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The structure theorem for completely 0-simple semigroups established by Rees [5] in
1940 has proved a very powerful tool in the investigation of such semigroups. In this
paper the theorem is applied to an investigation of the subsemigroup of a completely
0-simple semigroup generated by its idempotents. Previous work on this problem has
been carried out by Kim [4], but the present note offers a more direct approach.

1. Paths and values. The notations used will be those of [3]. A completely 0-simple
semigroup S can, by Rees's Theorem [3, Theorem III.2.5], be identified with a Rees matrix
semigroup M°[G; I, A; P] in which G is a group, / and A are index sets and P is a A x /
matrix (pKi) with entries in G° and with no row or column consisting of zeros. The
non-zero elements of S are triples (a, J, A) in G x / x A multiplying according to the rule
that

f PKJ = O .

For the present investigation it is convenient to assume that / and A are disjoint. Since
they are merely index sets (in one-to-one correspondence respectively with the sets of
9? -classes and i?-classes of S) there is no harm in doing so. With this assumption,
consider the relation K on / U A defined by the rule that (i, A) e K if and only if i e I, A e A
and pAj ̂  0, and let 3f be the equivalence relation on /U A generated by K. Thus for x, y in
/UA we have that (x, y)e5if if and only if either x = y or (for some n>2) there exist
Z j , . . . , zn in JU A such that

(i) Zj = x and zn = y,

(ii) z , e / ^ z r + 1 e A , z , e A ^ z r + 1 e I ,

(iii) (zr,zr+1)eKUK-1.

The sequence (zx,..., zn) will be called a path from x to y. Among the paths from x to x
we shall include the null path.

The equivalence relation 3f will be called the connectivity relation, and we shall call
the semigroup S connected if 3f is the universal relation on /UA. Notice that connected-
ness is a property of the semigroup and not merely of the matrix P. The isomorphism
theorem associated with Rees's Theorem (see [3, Theorem III.2.8]) ensures that while the
sandwich matrix P is not uniquely determined by S the pattern of non-zero entries in P is
invariant. Hence the property of connectedness, which depends solely on this pattern, is
either possessed by all representations of S as a Rees matrix semigroup or by none.
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Let S = M°[G; I, A; P] be a completely 0-simple semigroup. Let (x, y)G % (and from
now on we shall for simplicity write this as x ~ y), and let p = (zu ..., zn), where z1 = x,
zn = y, be a path from x to y. The value V(p) of the path p is the element of G defined by

V(p) = (z 1 ; z2)<t>. (z 2 , z3)<f>... (zn_u zn)<(>,

where, for i in I and A in A, we define

(i , X)<f> = pl>, (A, i)<f> = pKi.

The value of the null path from x to x is defined to be e, the identity element of G. Thus,
for example, the value of the path (\{ i, /A, j , A) is the element PxiPJI.VwPx,1 of G. Let Pxy

be the set of all paths from x to y and let

Vx,y={V(p):pePxJ,

the set of values of paths from x to y. By convention, define Vxy = 0 if x-J* y.

LEMMA 1. If x, y, z e / U A and x~ y ~ z then

(i) V = V~u (if) V V = V
W vy,x vx,y> \llJ yx,y vy,2 vx,z-

Proof. Let a e Vy x. Then a = V(p) where p = (z x , . . . , zn) is a path from y to x. Then
(zn,..., zt) is a path from x to y whose value is a"1. Thus

and so Vy_x c y-». It follows that

' y.x — \ " x,y) ~ *x,y )

hence, relabelling by interchanging x and y, we have Vjyc Vyx. This establishes part (i).
Let p = (x, z2, . . . , z m _ i , y)ePx y and q = (y, t2,..., tn_x, z)zPyz. Then

(x, z 2 ) . . . , zm_!, y, t2,..., fn_1( z)ePxz. Since the value of this last path is evidently
V(p)V(q), it is clear that

V V c V (1)

Conversely, if ae Vx>2 then for every b in Vxy we have (using part (i) and formula (1))

Thus Vx zg V^yV^ as required.

THEOREM 1. Let S = M°[G; I, A; P] be a completely 0-simple semigroup. Let E be the
set of idempotents in S and (E) the subsemigroup of S generated by the idempotents. Then

= {(a, i,A)eS:J~A and aeVu}U{0}.

Proof. It is well-known, and in any event easy to verify, that the non-zero idempo-
tents of S are the elements (p^1, i, A) for which pXi^0. Let (a, i, A)e(£)\{0}. Then there
exist i2, . . . , / „ in / and A, , . . . , A,,_, in A such that

(a, i, A) = (pr', i, A,)(p^2, i2, A2).. . (pj£, in, A) * 0.
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Hence i ~ Aj ~ i2 ~ A 2 ~ . . . ~ in ~ A and so i ~ A. Also

the value of the path (i, A1; i2, A2, . . . , in, A) from i to A, and so a e ViX.
Conversely, let i~A and aeVj A. Then there exists a path (i, A1( i2, A2, . . . , i», A)

whose value

is equal to a. Hence

(a, i, A) = (pi*, i, A^Cp:^, i2) A2).. . (p:£, i

This completes the proof.

We shall say that S = Jt°[G; I, A; P] is replete if it is connected and VXtX = G for some x
in IU A. In the presence of connectedness this latter condition is in fact equivalent to the
apparently stronger condition that Vyz = G for all y, z in /U A; if S is replete then Vyjc

and Vxt are both non-empty by connectedness and so

V = v y v = V GV =G
y.z ry,xvx,xrx,z y y.x*^ r x,z *-"•

A semigroup S with set of idempotents E is called idempotent- generated if (E) = S.
We now have the following obvious corollary to Theorem 1.

COROLLARY. The completely 0-simple semigroup M°[G;I, A; P] is idempotent-
generated if and only if it is replete.

2. The completely simple case. The case where S has no zero and is completely
simple is easier, since the matrix P has no zero entries and connectedness is automatic.
The results corresponding to Theorem 1 and its corollary do not require separate
statement. One easy consequence of Theorem 1 is worth recording. A subsemigroup U of
a semigroup S is called unitary if, for all u in U and all s in S,

use C/=>seU, sue {/=>seU.

THEOREM 2. In a completely simple semigroup S with set E of idempotents, the
subsemigroup (E) generated by the idempotents is unitary.

Proof. Let S = M[G; I, A; P] and suppose that u = (a, i, A) e (E), s = (b, j , JH) e S and
us = (apKjb, i, fi)e(E). Then a e Vi-A and apKjb 6 Vjt(1, from which it follows that

b = plfa-lapMb e V u V ^ V ^ = V,f|1.

Thus se(E). Similarly sue(E)^se(E), and so <£> is unitary.

We may remark that a closely analogous result exists for the completely 0-simple
case. If S is a semigroup with zero element 0 then a subsemigroup U containing 0 is called
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O-unitary if, for all u in U\{0} and all s in S\{0},

us e U\{0}=> s e U\{0}, su e U\{0}=> s e U\{0}.

Then the following theorem can be proved. The details of the proof differ only slightly
from those of the last proof and so may safely be omitted.

THEOREM 3. In a completely 0-simple semigroup with set E of idempotents, the
subsemigroup (E) generated by the idempotents is O-unitary.

Returning now to the completely simple case, we consider the simplifications that
occur when we assume that the sandwich matrix P is normal. As remarked by Clifford [2],
every completely simple semigroup is isomorphic to a Rees matrix semigroup
M[G; I, A; P] in which P = (pKi) is normal, in the sense that there exist k in I and v in A
such that pxlc = e (the identity element of G) for all A in A and pvl = e for all i in I. To put
it another way, P is normal if it contains at least one row and at least one column con-
sisting entirely of e's.

Let us now suppose that S = M\G; I, A; P] and that P is normal, with pkk = e for all A
and p^ = e for all i.

LEMMA 2. With these assumptions, Vxy = Vzt for all x, y, z, t in JUA.

Proof. The first step is to show that ee Vxy for all x, y in JUA. This is straightfor-
ward if we consider separately the four cases (i) x, y e J, (ii) x e J, y e A, (iii) x 6 A, y e J,
(iv) x, y e A. In case (i) we have a path (x, v, y) from x to y with value e and so e e Vxy. In
case (ii) the path (x, v, k, y) has value e. Cases (iii) and (iv) are similar.

The desired result now follows easily, since for all x, y, z, t in JUA,

V = eV e<=V V V =V
r x,y c r x , y c — r z,x r x,y r y,e r z,c

and, similarly, Vz_, g Vx y.
There is thus a fixed subset V of G equal to Vxy for every choice of x, y in JUA.

An alternative description of V is as follows:

LEMMA 3. V = ({pAi:AeA, is I}), the subgroup of G generated by the elements pXi.

Ptoof. Since V= Vxy for arbitrarily chosen elements x, y in JUA, it is immediate
that each element of V, being the value of a path from x to y, is a product of the entries of
P and their inverses. Conversely, to show that V contains every such product we need
only observe (a) that each pKi G VA; = V, (b) that each p^1 e ViiA = V, and (c) that if
a e V= Vxy and bG V= Vy>z then abe Vx,yVy,z = Vx,z = V.

The final easy consequence of Theorem 1 and Lemma 3 is the following theorem,
which can of course be verified more directly. Part of this result is implicit in the proof of
Theorem 1 in Benzaken and Mayr [1].

THEOREM 4. Let S = M[G; I, A;P] be a completely simple semigroup in which P is
normal. Then (E)= Vx Jx A, where V is the subgroup of G generated by the entries of P.
The semigroup S is idempotent-generated if and only if V=G.
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That this is untrue without normalisation is evident from the following elementary
example. Let S = M[G; I, A ;P] , where 7 = {1,2}, A = {3,4}, G = Z2 = {e, a), p31 = p32 =
P41= P42 = a Then the subgroup generated by the entries of P is G, but

<E> = E = {(a, 1,3), (a, 1,4), (a, 2,3), (a, 2,4)}.

In fact V1>3= V 1 4 = V2,3= ^2,4 = {fl}> m accord with Theorem 1.
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