Vol. 61 (2000) [455-458]

ON ZETA FUNCTIONS ASSOCIATED WITH POLYNOMIALS

Andrzej Da̧browski

We give direct proofs of meromorphic continuality on the whole complex plane of certain zeta functions $Z_{P, Q}(s)$ and $Z(P / Q, s)$ associated with a pair of polynomials P, Q. We calculate $Z_{P, Q}(-q)$ (q a non-negative integer) and give explicit formulas for the residues of $Z(P / Q, s)$ at poles.

Introduction

Let $Q(x)=\prod_{j=1}^{k}\left(x+\alpha_{j}\right)$ be a non-constant polynomial with real coefficients and $\operatorname{Re}\left(\alpha_{j}\right)>-1(j=1, \ldots, k)$. Let $P(x)=b_{0}+\ldots+b_{m} x^{m}\left(b_{m} \neq 0\right)$ be a polynomial of degree m with complex coefficients. Consider the Dirichlet series

$$
Z_{P, Q}(s)=\sum_{n \geq 1} \frac{P(n)}{Q(n)^{s}}, \quad\left(\operatorname{Re}(s)>\frac{m+1}{k}\right)
$$

Define polynomials $P_{i}(x)$ by $P_{0}(x)=x$, and, if $i \geq 0, P_{i}(x)=\sum_{j=1}^{i} a(j, i) x^{j}$ with $a(j, i)=\sum_{l=1}^{j}(-1)^{j-l}\binom{i+1}{j-l} l^{i}$. Let $C_{r}(i)(i, r=0,1, \ldots)$ be rational numbers defined by

$$
\left(\frac{t}{1-e^{-t}}\right)^{i+1} P_{i}\left(e^{-t}\right)=\sum_{r=0}^{\infty} \frac{C_{r}(i)}{r!} t^{r}
$$

Also put

$$
A_{j, p}^{(k)}(s)=\frac{\Gamma\left(s+p_{1}\right) \ldots \Gamma\left(s+p_{k}\right)}{\Gamma(s)^{k-1} \Gamma(k s+j)} \quad\left(p_{1}+\ldots+p_{k}=j\right) .
$$

Our first result is the following
Proposition 1.
(a) $Z_{P, Q}(s)$ has a meromorphic continuation on the complex plane with at most simple poles at $s=(m+1-j) / k(j=0,1, \ldots)$, other than nonpositive integers.
(b) For any non-negative integer q, we have

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

$$
Z_{P, Q}(-q)=\frac{(-1)^{q} q!}{k} \sum_{l=0}^{m} b_{l} \sum_{r+j=k q+1+l} \frac{C_{r}(l)}{r!}\left[\sum_{p_{1}+\ldots+p_{k}=j}(-1)^{j} A_{j, p}^{(k)}(-q) \frac{\alpha_{1}^{p_{1}} \ldots \alpha_{k}^{p_{k}}}{p_{1}!\ldots p_{k}!}\right]
$$

Particular cases treated before included: k arbitrary, $m=0$ (see [2]) and $k=2$, m arbitrary (see [1]).

Assuming $\operatorname{deg} P>\operatorname{deg} Q$, and $P(x)=\prod_{j=1}^{m}\left(x+\beta_{j}\right), \operatorname{Re}\left(\beta_{j}\right)>-1(j=1, \ldots, m)$, we define

$$
Z(P / Q, s)=\sum_{n \geq 1}\left(\frac{P(n)}{Q(n)}\right)^{-s}, \quad\left(\operatorname{Re}(s)>\frac{1}{m-k}\right)
$$

Write

$$
\frac{x^{m-k} Q(x)-P(x)}{P(x)}=\sum_{j=0}^{\infty} A_{-l_{0}-j}(P, Q) x^{-l_{0}-j}
$$

and define the numbers $B_{-r}(P, Q, i)$ by the expression

$$
\left(\sum_{j=0}^{\infty} A_{-l_{0}-j}(P, Q) x^{-l_{0}-j}\right)^{i}=\sum_{j=0}^{\infty} B_{-i l_{0}-j}(P, Q, i) x^{-i l_{0}-j} \quad(i=0,1, \ldots)
$$

We give a direct proof of meromorphic continuality of $Z(P / Q, s)$ on the complex plane, with an explicit formula for the residues. More involved proofs of this result can be found in (or deduced from) $[4,3]$.

Proposition 2.
(a) $Z(P / Q, s)$ has a meromorphic continuation on the complex plane with at most simple poles at $s=(1-r) /(m-k)(r=0,1, \ldots)$ other than zero.
(b) We have
$\operatorname{res}_{s=(1-r) /(m-k)} Z(P / Q, s)=\frac{1}{m-k} \sum_{i l_{0}+j=r}\left(\frac{1-r}{m-k}\right) B_{-r}(P, Q, i), \quad Z(P / Q, 0)=-\frac{1}{2}$.

Proofs

Proof of Proposition 1: For $\operatorname{Re}(s)>0$, we set

$$
I_{Q}(s, t)=\frac{1}{\Gamma(s)^{k-1}} \int_{E}\left(u_{1} \ldots u_{k}\right)^{s-1} e^{-t\left(\alpha_{1} u_{1}+\ldots+\alpha_{k} u_{k}\right)} d u_{1} \ldots d u_{k-1}
$$

where E is the standard simplex in \mathbb{R}^{k-1} defined by $u_{1}, \ldots, u_{k-1} \geq 0$ and $u_{k}=$ $1-u_{1}-\ldots-u_{k-1} \geq 0$.

Lemma 1. For $k \geq 2$ and $\operatorname{Re}(s)>(m+1) / k$, we have

$$
Z_{P, Q}(s) \cdot \Gamma(s)=\sum_{i=0}^{m} b_{i} \int_{0}^{\infty} \frac{t^{k s-1} P_{i}\left(e^{-t}\right)}{\left(1-e^{-t}\right)^{i+1}} I_{Q}(s, t) d t .
$$

Proof: Modify the proof of Proposition 1 in [2].
I
Lemma 2. $I_{Q}(s, t)$ has analytic continuation to an entire function of s.
Proof: See [2, p.586].
■
Part (a) of Proposition 1 follows immediately from Lemmas 1 and 2. In the proof of part (b) we need the Taylor expansion:

$$
I_{Q}(s, t)=\sum_{j=0}^{\infty}\left[\sum_{p_{1}+\ldots+p_{k}=j}(-1)^{j} A_{j, p}^{(k)}(s) \frac{\alpha_{1}^{p_{1}} \ldots \alpha_{k}^{p_{k}}}{p_{1}!\ldots p_{k}!}\right] t^{j} .
$$

The assertion now follows from the calculation of $\operatorname{res}_{s=-q} Z_{P, Q}(s) \Gamma(s)$ in two ways. $]$
Proof of Proposition 2: We have

$$
\begin{aligned}
\sum_{n \geq 1}\left(\frac{P(n)}{Q(n)}\right)^{-s} & =\sum_{n \geq 1}\left(1+\frac{n^{m-k} Q(n)-P(n)}{P(n)}\right)^{-s} n^{-(m-k) s} \\
& =\sum_{i=0}^{\infty}\binom{s}{i} \sum_{n \geq 1}\left(\frac{n^{m-k} Q(n)-P(n)}{P(n)}\right)^{i} n^{-(m-k) s} \\
& =\sum_{i=0}^{\infty}\binom{s}{i} \sum_{j=0}^{\infty} B_{-i l_{0}-j}(P, Q, i) \zeta\left((m-k) s+i l_{0}+j\right)
\end{aligned}
$$

This gives meromorphic continuation of $Z(P / Q, s)$ on the complex plane, with explicit formulas for the residues.

References

[1] E. Carletti and G. Monti Bragadin, 'On Dirichlet series associated with polynomials', Proc. Amer. Math. Soc. 121 (1994), 33-37.
[2] M. Eie, 'On a Dirichlet series associated with a polynomial', Proc. Amer. Math. Soc. 110 (1990), 583-590.
[3] H. Müller, 'On generalized zeta-functions at negative integers', Illinois J. Math. 32 (1988), 222-229.
[4] P. Sargos, 'Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables', Ann. Inst. Fourier 34 (1984), 83-123.

[^1]
[^0]: Received 26th August, 1999

[^1]: University of Szczecin
 Institute of Mathematics
 ul. Wielkopolska 15
 70-451 Szczecin
 Poland
 e-mail: dabrowsk@sus.univ.szczecin.pl

