2 − k⌋ ≥ ⌊k∣E(H)∣⌋
⇒ 2p + 2∣E(G)∣ + 3 ≥ ⌊k∣E(H)∣⌋.

Assume ûrst that ⟨G , l⟩ is a no-instance of VC. _en β(G) ≥ l + 1. We construct a
threshold assignment τ for graph H as follows:

τ(v) =
⎧⎪⎪⎨⎪⎪⎩
degH(v) v ∈ G ∪ P,
0 otherwise.

It is easily seen that τ ≤ kє(H) and also dynτ(H) = β(G) + ⌊p/2⌋. _erefore,
⟨H, l + ⌊p/2⌋ + 1⟩ is a yes-instance for Ldynamo(k).
Let ⟨G , l⟩ be a yes-instance ofVC._en β(G) < l+1. Assume that (D, τ) is a (kє(H))-
Ldynamo of H. _e assumption that s > 4∣E(G)∣ + 14 implies ∣D ∩ (H ∖G)∣ ≤ ⌊p/2⌋.
On the other hand, ∣D∩G∣ ≤ β(G) < l + 1. Hence, ∣D∣ < l + ⌊p/2⌋+ 1. _is shows that
⟨H, l + ⌊p/2⌋ + 1⟩ is a no-instance for Ldynamo(k). _is completes the proof.

In the rest of this section we obtain a polynomial-time solution for forests (_e-
orem 3.8). We will need some prerequisites. We will make use of the concept of a
resistant subgraph, deûned in [12] as follows. Given (G , τ), any induced subgraph
K ⊆ G is said to be a τ-resistant subgraph in G, if for for any vertex v ∈ K the in-
equality degK(v) ≥ degG(v) − τ(v) + 1 holds, where degG(v) is the degree of v in G.
_e following proposition in [12] shows the relation between resistant subgraphs and
dynamicmonopolies.

Proposition 3.2 ([12]) A set D ⊆ G is a τ-dynamo of graph G if and only if G ∖ D
does not contain any resistant subgraph.
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_e following lemma provides more information on resistant subgraphs that are
also triangle-free.

Lemma 3.3 Assume that (G , τ) is given. Let also H be a triangle-free τ-resistant
subgraph in G and e = uv be any arbitrary edge with u, v ∈ H. Let τ′ be deûned as
follows:

τ′(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τ(w) if w ∉ H,

0 if w ∈ H ∖ {u, v′},
degG(v) if w = v,
degG(u) if w = u.

_en τ′ ≤ τ.

Proof Since H is triangle-free, then ∣H∣ ≥ degH(u) + degH(v). From the deûnition
of the resistant subgraphs, for any vertex w ∈ H, one has τ(w) ≥ degG∖H(w) + 1.
Hence the following inequalities hold:

∑
w∈H

τ(w) ≥ ∑
w∈H
(degG∖H(w) + 1) ≥ ∣H∣ + degG∖H(u) + degG∖H(v)

≥ degH(u) + degH(v) + degG∖H(u) + degG∖H(v)
= degG(u) + degG(v).

It turns out that∑w∈G τ′(w) ≤ ∑w∈G τ(w), and hence τ′ ≤ τ.
By a (zero,degree)-assignment wemean any threshold assignment τ for the vertices

of a graph G such that for each vertex v ∈ V(G), either τ(v) = 0 or τ(v) = degG(v).
_e following remark is useful and easy to prove. We omit its proof.

Remark 3.4 Assume that (G , τ) is given where τ is (zero,degree)-assignment. Let
G1 be the subgraph of G induced on {v ∈ G∣τ(v) = degG(v)}. _en every minimum
vertex cover of G1 is aminimum τ-dynamo of G, and vice versa.

_e following theorem concerning (zero,degree)-assignments in forests is essential
in obtaining an algorithm for t-Ldynamo of forests for a given t.

_eorem 3.5 Let F be a forest and let t be a positive constant. _ere exists a

(zero,degree)-assignment τ′ such that τ′ ≤ t and
Ldynt(F) = dynτ′(F).

Proof Let (D, τ) be a t-Ldynamo of F. We prove the theorem by induction on ∣D∣.
Assume ûrst that ∣D∣ = 1. _en by Proposition 3.2, F has at least one τ-resistant sub-
graph, say F′. Let u and v be two adjacent vertices in F′. Let τ′ be the threshold as-
signment constructed in Lemma 3.3 such that τ′(u) = degF(u) and τ′(v) = degF(v).
Modify τ′ so that τ′(w) = 0 for every vertex w ∈ F ∖ {u, v}. It is clear that τ′ is
a (zero,degree)-assignment. _e edge uv is a τ′-resistant subgraph in F, and hence
dynτ(F) = Ldynt(F) = 1. _is proves the induction assertion in this case.

Now assume that the assertion holds for any forest F with ∣D∣ < k. Let F be a forest
with Ldynt(F) = k and let D be a t-Ldynamo of F with ∣D∣ = k. Also let F1 be the
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largest τ-resistant subgraph of F. For any v ∈ F1, set ϕ(v) = τ(v)−degF∖F1(v). By the
deûnition of resistant subgraphs, ϕ(v) ≥ 0. It is clear that dynϕ(F1) = k. We show that

there exists a (zero,degree)-assignment τ′1 for F1 such that (D1 , τ
′
1) is a ϕ-Ldynamo of

F1 with ∣D1∣ = k.
Let T be a connected component of F1. Consider T as a top-down tree, where the

topmost vertex is considered as the root of T . Since T is a ϕ-resistant subgraph in F1,
it implies that D1 ∩ T is not the empty set. We argue that D1 can be chosen in such
a way that it does not contain any vertex w ∈ T with ϕ(w) = 1, except possibly the
root. _e reason is that if w ∈ D1 ∩ T with ϕ(w) = 1, then we replace w by its nearest
ancestor (with respect to the root of T) whose threshold is not 1, and if there is no
such ancestor, then we replace w by the root. Let v ∈ D1 ∩ T be the farthest vertex
from the root of T . Let Tv be the subtree of T consisting of v and its descendants.
Obviously, Tv ∩ D1 = {v}.

Now we show that Tv is a ϕ-resistant subgraph in F1. For each vertexw ∈ Tv ∖{v},
since ϕ(w) ≥ 1 and degF1∖Tv

(w) = 0, then ϕ(w) ≥ degF1∖Tv
(w) + 1. We also have

ϕ(v) ≥ degF1∖Tv
(v) + 1. Since ϕ(v) = 1, v is the root of T and Tv = T and hence

degF1∖Tv
(v) = 0. And if ϕ(v) > 1, then degF1∖Tv

(v) ≤ 1. _is proves that Tv is a ϕ-

resistant subgraph in F1. Let v
′ be an arbitrary neighbor of v in Tv . We construct the

threshold assignment τ1 for F1 as follows:

τ1(w) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ(w) if w ∉ Tv ,
0 if w ∈ Tv ∖ {v , v′},
degF1(w) if w ∈ {v , v′}.

By Lemma 3.3, we have τ1 ≤ ϕ. Since edge vv′ is a τ1-resistant subgraph in F1, then
dynτ1

(F1) = dynϕ(F1) = k, and soD1 is aminimum τ1-dynamo of F1. Set F2 = F1∖Tv .
Let u be the parent of the vertex v. Construct the threshold assignment τ2 for F2 as
follows:

τ2(w) =
⎧⎪⎪⎨⎪⎪⎩
τ1(w) if w ∈ F2 ∖ {u},
τ1(w) − 1 if w = u.

It is easily seen that the union of any τ2-dynamo of F2 and {v} is a τ1-dynamo of F1
and also D1 ∖ {v} is a τ2-dynamo of F2. Hence, dynτ2

(F2) = dynτ1
(F1) − 1 = k − 1.

Let ϕ2 be any threshold assignment for F2 with ϕ2 = τ2. Now construct the threshold
assignment ϕ1 for F1 as follows:

ϕ1(w) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ2(w) if w ∈ F2 ∖ {u},
τ1(w) if w ∈ Tv ,
ϕ2(w) + 1 if w = u.

Because the union of any ϕ2-dynamo of F2 and {v}, forms a ϕ1-dynamo of F1 and
also for any ϕ1-dynamo P of F1, the set P ∩ F2 is a ϕ2-dynamo of F2 then P ⊈ F2.
_is result and dynτ2

(F2) = k − 1 imply that Ldynτ2
(F2) = k − 1. From the induction

hypothesis there exists a (zero,degree)-assignment τ′2 for F2 with τ′2 ≤ τ2 such that
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dynτ′
2

(F2) = k−1. Nowwe construct the (zero,degree)-assignment τ′1 for F1 as follows:

τ′1(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τ′2(w) if w ∈ F2 ∖ {u},
τ1(w) if w ∈ Tv ,
τ′2(w) + 1 if w = u and τ′2(u) /= 0,
0 if w = u and τ′2(u) = 0.

It is easily seen that dynτ′
1

(F1) = k. We ûnally obtain the desired (zero,degree)-assign-

ment τ′ for F as follows:

τ′(w) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

degF(w) if w ∈ F1 , τ′1(w) = degF∖F1(w),
0 if w ∈ F1 , τ′1(w) = 0,
0 if w ∉ F1 .

In the following proposition we show that for any forest there exists a (zero,
degree)-assignment that is zero outside the vertices of amatching.

Proposition 3.6 Let F be a forest and let t a positive constant. _en there exists a
matching M such that for the (zero,degree)-assignment τ deûned below, we have τ ≤ t
and Ldynt(F) = dynτ(F) = ∣M∣,

τ(w) =
⎧⎪⎪⎨⎪⎪⎩
degF(w) if w is a vertex saturated by M,

0 otherwise.

Proof By _eorem 3.5, there exists a (zero,degree)-assignment τ′ such that τ′ ≤ t
and Ldynt(F) = dynτ′(F). Let F1 be a subgraph induced on all vertices w, with
τ′(w) = degF(w). Let D be aminimum vertex cover of F1. Remark 3.4 implies that D
is aminimum τ′-dynamicmonopoly of F. Assume thatM is amaximummatching of
F1. We show that M satisûes the conditions of the theorem. Each edge of M forms a
τ-resistant subgraph in F. Hence dynτ(F) ≥ ∣M∣. Using the so-calledKönig_eorem
on bipartite graphs, we have ∣D∣ = ∣M∣. Consequently, dynτ(F) ≥ ∣D∣ = dynτ′(F) =
Ldynt(F). It is easily seen that τ ≤ τ′ ≤ t. _e proof is complete.

To prove_eorem 3.8,wewill need the following proposition,whose proof is given
in the appendix.

Proposition 3.7 Let G be a bipartite graph, where each edge e has a cost c(e) ≥ 0.
Let also d be a positive number. _en there is a polynomial time algorithm that ûnds a
maximummatching M in G with cost(M) ≤ d, where cost(M) = ∑e∈Mc(e).

_eorem 3.8 Given a forest F and a positive number t, there exists an algorithm that
computes Ldynt(F) in polynomial-time.

Proof For each edge e = uv of F deûne cost(e) = degF(u) + degF(v), and for each
S ⊆ E(F) deûne cost(S) = ∑e∈S cost(e). LetM be any arbitrarymatching and let τ be
a (zero,degree)-assignment constructed from M as obtained in Proposition 3.6. It is
easily seen that τ ≤ t if and only if cost(M) ≤ t∣F∣. Now, ifM is amaximummatching
satisfying cost(M) ≤ t∣F∣, then Proposition 3.6 implies Ldynt(F) = dynτ(F) = ∣M∣.
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By Proposition 3.7, there is a polynomial-time algorithm that ûndsmaximummatch-
ing M in F with cost(M) ≤ c for any value c. _en using Proposition 3.6 for given
forest F and constant t, there is apolynomial time algorithm thatûnds a (zero,degree)-
assignment τ such that Ldynt(F) = dynτ(F). From the other side, ûnding a mini-
mum vertex cover in bipartite graphs is a polynomial-time problem. _erefore, us-
ing Remark 3.4 aminimum τ-dynamicmonopoly for F can be found in polynomial-
time.

For further research, it would be interesting to obtain other families of graphs for
which Ldynamo(k) has polynomial-time solution. Also,we do not yet knowwhether
Ldynamo(k) ∈ NP∪ coNP, but our guess is that it is not.

Appendix A

We prove Proposition 3.7 using the minimum cost �ow algorithm. _e minimum
cost �ow problem (MCFP) is as follows (see e.g., [1] for details).

Let G = (V , E) be a directed network with a cost c(i , j) ≥ 0 for any of its edges
(i , j). Also for any edge (i , j) ∈ E there exists a capacity u(i , j) ≥ 0. We associate
with each vertex i ∈ V a number b(i) that indicates its source or sink depending
on whether b(i) > 0 or b(i) < 0. _e minimum cost �ow problem (MCFP) re-
quires the determination of a �ow mapping f ∶E → R with minimum cost z( f ) =
∑(i , j)∈E c(i , j) f (i , j) subject to the following two conditions:
(a) 0 ≤ f (i , j) ≤ u(i , j) for all (i , j) ∈ E (capacity restriction);
(b) ∑{ j∶(i , j)∈E} f (i , j) −∑{ j∶( j, i)∈E} f ( j, i) = b(i) for all i ∈ V (demand restriction).

In [1], a polynomial-time algorithm is given such that determines if such a mapping
f exists. And in case of existence, the algorithm outputs f . Furthermore, if all values
u(i , j) and b(i) are integers, then the algorithm obtains an integer-valued mapping
f . In the following theorem, we prove Proposition 3.7.

_eorem A.1 LetG[X ,Y] be a bipartite graphwith cost(i j) ≥ 0 for each edge i j ∈ G
and let d be a positive number. _en there exists a polynomial-time algorithm that ûnds
maximummatching M in G with cost(M) ≤ d.

Proof Construct a directednetworkH from bipartite graphG[X ,Y] as follows. Add
two new vertices s and t as the source and the sink of H, respectively and directed
edges (s, x) for each x ∈ X and (y, t) for each y ∈ Y . Make all other edges directed
from X to Y . For each edge (i , j) set u(i , j) = 1 and deûne c(i , j) as follows:

c(i , j) =
⎧⎪⎪
⎨
⎪⎪⎩

0 i = s or j = t,
cost(i j) i ∈ X , j ∈ Y .

For each vertex i ∈ X ∪ Y , set b(i) = 0 and deûne b(s) = −b(t) = k, where k is an
arbitrary positive integer. We now have an instance ofMCFP.Assume that there exists
a minimum cost �ow mapping for this instance (obtained by the above-mentioned
algorithm of [1]). Since u(i , j) and b(i) are integers, f is an integer-valuedmapping.
_erefore, f (i , j) is either 0 or 1. Let M be the set of edges (i , j) with f (i , j) = 1,
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where i ∈ X and j ∈ Y . Clearly M is a matching of size k having cost(M) = z( f ),
where z( f ) is as deûned in MCFP above.

Conversely, let M′ be any arbitrary matching in G with ∣M′∣ = k. We construct a
�ow mapping f as follows:

f (i , j) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 i ∈ X, j ∈ Y , i j ∈ M′,
1 i = s, jl ∈ M′ for some l ∈ Y ,
1 j = t, l i ∈ M′ for some l ∈ X,
0 otherwise.

_e conditions of MCFP are satisûed for f . Also, z( f ) = cost(M′). We conclude
that to obtain amatching of size k with theminimum cost is equivalent to obtaining
aminimum cost �owmapping for the associatedMCFP instance (note that k is a pa-
rameter of this instance). We conclude that in order to ûnd amatching M satisfying
cost(M) ≤ d andwith themaximum size, it is enough to run the corresponding algo-
rithm for the above-constructedMCFP instance for each k, where k varies from 1 to
∣G∣/2. Note that ∣G∣/2 is an upper bound for the size of any matching. _is completes
the proof.
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