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1. INTRODUCTION. The notion of the earth as a perfect sphere has served
navigators quite well over the centuries and it continues to provide a basis for
instruction and practical navigation. Aside from the fact that modern navigators
employ refined models of the earth such as the WGS84 ellipsoid, which together
with satellite positioning gives unprecedented positioning accuracy, the question
arises as to just how good are the spherical results for distance when compared to
the results for distance obtained from the spheroidal model. In this document a
comparison is made of great circle distance (GCD) on the sphere with great ellipse
distance (GED) on the spheroid. This comparison is then repeated for rhumbline
distances. In each case it is concluded that the difference in using the sphere when
compared to the spheroid is near 0.5%.

2. SPHERICAL AND SPHEROIDAL EARTH. Since the spherical
earth is a convenient assumption, the question of which sphere should be chosen
for navigation purposes naturally arises. A sphere having equal volume or surface
area could be selected, but neither of these is as convenient as the navigation sphere
defined here as one upon which, on any great circle, a span of one minute of arc is
equal to one International Nautical mile (n.m) of 1852 metres. The navigation
sphere therefore has a radius of: a= 21600

2p or 3437.7468 n.m.
On the WGS84 ellipsoid, a natural unit of distance is the span of one minute of

longitude at the equator also called the geodetic or geographic mile. It is equal to
1855.3249 metres and the equatorial radius is : a= 21600

2p or 3437.7468 geodetic miles.
The geodetic mile is equal to 1.0018 nautical miles.

3. COMPARISON OF GCD AND GED. By comparing distance along a
great circle (GC) with the distance between the same two points on the great ellipse
(GE), their ratio GCD/GED can be used to describe the fractional and percentage
error g and g% i.e.

g=1x
GCD

GED
(1)

For comparison purposes, it is convenient to consider the great ellipse as an
inclined version of a meridian ellipse. Distance L(y) from equator to geodetic latitude
y on the meridian ellipse is given by:

L(y)=a(1xe2)

Z y

0

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1xe2 sin2 l)3

p (2)
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An approximation to Equation 2 has been provided by Snyder [1], which to the first
two terms is :

L(y)=a 1x
e2

4

� �
yx

3e2

8

� �
sin (2y)

� �
(3)

In this expression terms higher than e2 have been omitted from Snyder’s series
expansion since numerical evaluations have shown that their contributions are minor
[2]. For the inclined ellipse shown in Figure 1, the same formulae apply, but whereas
on the WGS84 ellipsoid the ellipticity is e=0.08181919 it must be replaced with a
smaller value ek (0fekfe) given by:

ek=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 sin2 wv

1xe2 cos2 wv

s
(4)

Where wv is the geocentric latitude of the vertex, wk,yk are the geocentric and geodetic
elliptical angles respectively which are related by tanwk=ak tanyk and for which
ak=1xek2.

4. THE GREAT ELLIPTICAL ANGLE-GEA. In Figure 1 a point
P is located on the GE at geocentric latitude w or geodetic latitude y and
longitude h. These co-ordinates are omitted for clarity. The point P is also
elevated in the plane of the GE to wk, which is the great elliptical angle (GEA)
between a node at longitude hn and the point P, i.e. GEA=N1OP [3] [4].
Associated with wk is the geodetic angle yk. Also at the vertex V, the highest
point reached on the GE, the line OV makes a right angle with the equatorial line
N1 O N2.

In Fig. 2, the GEA wk1 of position P1 is the angle between Xn and X1 defined by:

coswk1=
X1 � Xn

X1

�� �� Xn

�� �� (5)

for which Xn is the equatorial vector at one of the two nodal points N1 : X1 and X2 are
vectors of position for P1 and P2 on the GE. In general, a vector X has its usual

 φ '
ψ '

O

N1

P

great ellipse
vertex

equator

N2
V

Figure 1.
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meaning in terms of radius r(w), latitude w and longitude h, namely that X=r(w)
(̂ii cosw cos h+ĵj cosw sin h+k̂k sinw) . Expanding Equation 5 gives :

coswk1=cosw1 cos (h1xhn) (6)

In Equation 6, w1 and h1 are the geocentric latitude and the longitude co-ordinates
of P1 and hn is the longitude of the node. However Equation 6 is only useful when it is
necessary to compute intermediate positions along the GE and is not required for the
error analysis to follow.

5. DISTANCE ON THE GE AND GC. Equation 3 gives distance to good
accuracy when e and y are replaced with ek and yk. The GED between two points
at P1, P2 can then be expressed as:

GED=L(yk2)xL(yk1) (7)

After applying Equation 3 and manipulating further:

GED=1�0018a 1x
ek2

4

� �
(yk2xyk1)x

3ek2

4
cos (yk2+yk1) sin (yk2xyk1)

� �
(8)

where the constant 1.0018 has been included to convert from geodetic to nautical
miles.

Since GC latitude angles (w) on the navigation sphere are both geodetic and geo-
centric, the sphere can be considered as a degenerated spheroid for which e=0, hence
when computing GCD, angle wk can be replaced with yk with no loss of generality i.e.

GCD=(L(yk2)xL(yk1))jek=0 (9)

or GCD=a(yk2xyk1) (10)

6. ERROR ANALYSIS. Inserting Equation 8 and Equation 10 in Equation
1 the fractional error becomes :

g=1x
1

1�0018 1x ek2
4

� �
x 3ek2

4 cos (y2k+yk1 )
sin (yk2xyk1)

yk2xyk1

h i (11)
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It is convenient to consider elliptical angles yk1,yk2 such that their span dk=yk2xyk1 is
centred upon a median value yk0=

yk2+yk1
2 , then on further substituting Equation 4 into

Equation 11 we arrive at :

g=1x
1

1�0018 1x 1
4

e2 sin2 wv

1xe2 cos2 wv

� �
1+3 cos (2yk0) sin dkdk

	 
h i (12)

Median elliptical angle yk0 depends upon the latitude y and longitude h in such a
way that as it moves along the GE from node it attains the value p

2 when the latitude
has reached the vertex yv. For the purpose of this analysis however, latitude and
longitude of a point on the GE are not required. It is sufficient to recognize that for
the range of latitude 0<wfwv that 0<yk0f p

2 and that yk0 and wv are independent
variables.

Equation 12 shows that the largest errors occur for small dk so we can allow dkp0
hence sin dk

dk ! 1 . Then at yk0=0 , the error is :

g=1x
1

1�0018 1xe2

1xe2 cos2 wv

h i (13)

which is also identifiable in terms of vertex radius rv as:

g=1x
1

1�0018 rv
a

	 
2 (14)

and has a minimum of 0.18% when wvp0 and a maximum of x0.49% for wv=
p
2.

Also, for wv ! p
2 and yk0 ! p

2 , then g=0.51%. Additional numerical evaluation
shows that for other values of wv and yk0 within these limits and especially about
the usual limiting navigation latitudes, the errors are less and we may conclude
that overall, GC distances on the navigation sphere in round numbers, are
within 0.5% of GE distances on the WGS84 spheroid. Solutions to Equation 12
are shown in Figure 3 which is labeled with error extremes and contours at intervals
of 0.1%.

7. RHUMBLINE COMPARISONS. Analysis of the length of the rhumb-
line on the navigation sphere between specific points is readily compared to the
corresponding length on the spheroid between the same points. The rhumbline
distance d1 on the sphere between defined positions is given by d1=DLAT sec c
where DLAT is the difference in latitude between two points in n.m, while on
the spheroid, the corresponding distance is d2=1.0018DLP sec c where DLP is
the number of latitude parts on the spheroid separating the same two points. The
coefficient 1.0018 converts the DLP in geodetic miles on the spheroid to nautical
miles and c is the azimuth angle. The ratio of these two measures is d1/d2 and the
fractional error is g=1x d1

d2
or:

g=1x
DLAT

1�0018DLP
(15)

which is independent of c.
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On the navigation sphere, DLAT is simply a(w2xw1) and DLP=L(y2)xL(y1).
We then have:

g=1x
a(w2xw1)

1�0018(L(y2)xL(y1))
(16)

As before, latitude w can be replaced with y with no loss of generality and with
e=0.08181919 (WGS84) Equation 16 becomes:

g=1x
a y2xy1ð Þ

1�0018a[0�998326(y2xy1)x0�002510(sin (2y2)xsin (2y1))]
(17)

which reduces approximately to:

g=1x
1

1x0�005 cos (y2+y1)
sin (y2xy1)
(y2xy1)

g=1x
1

1x0�005 cos (2y0)
sin (d)
d

(18)

From an inspection of Equation 18, the greater values of the fractional error occur
for small distances i.e. when d!0; sin (d)d !1. Maximum errors occur for y0=0, p

2

with values very close tot0.005 ort0.5% respectively. For moderate values of d the
error is less. As y0 approaches middle latitudes the error diminishes approaching zero
at y0=

p
4 . Elsewhere for other valid values of d in the range 0 � y0 � p

2 , the distance
for a rhumbline on the navigation sphere is within 0.5% of the distance on the
rhumbline on the WGS84 spheroid.

8. CONCLUSIONS. We can conclude that any error likely to be incurred in
using the navigation sphere is, when rounded to one significant digit, within half of
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one percent and generally less for GC tracks when compared to GE tracks between
the same points. When rhumbline courses are considered, the rounded error is also
no greater than half of one percent. From results developed here, it appears that
the spherical model can serve well in an instructional setting and meet most of the
needs of navigational practice in the range of the usual navigational latitudes
reached by great circle and rhumbline tracks. In more demanding applications
involving high tonnage or high-speed vessels where operating cost and safety are of
prime importance, the spheroidal model is more suitable.
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