IDEMPOTENTS IN COMPLETELY 0-SIMPLE SEMIGROUPS

by J. M. HOWIE

(Received 1 November, 1976)
The structure theorem for completely 0 -simple semigroups established by Rees [5] in 1940 has proved a very powerful tool in the investigation of such semigroups. In this paper the theorem is applied to an investigation of the subsemigroup of a completely 0 -simple semigroup generated by its idempotents. Previous work on this problem has been carried out by Kim [4], but the present note offers a more direct approach.

1. Paths and values. The notations used will be those of [3]. A completely 0 -simple semigroup S can, by Rees's Theorem [3, Theorem III.2.5], be identified with a Rees matrix semigroup $\mathcal{M}^{0}[G ; I, \Lambda ; P]$ in which G is a group, I and Λ are index sets and P is a $\Lambda \times I$ matrix ($p_{\lambda_{i}}$) with entries in G^{0} and with no row or column consisting of zeros. The non-zero elements of S are triples (a, i, λ) in $G \times I \times \Lambda$ multiplying according to the rule that

$$
(a, i, \lambda)(b, j, \mu)=\left\{\begin{array}{cc}
\left(a p_{\lambda j} b, i, \mu\right) & \text { if } \quad p_{\lambda j} \neq 0 \\
0 & \text { if } \\
p_{\lambda j}=0
\end{array}\right.
$$

For the present investigation it is convenient to assume that I and Λ are disjoint. Since they are merely index sets (in one-to-one correspondence respectively with the sets of \mathscr{R}-classes and \mathscr{L}-classes of S) there is no harm in doing so. With this assumption, consider the relation K on $I \cup \Lambda$ defined by the rule that $(i, \lambda) \in K$ if and only if $i \in I, \lambda \in \Lambda$ and $p_{\lambda i} \neq 0$, and let \mathscr{K} be the equivalence relation on $I \cup \Lambda$ generated by \mathbf{K}. Thus for x, y in $I \cup \Lambda$ we have that $(x, y) \in \mathscr{K}$ if and only if either $x=y$ or (for some $n \geq 2$) there exist z_{1}, \ldots, z_{n} in $I \cup \Lambda$ such that
(i) $z_{1}=x$ and $z_{n}=y$,
(ii) $z_{r} \in I \Rightarrow z_{r+1} \in \Lambda, \quad z_{r} \in \Lambda \Rightarrow z_{r+1} \in I$,
(iii) $\left(z_{n} z_{r+1}\right) \in \mathbf{K} \cup \mathbf{K}^{-1}$.

The sequence $\left(z_{1}, \ldots, z_{n}\right)$ will be called a path from x to y. Among the paths from x to x we shall include the null path.

The equivalence relation \mathscr{K} will be called the connectivity relation, and we shall call the semigroup S connected if \mathscr{K} is the universal relation on $I \cup \Lambda$. Notice that connectedness is a property of the semigroup and not merely of the matrix P. The isomorphism theorem associated with Rees's Theorem (see [3, Theorem III.2.8]) ensures that while the sandwich matrix P is not uniquely determined by S the pattern of non-zero entries in P is invariant. Hence the property of connectedness, which depends solely on this pattern, is either possessed by all representations of S as a Rees matrix semigroup or by none.

Glasgow Math. J. 19 (1978) 109-113

Let $S=\mathcal{M}^{0}[G ; I, \Lambda ; P]$ be a completely 0 -simple semigroup. Let $(x, y) \in \mathscr{K}$ (and from now on we shall for simplicity write this as $x \sim y)$, and let $p=\left(z_{1}, \ldots, z_{n}\right)$, where $z_{1}=x$, $\dot{z}_{n}=y$, be a path from x to y. The value $V(p)$ of the path p is the element of G defined by

$$
V(p)=\left(z_{1}, z_{2}\right) \phi .\left(z_{2}, z_{3}\right) \phi \ldots\left(z_{n-1}, z_{n}\right) \phi
$$

where, for i in I and λ in Λ, we define

$$
(i, \lambda) \phi=p_{\lambda i}^{-1}, \quad(\lambda, i) \phi=p_{\lambda i} .
$$

The value of the null path from x to x is defined to be e, the identity element of G. Thus, for example, the value of the path $(\lambda ; i, \mu, j, \lambda)$ is the element $p_{\lambda i} p_{\mu i}^{-1} p_{\mu j} p_{\lambda j}^{-1}$ of G. Let $P_{x, y}$ be the set of all paths from x to y and let

$$
V_{x, y}=\left\{V(p): p \in P_{x, y}\right\}
$$

the set of values of paths from x to y. By convention, define $V_{x, y}=\varnothing$ if $x \not x y$.
Lemma 1. If $x, y, z \in I \cup \Lambda$ and $x \sim y \sim z$ then
(i) $V_{y, x}=V_{x, y}^{-1}$;
(ii) $V_{x, y} V_{y, z}=V_{x, z}$.

Proof. Let $a \in V_{y, x}$. Then $a=V(p)$ where $p=\left(z_{1}, \ldots, z_{n}\right)$ is a path from y to x. Then $\left(z_{n}, \ldots, z_{1}\right)$ is a path from x to y whose value is a^{-1}. Thus

$$
a=\left(a^{-1}\right)^{-1} \in V_{x, y}^{-1}
$$

and so $V_{y, x} \subseteq V_{x, y}^{-1}$. It follows that

$$
V_{y, x}^{-1} \subseteq\left(V_{x, y}^{-1}\right)^{-1}=V_{x, y} ;
$$

hence, relabelling by interchanging x and y, we have $V_{x, y}^{-1} \subseteq V_{y, x}$. This establishes part (i).
Let $\quad p=\left(x, z_{2}, \ldots, z_{m-1}, y\right) \in P_{x, y} \quad$ and $\quad q=\left(y, t_{2}, \ldots, t_{n-1}, z\right) \in P_{y, z}$. Then $\left(x, z_{2}, \ldots, z_{m-1}, y, t_{2}, \ldots, t_{n-1}, z\right) \in P_{x, z}$. Since the value of this last path is evidently $V(p) V(q)$, it is clear that

$$
\begin{equation*}
V_{x, y} V_{y, z} \subseteq V_{x, z} \tag{1}
\end{equation*}
$$

Conversely, if $a \in V_{x, z}$ then for every b in $V_{x, y}$ we have (using part (i) and formula (1))

$$
a=b b^{-1} a \in V_{x, y} V_{y, x} V_{x, z} \subseteq V_{x, y} V_{y, z}
$$

Thus $V_{x, z} \subseteq V_{x, y} V_{y, z}$ as required.
Theorem 1. Let $S=\mathcal{M}^{0}[G ; I, \Lambda ; P]$ be a completely 0 -simple semigroup. Let E be the set of idempotents in S and $\langle E\rangle$ the subsemigroup of S generated by the idempotents. Then

$$
\langle E\rangle=\left\{(a, i, \lambda) \in S: i \sim \lambda \quad \text { and } \quad a \in V_{i, \lambda}\right\} \cup\{0\} .
$$

Proof. It is well-known, and in any event easy to verify, that the non-zero idempotents of S are the elements $\left(p_{\lambda i}^{-1}, i, \lambda\right)$ for which $p_{\lambda i} \neq 0$. Let $(a, i, \lambda) \in\langle E\rangle \backslash\{0\}$. Then there exist i_{2}, \ldots, i_{n} in I and $\lambda_{1}, \ldots, \lambda_{n-1}$ in Λ such that

$$
(a, i, \lambda)=\left(p_{\lambda_{1} i}^{-1}, i, \lambda_{1}\right)\left(p_{\lambda_{2} i_{2}}^{-1}, i_{2}, \lambda_{2}\right) \ldots\left(p_{\lambda_{i}}^{-1}, i_{n}, \lambda\right) \neq 0 .
$$

Hence $i \sim \lambda_{1} \sim i_{2} \sim \lambda_{2} \sim \ldots \sim i_{n} \sim \lambda$ and so $i \sim \lambda$. Also

$$
a=p_{\lambda_{1} i}^{-1} p_{\lambda_{1} i_{2}} p_{\lambda_{2} i_{2}}^{-1} \ldots p_{\lambda_{n-1} i_{n}} p_{\lambda_{i_{n}}}^{-1}
$$

the value of the path ($i, \lambda_{1}, i_{2}, \lambda_{2}, \ldots, i_{n}, \lambda$) from i to λ, and so $a \in V_{i, \lambda}$.
Conversely, let $i \sim \lambda$ and $a \in V_{i, \lambda}$. Then there exists a path ($i, \lambda_{1}, i_{2}, \lambda_{2}, \ldots, i_{n}, \lambda$) whose value

$$
p_{\lambda_{1} i}^{-1} p_{\lambda_{1} i_{2}} p_{\lambda_{2} i_{2}}^{-1} p_{\lambda_{2} i_{3}} \ldots p_{\lambda_{n-1} i_{n}} p_{\lambda_{i_{n}}}^{-1}
$$

is equal to a. Hence

$$
(a, i, \lambda)=\left(p_{\lambda_{1} i}^{-1} i, \lambda_{1}\right)\left(p_{\lambda_{2} i_{2}}^{-1}, i_{2}, \lambda_{2}\right) \ldots\left(p_{\lambda_{i}}^{-1}, i_{n}, \lambda\right) \in\langle E\rangle
$$

This completes the proof.
We shall say that $S=\mathcal{M}^{\circ}[G ; I, \Lambda ; P]$ is replete if it is connected and $V_{x, x}=G$ for some x in $I \cup \Lambda$. In the presence of connectedness this latter condition is in fact equivalent to the apparently stronger condition that $V_{y, z}=G$ for all y, z in $I \cup \Lambda$; if S is replete then $V_{y, x}$ and $V_{x, z}$ are both non-empty by connectedness and so

$$
V_{y, z}=V_{y, x} V_{x, x} V_{x, z}=V_{y, x} G V_{x, z}=G .
$$

A semigroup S with set of idempotents E is called idempotent-generated if $\langle E\rangle=S$. We now have the following obvious corollary to Theorem 1.

Corollary. The completely 0 -simple semigroup $\mathcal{M}^{\circ}[G ; I, \Lambda ; P]$ is idempotentgenerated if and only if it is replete.
2. The completely simple case. The case where S has no zero and is completely simple is easier, since the matrix P has no zero entries and connectedness is automatic. The results corresponding to Theorem 1 and its corollary do not require separate statement. One easy consequence of Theorem 1 is worth recording. A subsemigroup U of a semigroup S is called unitary if, for all u in U and all s in S,

$$
u s \in U \Rightarrow s \in U, \quad s u \in U \Rightarrow s \in U
$$

Theorem 2. In a completely simple semigroup S with set E of idempotents, the subsemigroup $\langle E\rangle$ generated by the idempotents is unitary.

Proof. Let $S=M[G ; I, \Lambda ; P]$ and suppose that $u=(a, i, \lambda) \in\langle E\rangle, s=(b, j, \mu) \in S$ and $u s=\left(a p_{\lambda j} b, i, \mu\right) \in\langle E\rangle$. Then $a \in V_{i, \lambda}$ and $a p_{\lambda j} b \in V_{i, \mu}$, from which it follows that

$$
b=p_{\lambda j}^{-1} a^{-1} a p_{\lambda j} b \in V_{j, \lambda} V_{\lambda, i} V_{i, \mu}=V_{j, \mu} .
$$

Thus $s \in\langle E\rangle$. Similarly $s u \in\langle E\rangle \Rightarrow s \in\langle E\rangle$, and so $\langle E\rangle$ is unitary.
We may remark that a closely analogous result exists for the completely 0 -simple case. If S is a semigroup with zero element 0 then a subsemigroup U containing 0 is called

0 -unitary if, for all u in $U \backslash\{0\}$ and all s in $S \backslash\{0\}$,

$$
u s \in U \backslash\{0\} \Rightarrow s \in U \backslash\{0\}, \quad s u \in U \backslash\{0\} \Rightarrow s \in U \backslash\{0\}
$$

Then the following theorem can be proved. The details of the proof differ only slightly from those of the last proof and so may safely be omitted.

Theorem 3. In a completely 0 -simple semigroup with set E of idempotents, the subsemigroup $\langle E\rangle$ generated by the idempotents is 0 -unitary.

Returning now to the completely simple case, we consider the simplifications that occur when we assume that the sandwich matrix P is normal. As remarked by Clifford [2], every completely simple semigroup is isomorphic to a Rees matrix semigroup $\mathcal{M}[G ; I, \Lambda ; P]$ in which $P=\left(p_{\lambda i}\right)$ is normal, in the sense that there exist k in I and ν in Λ such that $p_{\lambda k}=e$ (the identity element of G) for all λ in Λ and $p_{v i}=e$ for all i in I. To put it another way, P is normal if it contains at least one row and at least one column consisting entirely of e 's.

Let us now suppose that $S=\mathscr{M}[G ; I, \Lambda ; P]$ and that P is normal, with $p_{\lambda k}=e$ for all λ and $p_{\nu i}=e$ for all i.

Lemma 2. With these assumptions, $V_{x, y}=V_{z, t}$ for all x, y, z, t in $I \cup \Lambda$.
Proof. The first step is to show that $e \in V_{x, y}$ for all x, y in $I \cup \Lambda$. This is straightforward if we consider separately the four cases (i) $x, y \in I$, (ii) $x \in I, y \in \Lambda$, (iii) $x \in \Lambda, y \in I$, (iv) $x, y \in \Lambda$. In case (i) we have a path (x, ν, y) from x to y with value e and so $e \in V_{x, y}$. In case (ii) the path (x, ν, k, y) has value e. Cases (iii) and (iv) are similar.

The desired result now follows easily, since for all x, y, z, t in $I \cup \Lambda$,

$$
V_{x, y}=e V_{x, y} e \subseteq V_{z, x} V_{x, y} V_{y, t}=V_{z, t},
$$

and, similarly, $V_{z, t} \subseteq V_{x, y}$.
There is thus a fixed subset V of G equal to $V_{x, y}$ for every choice of x, y in $I \cup \Lambda$. An alternative description of V is as follows:

Lemma 3. $V=\left\langle\left\{p_{\lambda i}: \lambda \in \Lambda, i \in I\right\rangle\right\rangle$, the subgroup of G generated by the elements $p_{\lambda i}$.
Proof. Since $V=V_{x, y}$ for arbitrarily chosen elements x, y in $I \cup \Lambda$, it is immediate that each element of V, being the value of a path from x to y, is a product of the entries of P and their inverses. Conversely, to show that V contains every such product we need only observe (a) that each $p_{\lambda i} \in V_{\lambda, i}=V$, (b) that each $p_{\lambda i}^{-1} \in V_{i, \lambda}=V$, and (c) that if $a \in V=V_{x, y}$ and $b \in V=V_{y, z}$ then $a b \in V_{x, y} V_{y, z}=V_{x, z}=V$.

The final easy consequence of Theorem 1 and Lemma 3 is the following theorem, which can of course be verified more directly. Part of this result is implicit in the proof of Theorem 1 in Benzaken and Mayr [1].

Theorem 4. Let $S=\mathcal{M}[G ; I, \Lambda ; P]$ be a completely simple semigroup in which P is normal. Then $\langle E\rangle=V \times I \times \Lambda$, where V is the subgroup of G generated by the entries of P. The semigroup S is idempotent-generated if and only if $V=G$.

That this is untrue without normalisation is evident from the following elementary example. Let $S=\mathcal{M}[G ; I, \Lambda ; P]$, where $I=\{1,2\}, \Lambda=\{3,4\}, G=\mathbf{Z}_{2}=\{e, a\}, p_{31}=p_{32}=$ $p_{41}=p_{42}=a$. Then the subgroup generated by the entries of P is G, but

$$
\langle E\rangle=E=\{(a, 1,3),(a, 1,4),(a, 2,3),(a, 2,4)\} .
$$

In fact $V_{1,3}=V_{1,4}=V_{2,3}=V_{2,4}=\{a\}$, in accord with Theorem 1.

REFERENCES

1. C. Benzaken and H. C. Mayr, Notion de demi-bande: demi-bandes de type deux, Semigroup Forum 10 (1975), 115-128.
2. A. H. Clifford, Semigroups admitting relative inverses, Ann. of Math. 42 (1941), 10371049.
3. J. M. Howie, An introduction to semigroup theory (Academic Press, 1976).
4. Jin Bai Kim, Idempotent generated Rees matrix semigroups, Kyungpook Math. J. 10 (1970), 7-13.
5. D. Rees, On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400.
