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BERNSTEIN–SATO POLYNOMIALS AND TEST
MODULES IN POSITIVE CHARACTERISTIC

MANUEL BLICKLE and AXEL STÄBLER

Abstract. In analogy with the complex analytic case, Mustaţă constructed

(a family of) Bernstein–Sato polynomials for the structure sheaf OX and a

hypersurface (f = 0) in X, where X is a regular variety over an F -finite

field of positive characteristic (see Mustaţă, Bernstein–Sato polynomials in

positive characteristic, J. Algebra 321(1) (2009), 128–151). He shows that the

suitably interpreted zeros of his Bernstein–Sato polynomials correspond to the

F -jumping numbers of the test ideal filtration τ(X, f t). In the present paper

we generalize Mustaţă’s construction replacing OX by an arbitrary F -regular

Cartier module M on X and show an analogous correspondence of the zeros of

our Bernstein–Sato polynomials with the jumping numbers of the associated

filtration of test modules τ(M, f t) provided that f is a nonzero divisor on M .

Introduction

To keep notation simple in this introduction letX = Spec k[x1, . . . , xn] be

the affine n-space over an algebraically closed field k. Denote the polynomial

ring by R= k[x1, . . . , xn] and fix an equation f ∈R defining a hypersurface

in X. We denote by γ : SpecR→ SpecR[t] the graph embedding of f given

by sending t to f .

If k = C one has the Bernstein–Sato Polynomial of f which is an

important measure of the singularities of the hypersurface defined by f = 0.

It is defined to be the nonzero monic polynomial of minimal degree among

those b(s) ∈ k[s] such that

b(s)fs = Pfs+1

for some differential operator P ∈ DR[s] = k[x1, . . . , xn, ∂x1 , . . . , ∂xn ][s].

Kashiwara and Malgrange interpret in [16] and [21] the Bernstein–Sato

polynomial as the minimal polynomial of the action of the Euler operator
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∂
∂t t on a graded piece of the V -filtration of the DR-module pushforward γ+R

along the graph embedding. In fact, a key point in the work of Kashiwara

and Malgrange is the construction of said V -filtration in a much more

general context, namely for regular holonomic DR-modules, which they

achieve by their theory of b-functions, which generalizes the Bernstein–

Sato polynomial for a hypersurface equation recalled above. By work of

Budur and Saito [12] from the V -filtration on the DR[t]-module γ+R, one

can reconstruct the filtration of multiplier ideals J (R, f t)⊆R for 0< t6 1.

This shows, in particular, that the jumping numbers of the multiplier ideal

filtration between 0 and 1 are zeros of the Bernstein–Sato polynomial.

A consequence of the existence of the Bernstein–Sato Polynomial is

that the DR-module Rf is generated by 1/f if (and only if) the reduced

Bernstein–Sato Polynomial (x+ 1)−1b(s) does not have negative integral

roots [27]. However, if k is a field of positive characteristic p > 0, then

it is shown in [1] that the DR-module Rf is always generated by 1/f .

Hence, there cannot be a theory of Bernstein–Sato polynomials in positive

characteristic with the same defining property. This observation is just one

example for the fact that D-module theory in positive characteristic is quite

different from the complex case.

However, by taking the interpretation of the Bernstein–Sato polynomial

as the minimal polynomial of an action of the Euler operator (due to

Kashiwara and Malgrange) as his point of departure, Mustaţă defines in

[23] a family of Bernstein–Sato polynomials for a hypersurface f = 0 over a

field of positive characteristic. Contrary to the complex analytic case it is

not enough to consider the action of the Euler operator alone; instead one

has to also consider all higher divided power Euler operators ϑi = ∂
[pi]
t tp

i
at

once.1

More precisely, for e> 1 let M e
f be the DeR[ϑ1, . . . , ϑpe−1 ]-module gener-

ated by the image of γ∗R in γ+R, where DeR is the subring consisting of

those differential operators which are linear over Rp
e
. The Euler operators

ϑi act on the quotient M e
f/tM

e
f for 1 6 i6 e− 1 with eigenvalues in Fp.

The eth Bernstein–Sato polynomial as introduced by Mustaţă encodes the

common eigenvalues of these operators. Furthermore, Mustaţă proved that

the information of these eigenvalues (suitably lifted to Q) is equivalent to

1Note that the order is reversed here. That is, one usually considers tp
i

∂
[pi]
t . We will

be able to use this standard convention once we switch to right modules.
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the data of the F -jumping numbers of the test ideal filtration τ(R, f t) of f

in the range (0, 1]. As the test ideal can be viewed as a positive characteristic

analog of the multiplier ideal this statement is a characteristic p version of

the result of Budur and Saito that the jumping numbers of the multiplier

ideal are zeroes of the classical Bernstein–Sato polynomial as alluded to

above.

Work of Axel Stäbler in [25] suggests that in positive characteristic

the test module filtration itself is a suitable analog of the V -filtration:

For one thing there is a certain axiomatic characterization of the test

module filtration similar to that of the V -filtration but also different in the

sense that the action of the differential operators is replaced by a (right)

action of the Frobenius. Furthermore, a certain associated graded piece

of the test module filtration corresponds, via an analog of the Riemann–

Hilbert correspondence, to a functor on perverse constructible sheaves of

Fp-vector spaces that has several of the desirable properties of nearby cycles

in the ` 6= p-case. This relationship between nearby cycles and D-modules

in characteristic 0 was the motivation behind the construction of the V -

filtration for holonomic D-modules as a way to realize the nearby cycles

functor for constructible C-sheaves on the D-module side.

What we achieve in the present paper is to also generalize Mustaţă’s

theory of Bernstein–Sato polynomials to this more general context where

the test module filtration is defined and well behaved as in [25]. In order

to state our results let us recall some background on Cartier modules and

their test modules from [6].

Let us from now on assume that R is an F -finite Noetherian ring of

positive characteristic p. A Cartier module M (over R) is an R-module

together with an R-linear map κ : F∗M →M , where F :R→R is the

absolute Frobenius given by x 7→ xp. A Cartier submodule of M is an

R-submodule N such that κ(N)⊆N . We say that M is F -pure if κ is

surjective. We call M F -regular if M is F -pure and if for any Cartier

submodule N of M which after localizing at every generic point of SuppM

agrees with M we have N =M .

Let M be an F -regular Cartier module which as an R-module is finitely

generated. Let f be a nonzero divisor on M . Then the test module with

respect to the ideal (f)⊆R and t ∈ R>0 is

τ(M, f t) =
∑
e>1

κef dtp
eefMC ,
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where C is the algebra generated for n> 1 by the κnf dtp
ne andMC = (C+)hM

for all h� 0 is the stable image (cf. [6, Proposition 2.13]). It follows from

[6, Theorem 3.11], [25, Lemma 3.1] that the definition we give here is in fact

equivalent to the definition of test modules in [6]. Moreover, we simplify the

description of the test module in Section 4.

Test modules form a decreasing filtration of R-submodules of M , that

is, τ(M, fs)⊆ τ(M, f t) for s> t. This filtration is right continuous, that

is, for ε� 1 one has τ(M, f t) = τ(M, f t+ε). An element t ∈Q such that for

all ε > 0 one has τ(M, f t) 6= τ(M, f t−ε) is called an F -jumping number (of

the test module filtration along f). Test module filtrations satisfy the so-

called Briançon–Skoda theorem, namely for any t> 1 one has τ(M, f t) =

fτ(M, f t−1). In particular, it suffices to control the F -jumping numbers

in the range (0, 1]. Moreover, if R is essentially of finite type over an F -

finite field then the set of F -jumping numbers in (0, 1] is finite [6, Corollary

4.19] and all F -jumping numbers are rational (the rationality is a formal

consequence of the finiteness similar to the argument in [9, Theorem 3.1]).

Similar to Mustaţă’s approach in [23] we use the graph embedding

along the fixed hypersurface f = 0 to define a family of Bernstein–Sato

polynomials bef,M (s) ∈Q[s]. This will be done by exploiting a system of right

DeR-modules which arises from the Cartier module structure of M . This is

explained in the following sections. Our main result can now be stated as

follows:

Theorem 5.4. Let R be regular essentially of finite type over an F -

finite field. Let (M, κ) be an F -regular Cartier module and f ∈R a nonzero

divisor on M . The roots of the Bernstein–Sato polynomials beM,f (s) are

given for e sufficiently large by dλp
ee−1
pe , where λ varies over the F -jumping

numbers of the test module filtration τ(M, f t) for t ∈ (0, 1].

The crucial point is that the a priori infinite collection of Bernstein–

Sato polynomials beM,f (s) for e> 0 is completely determined by a finite

collection of rational numbers, namely the jumping numbers of the test

module filtration attached to (M, f).

In conclusion we would like to draw the reader’s attention to the recent

work of Stadnik [26] who also addresses the problem of extending Mustaţă’s

Bernstein–Sato polynomials to a more general context. Stadnik, however,

works in the context of Emerton and Kisin’s category of unit R[F ]-modules

[14]. In order to prove his existence result for b-functions he essentially

has to reconstruct a theory of test ideals in this context, which he coins
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list-test-ideals in [26]. It was one motivation of the authors of the present

paper to point out that, by working in the essentially equivalent theory of

Cartier modules (more precisely Cartier crystals, see [7, Section 5.2]) one

can rely on the already existing theory of test modules. By further replacing

left DR-modules by right DR-modules there is a natural construction of the

Bernstein–Sato polynomials with the desired link to the F -jumping numbers

of the test module filtration. We show in Section 6 that Stadnik’s b-functions

are precisely the limit over our Bernstein–Sato polynomials beM,f (s).

§1. D-modules in positive characteristic

Throughout this article we assume all rings to contain a field of prime

characteristic p > 0. The absolute Frobenius homomorphism given by send-

ing r 7→ rp is denoted by F :R→ F∗R. For an R-module M we denote

by F e∗M the R-module whose underlying abelian group is M but with

multiplication given by r ·m= rp
e
m. The ring R is called F -finite if F∗R is

a finite R-module; in other words, the Frobenius morphism on SpecR is a

finite map.

Given a ring R we denote by DR the ring of (absolute) Z-linear differential

operators in the sense of Grothendieck [15]. Given a polynomial ring R[t], we

write ∂
[m]
t : R[t]→R[t] for the R-linear differential operator which sends tn

to
(
n
m

)
tn−m with the usual convention that

(
n
m

)
= 0 for m> n. We introduce

the notation

θm = tm∂
[m]
t ϑm = ∂

[m]
t tm

for the R-linear operators which are given by sending tn 7→
(
n
m

)
tn and tn 7→(

n+m
m

)
tn, respectively. The operator θm is called the (divided power) Euler

operator of order m.

As R is a ring of prime characteristic p > 0 one has the p-filtration of

its ring of differential operators, see [13]. The ring of (absolute) differential

operators DR is the direct limit of rings

DeR ∼= EndR(F e∗R),

called the differential operators of level e. Indeed, the inclusion from DeR→
De+1
R is the composition of the natural map EndR(F e∗R)→ F∗ EndR(F e∗R)

followed by F∗ EndR(F e∗R)→ EndR(F e+1
∗ R). The direct limit over these

maps yields DR.

If one uses Rp ⊆R instead of R→ F∗R then one obtains the more familiar

but equivalent description DeR = EndRpe (R) and the union over these is DR.

https://doi.org/10.1017/nmj.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.11


BERNSTEIN–SATO POLYNOMIALS IN POSITIVE CHARACTERISTIC 79

Also note that if R[t] is a polynomial ring over R then we have an inclusion

DR→DR[t]. Indeed, F∗R[t] =
⊕pe−1

i=0 F∗Rt
i and given P ∈ DeR we have an

extension P ′ by sending bti to P (b)ti for i> 0.

We denote by Mod-DeR the category of right DeR-modules and by Mod-R

the category of right R-modules.

We recall a theorem of Lucas [19, §XXI] which states that given natural

numbers n, m with p-adic expansions n=
∑s

i=0 aip
i and m=

∑s
i=0 bip

i with

ai, bi ∈ {0, . . . , p− 1} one has(
n

m

)
=

s∏
i=0

(
ai
bi

)
mod p.

In particular, it is a crucial ingredient in some proofs of the following

relations among the differential operators in positive characteristic which

we recall for the convenience of the reader.

Lemma 1.1. Let R be a regular and F -finite ring and R[t] the polynomial

ring over R in one variable. Then the following hold:

(a) [∂
[pi]
t , tp

i
] = 1 which just means ϑi = 1 + θi.

(b) (sr)!
(s!)r ∂

[sr]
t = (∂

[s]
t )r.

(c)
∏r
j=1(θpe + j) = (∂

[pe]
t )r(tp

e
)r.

(d) [t, θpi ] =−θpi−1t− t for all i.

(e) [θi, θj ] = 0 for all i, j.

(f) [t, θm](tn) =−
(

n
m−1

)
tn+1.

(g) θm ∈ DeR[θ1, θp, . . . , θpe−1 ] for all m< pe.

(h) DeR[θ1, . . . , θpe−1 ]t= tDeR[θ1, . . . , θpe−1 ].

Proof. (a) and (b) are proven in [23, Lemma 4.1], and (c), (d), (e), (f)

follow from (a) and [23, Lemma 4.1], (g) follows from [23, Remark 6.3] and

(a). For (h) we argue along the lines of [23, Lemma 6.4]. The inclusion from

right to left follows from (d) and (g). The other inclusion follows similarly

using (f).

§2. From Cartier modules to right D-modules

In this section, we recall the construction of the functor from Cartier

modules to (right) DR-modules.
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Throughout we assume that R is an F -finite regular ring and that all

modules considered are finitely generated. By definition, a Cartier module

M is an R-module M together with an R-linear map κ : F∗M →M . This is

equivalent to the data of an R-module and an R-linear map C :M → F !M =

HomR(F∗R,M) (C is just the adjoint of κ — see [7, Proposition 2.18]).

Iterating this map we obtain a directed system M → F !M → · · · → F e!M .

We have

Proposition 2.1. Let (M, κ) be a Cartier module. Then the limit M
over the maps M → F e!M yields an isomorphismM→ F !M which endows

M with a right DR-module structure.

Proof. It is easy to see that the Ce induce a map M→ F e!M which is

an isomorphism for all e> 0. Each F e!M is naturally a right DeR-module by

premultiplication. This induces a right DR-module structure in the limit.

It is well known that if R is smooth over a perfect field k then the top-

dimensional differential forms ωR/k are naturally equipped with a right DR-

module structure and ωR/k induces an equivalence between left and right

DR-modules (see [3, Chapitre 1]).

If k is only F -finite but not perfect then the situation is more complicated.

We proceed as follows. Fix, once and for all, an isomorphism k→ F !k. If

R is regular essentially of finite type over k with structural morphism f :

SpecR→ k then we set ωR := f !k and we get an induced isomorphism ωR→
F !ωR (note that F is the absolute Frobenius morphism)2. This isomorphism

endows ωR with a right DR-module structure and after this choice one has an

equivalence between right and left DR-modules that is obtained by tensoring

with ω−1
R .

In particular, since direct limits commute with tensor products the

category of DR-modules obtained in Proposition 2.1 (together with the

fixed isomorphism) is equivalent to the category of unit R[F ]-modules of

Emerton and Kisin (see [5, Theorem 2.27]). Moreover, if we restrict the

functor M 7→ colimeF
e!M to the category of minimal Cartier modules (or

equivalently, if we descend it to Cartier crystals — see [7] and [8] for these

notions) then it is also fully faithful.

Since test modules are naturally attached to Cartier modules it seems

more natural to work with right-DR modules when studying test module

2We are suppressing a shift here, but f !k is supported in a single degree and is an
invertible sheaf.
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filtrations and Bernstein–Sato polynomials. In fact, using this approach

we can employ the ordinary higher Euler operators (i.e. tp
i
∂

[pi]
t instead

of ∂
[pi]
t tp

i
) and avoid a sign change in the definition of Bernstein–Sato

polynomials compared to [23].

Note that the case Mustaţă considered in [23] corresponds in our setting

to the Cartier module ωR with the (chosen) isomorphism ωR→ F !ωR. In

terms of constructible sheaves on the étale site this corresponds, via the

Riemann–Hilbert correspondence of [14] and [7, Theorem 5.15], to the case

of the constant sheaf.

For left DeR-modules one has, as a special case of Morita equivalence,

an equivalence with R-Mod for all e> 0 (see e.g. [4, Proposition 3.8 and

Corollary 3.10]). A similar statement holds for right modules:

Proposition 2.2. Let R be an F -finite regular ring. Then the functor

F e!(−) = HomR(F e∗R,−) induces an equivalence between Mod-R and Mod-

DeR. Its inverse is given by −⊗EndR(F e∗R) F
e
∗R. In particular, F e! reflects

isomorphisms.

Proof. By the assumptions on R we obtain that F e∗R is a finitely

generated locally free R-module. Note that F e!M = Hom(F e∗R,M) viewed

as an R-module via the ring isomorphism R→ F e∗R and acting on the first

factor is isomorphic to F e∗M ⊗F e∗R F
e!R∼=M ⊗R F e!R by [7, Lemma 5.7].

Since F e!R= HomR(F e∗R, R) the claimed equivalence is just a case of Morita

equivalence (cf. e.g. [18, Theorem 18.24]).

As F e! induces an equivalence it is fully faithful and hence reflects

isomorphisms.

§3. Bernstein–Sato polynomials

In this section, we introduce our notion of Bernstein–Sato polynomial

after transferring some results of Mustaţă in [23] to our right D-module

situation.

If k is perfect and SpecR is smooth most of the results in this section

follow formally once one observes that given a right DR[t]-module the

operator tp
e
∂

[pe]
t acts via −∂[pe]

t tp
e

on the left module obtained by tensoring

with ω−1
R[t]/k [3, 1.3.4].

Lemma 3.1. Let R be regular and F -finite and let R[t] be the polynomial

ring in one variable over R. Given a right DeR[t]-module M , there is a unique

https://doi.org/10.1017/nmj.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.11
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decomposition as DeR-modules

M =
⊕
i∈Fep

Mi,

where for 1 6 l 6 e the operator θpl−1 acts on Mi via il. This decom-

position is preserved by DeR[t]-morphisms. The same statement holds for

DeR[θ1, . . . , θpe−1 ]-modules.

Proof. This works similarly to [23, Proposition 4.2]. More precisely, one

has
p−1∏
j=0

(θpe + j) =

p∏
j=1

(θpe + j) = 0

for all e> 0. Indeed, by Lemma 1.1 it suffices to show that (∂
[pe]
t )p = 0.

This in turn follows from (b) since pe+1!
(pe!)p is divisible by p. Using this and

the fact that [θi, θj ] = 0 the existence of such a decomposition follows. The

remaining statements follow easily.

Given M we refer to the decomposition of Lemma 3.1 as the eigenspace

decomposition of M (with respect to the Euler operators).

Note that if M is a right DeR[t]-module then it is in particular a right De−1
R[t] -

module. Hence, M admits eigenspace decompositions with respect to DeR[t]

and with respect to De−1
R[t] and these are compatible. That is, if M(i1,...,ie−1)

is an eigenspace for the θpl−1 with 1 6 l 6 e− 1 then

M(i1,...,ie−1) =
⊕
j∈Fp

M(i1,...,ie−1,j)

is an eigenspace decomposition with respect to the θpl−1 for 1 6 l 6 e. Again,

a similar statement holds for right DeR[θ1, . . . , θpe−1 ]-modules.

Given a morphism f : Spec S→ SpecR of regular schemes and a right

DS module M one defines the pushforward f+M as f∗(M ⊗DS S)⊗R DR.

We thus have a natural map f∗M → f+M . By abuse of notation we denote

the image of f∗M under this map again by f∗M . Similarly, we define the

pushforward f+M for a right DeS-module as f∗(M ⊗DeS S)⊗R DeR.

Our next goal is to describe this natural map in the setting where we

identify DeR with EndR(F e∗R). We first need a

Lemma 3.2. Let R be regular and F -finite and M a (right) R-module.

Then F e∗M ⊗F e∗R EndR(F e∗R)→HomR(F e∗R,M), m⊗ ϕ 7→ [r 7→mϕ(r)] is

an isomorphism of EndR(F e∗R)-modules.
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Proof. The module structure on F e∗M ⊗F e∗R EndR(F e∗R) is given by

multiplication from the right and the one on HomR(F e∗R,M) is given by

premultiplication. Bijectivity is local so that we may assume that F e∗R

is a free R-module (use [17, Theorem 2.1]). Fix a basis b1, . . . , bn and

let δi : F e∗R→ F e∗R be the projection onto the ith basis vector. We define

a map HomR(F e∗R,M)→ F e∗M ⊗F e∗R EndR(F e∗R), ϕ 7→
∑

i ϕ(bi)⊗ δi which

is a two-sided inverse.

Proposition 3.3. Let f : Spec S→ SpecR be a morphism of regular

F -finite schemes and let M be an S-module. Let HomS(F e∗S, M) be a right

DeS-module via the action on the first factor. Then f+ HomS(F e∗S, M) is

naturally isomorphic to F e!f∗M . Under this identification the natural map

f∗HomS(F e∗S, M)→ f+ HomS(F e∗S, M)

is given by the composition of the canonical maps

f∗ HomS(F e∗S, M)→HomR(f∗F
e
∗S, f∗M)→HomR(F e∗ f∗S, f∗M)

with the map

HomR(F e∗ f∗S, f∗M)→HomR(F e∗R, f∗M), ϕ 7→ ϕ ◦ F e∗ (f#).

Proof. By definition the pushforward f+ HomS(F e∗S, M) is given as

F e∗ f∗(HomS(F e∗S, M)⊗EndS(F e∗S) F
e
∗S)⊗F e∗R EndR(F e∗R).

Note that the right F e∗R-module structure on the term F e∗ f∗(. . .) is

given by (ψ ⊗ s) · r = ψ ⊗ sf(r). By Proposition 2.2 the whole expression

is isomorphic to F e∗ f∗M ⊗F e∗R EndR(F e∗R). Using Lemma 3.2 above we

obtain that F e∗ f∗M ⊗F e∗R EndR(F e∗R)→HomR(F e∗R, f∗M) is an isomor-

phism. One readily checks that the natural map is given by the formula

above.

Next we show that this isomorphism is compatible with direct limits. We

first need a general Lemma.

Lemma 3.4. Let I be a directed system and let Mi, Ni be Ri-modules

such that Mi, Ni and Ri are filtered by I. Write M = colimiMi, N =

colimi Ni and R= colimi Ri. Then one has an isomorphism colimi(Mi ⊗Ri
Ni)→M ⊗R N .
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Proof. We have Ri-bilinear maps Mi ×Ni→M ⊗R N which induce, by

the universal properties of the limit and the tensor product, an R-linear

map colimiMi ⊗Ri Ni→M ⊗N, [mi ⊗ ni] 7→ [mi]⊗ [ni].

On the other hand, the maps Mi ×Ni→ colimiMi ⊗Ri Ni, (mi, ni) 7→
[mi ⊗ ni] induce an R-bilinear map M ×N → colimiMi ⊗Ri Ni. This in

turn induces an R-linear map M ⊗N → colimiMi ⊗Ri Ni which is an

inverse to the map constructed above.

Proposition 3.5. Let f : Spec S→ SpecR be a morphism of regular F -

finite schemes and assume that (M, κ) is a Cartier module on Spec S and

denote its limit over the Ce by M. Then f+M is naturally isomorphic to

colim F e!f∗M ∼= colim f+F
e!M .

Proof. The first claimed isomorphism is obtained by applying Lemma

3.4 twice.

For the second claimed isomorphism note that by Proposition 3.3 we

have isomorphisms f+F
e!M → F e!f∗M . Moreover, we have a commutative

diagram

f+F
e!M //

��

HomR(F e∗R, f∗M)

ϕ 7→[r 7→κ(ϕ(r))]

��

f+F
e+1!

M // HomR(F e+1
∗ R, f∗M),

where the left vertical map is given by tensoring ϕ 7→ [s 7→ κ(ϕ(s))] with the

natural maps F e∗S→ F e+1
∗ S and DeS →D

e+1
S .

Lemma 3.6. Let R be regular and F -finite and f ∈R. Denote by γ :

SpecR→ SpecR[t] the graph embedding along f and let M be a right DR-

module. Then the quotient

N := (γ∗M)DeR[θ1, θp, . . . , θpe−1 ]/(γ∗M)DeR[θ1, θp, . . . , θpe−1 ]t

is a right DeR[θ1, θp, . . . , θpe−1 ]-module.

Proof. The claim follows from Lemma 1.1 (i) and (γ∗M)t= γ∗(Mf).

Definition 3.7. With the notation of Lemma 3.6 let Γef ⊆ {0, . . . , p−
1}e be the set of those i= (i1, . . . , ie) ∈ Fep for which the eigenspace Ni

of N (as constructed in Lemma 3.1) is nontrivial. Then we define the eth
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Bernstein–Sato polynomial of M as

beM,f (s) =
∏
i∈Γef

(
s−

(
ie
p

+ · · ·+ i1
pe

))
∈Q[s],

where we lift3 elements of Fp = {0, . . . , p− 1} to Z.

Note that since we are working with right modules rather then left

modules we do not need to invert the sign of the eigenvalues as in

[23]. More precisely, Mustaţă considers the action of ∂[pl]tp
l

on the left

DeR[ϑ1, . . . , ϑpe−1 ]-module

DeR[ϑ1, . . . , ϑpe−1 ]γ∗R/tDeR[ϑ1, . . . , ϑpe−1 ]γ∗R

and if (i1, . . . , ie) is an eigenvalue for the left action then −ie
p + · · ·+ −i1

pe

is encoded as a zero in a Bernstein–Sato polynomial. As pointed out at

the beginning of Section 3 these Bernstein–Sato polynomials coincide with

the one defined in 3.7 provided R is smooth over a perfect field k. In fact,

Theorem 5.4 and [23, Theorem 6.7] show that the polynomials coincide for

R regular essentially of finite type over an F -finite field and e� 0.

Remark 3.8. We comment on our definition of Bernstein–Sato poly-

nomial and its relation to the definition over the complex numbers. Let

X = An+1
C . Then DX is just the Weyl algebra C[x1, . . . , xn+1, ∂1, . . . , ∂n+1]

with the usual relation [∂i, xj ] = δij . Assume that the hypersurface is given

by t= xn+1. Then for a regular holonomic quasi-unipotent DX -module M

the V -filtration along t is a decreasing Q-indexed filtration with certain

properties (see [11] for a definition).

In particular, one has (cf. [24, Proposition 2.1.7]) V kM = V k(DR)V 0(M)

for k 6 0 but V kM = V k−1(DR)V 1(M) only for k > 1.4 Here V k(DX) is the

V -filtration on DX which is given by

V k(DX) = tkV 0(DX) for k > 1

and by

V k(DX) = V 0(DX)DX,−k for k 6−1,

3Here and elsewhere we always view Fp as {0, . . . , p− 1} and confuse elements in Fp
with a lift whenever this is convenient.

4Note that following [11] we have inverted signs here compared to [24].
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where DX,−k are the differential operators of order 6−k. Finally, V 0(DX)

is given by {
∑

n>m f(x)∂αx t
n∂mt | f ∈ C[x1, . . . , xn]}.

The Bernstein–Sato polynomial of M is now defined as the monic minimal

polynomial b ∈ C[s] such that b(t∂t + k)V kM ⊆ V k+1M for all k ∈ Z. By the

above it is actually sufficient to construct a Bernstein–Sato polynomial that

satisfies the above identity for k =−1, 0, 1.

Since in characteristic p > 0 the Briançon–Skoda theorem [6, Theorem

4.21] always yields fnτ(M, f t−n) = τ(M, f t) for t> n our definition can be

seen as an analog of the one over the complex numbers since we only need

to control the range k = 0.

§4. Test modules and D-modules

In this section, we relate test modules of a Cartier module M over a

regular F -finite ring R with certain right DeR submodules of F e!M . First,

we need several technical lemmata concerning test modules.

Lemma 4.1. Let R be essentially of finite type over an F -finite field,

(M, κ) an F -pure coherent Cartier module, t ∈Q>0 and let f be an M -

regular element. Then one has κef dtp
eef lM ⊆ κe+1f dtp

e+1ef lM for all l > 0.

In particular, for e� 0 depending on l equality holds.

Proof. First of all, for any l we have

κnf lM ⊇ κnf lpM = κn−1f lκM = κn−1f lM,

where we used that κ is surjective since M is F -pure.

Next, we have

κf dtp
e+1ef lM ⊇ κ(f dtp

ee)pf lM = f dtp
eeκf lM ⊇ f dtpeef lM,

where we used the previous observation with n= 1 for the last inclusion.

Applying κe on both sides yields the claimed inclusion. Since M is coherent

the ascending chain κef dtp
eef lM stabilizes.

Remark 4.2. With the notation of Lemma 4.1 if t= m
ps and n> s is

such that κnf lM =M then equality holds for any e> 2n. Indeed,

κefmp
e−s
f lM = κe(fmp

n−s
)p
e−n

f lM = κnfmp
n−s

κe−nf lM = κnfmp
n−s

M

which is independent of e.

If R is a polynomial ring and M is given explicitly by a presentation

Ra→Rb→M then we expect that it should be possible to determine e

explicitly for a given hypersurface f .
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Lemma 4.3. Let R be essentially of finite type over an F -finite field, let

(M, κ) be an F -regular coherent Cartier module, t ∈ Z[1
p ] and let f be an

M -regular element. Consider the Cartier algebra C generated in degree e> 1

by κef dtp
ee. Then MC = κef dtp

eeM for all e� 0.

Proof. The calculation

κaf dtp
aeκa

′
f dtp

a′e = κa+a′f dtp
aepa′f dtp

a′e = κa+a′f dtp
a+a′ef r

with 0 6 r = dtpa′e+ dtpaepa′ − dtpa+a′e shows that C is in indeed a

Cartier algebra. Applying Lemma 4.1 with l = 0 shows that κef dtp
eeM ⊆

κe+1f dtp
e+1eM (with equality for e� 0) so that for all e� 0 we have

κef dtp
eeM = C+M .

By [6, Proposition 2.13 and Corollary 2.14], one has MC = (C+)hM for

all h� 0. Fix such an h and e as above. Then the inclusion from left to

right follows by the same argument as above.

For the other inclusion we have to prove that C+κ
ef dtp

eeM ⊇ κef dtpeeM
for e� 0. We use the assumption on t and write t= m

ps with m ∈ Z and

assume that e> s. We consider elements of the form κe
′
f dtp

e′e ∈ C+. For

e′ > e we compute

κe
′
fmp

e′−s
κefmp

e−s
M = κefmp

e−s
κe
′−eκefmp

e−s
M = κefmp

e−s
M,

where for the last equality we used the F -regularity of (M, κ) (see [25,

Proposition 5.2] and Lemma 4.1) possibly choosing a larger e′.

Next, we prove a variant of [10, Lemma 2.1] for modules.

Lemma 4.4. Let R be essentially of finite type over an F -finite field. Let

(M, κ) be an F -regular coherent Cartier module, f ∈R a nonzero divisor on

M and t ∈ Z[1
p ]. Then for all e� 0 we have τ(M, f t) = κe(f tp

e
M).

Proof. First of all, note that Mf is F -regular with respect to the Cartier

algebra C generated by the κef dtp
ee. By [6, Theorem 3.11], we thus have

τ(M, f t) =
∑
n>1

CnfMC .

By Lemma 4.3 we may replace MC by κef tp
e
M for any sufficiently large e.

As seen in the proof of Lemma 4.3 we have Cn = κnf dtp
neR.
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We compute

κnf dtp
nefκef tp

e
M = κn+ef dtp

nepef (t+1)peM ⊆ κn+ef dtp
n+eef (t+1)peM

and for tpn ∈ Z equality holds. In particular, using Lemma 4.1 we obtain

that ∑
n>1

κnf dtp
nefκef tp

e
M = κnf tp

n
fκef tp

e
M for some n� 0.

Finally, we have for n� 0 and suitable e′

κnf tp
n
fκef tp

e
M = κn+e−e′f tp

n+e−e′
κe
′
f (t+1)peM = κn+e−e′f tp

n+e−e′
M,

where the last equality is due to the F -regularity of (M, κ).

Remark 4.5. In particular, if t= m
ps ∈ Z[1

p ] we may write t= mpe−s

pe so

that τ(M, f t) = κe(fm
′
M), where m′ =mpe−s.

Also note that by right continuity (i.e. τ(M, f t) = τ(M, f t+ε) for small

ε > 0) we may always assume that t ∈ Z[1
p ] if we want to compute test

modules.

Given a κ-module M we have a natural map (the adjoint of κ) C :M →
F !M,m 7→ (r 7→ κ(rm)) and if N is an R-submodule of M we may consider

the right DeR-submodule of F e!M generated by N which by definition is

Ce(N) · DeR.

Lemma 4.6. Let R be regular and F -finite. Let M be a coherent κ-

module and let N be an R-submodule of M . Then F e!κe(F e∗N) is the right

DeR-submodule of F e!M generated by the image of N in F e!M .

Proof. Clearly, F e!κe(F e∗N) is a right DeR-submodule of F e!M . So one

inclusion is dealt with once we show that Ce(N)⊆ F e!κe(F e∗N). If n ∈N
then Ce(n) : F e∗R→M, r 7→ κe(rn) and Ce(rn) ∈ κe(F e∗N) for all r ∈ F e∗R.

For the other inclusion we may assume that R is local. Hence, F e∗R is free

of rank s= pe dimR since R is regular and F -finite (see [17, Theorem 2.1]).

Fix a basis b1, . . . , bs of F e∗R and let ϕ : F e∗R→ κe(F e∗N) be an element

of F e!κe(F e∗N). Each ϕ(bi) is of the form κe(ni) for some ni ∈N . We then

can write ϕ as
∑s

i=1 ψi ◦ pi, where pi : F e∗R→ F e∗R, pi(bj) = δij and ψi(r) =

κe(rni). Then pi ∈ DeR and ψi ∈ Ce(N) as desired.
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Example 4.7. Let M be a Cartier module on R and let γ : SpecR→
SpecR[t] be the graph embedding along f . Then one has, in general, a

proper inclusion γ∗(C
e(M))DeR ⊆ γ∗(Ce(M)DeR)DeR. Here we let DeR act via

the inclusion DeR→DeR[t]. Also note that Ce(M)DeR = F e!M .

As an example for this let R= k[y] and M =R with twisted Cartier

structure κ · y, where κ(yi) = δi(p−1) for 0 6 i6 p− 1. Then F e!R contains

κe and we claim that this is not contained in γ∗(C
e(M))DeR. Indeed, any

element ψ in γ∗(C
e(M))DeR is of the form

ψ(yitj) =

s∑
l=0

κ(y
pe−1
p−1 rlPl(y

i)yj),

where Pl ∈ DeR and we used that (κy)e = κey1+p+···+pe−1
. Here κe is given

by acting on basis elements yitj 7→ 1 if i+ j = pe − 1 and 0 else. To see the

claim let now i= 0 and j = pe − 1. Then we can write ψ(tp
e−1) as y ·

∑
. . .

and clearly this cannot evaluate to 1. Hence, the inclusion is strict.

Combining the two previous lemmata we obtain the following

Corollary 4.8. Let R be regular and essentially of finite type over an

F -finite field. Let (M, κ) be an F -regular Cartier module and let f ∈R be

a nonzero divisor on M and t ∈ Z[1
p ]. Then for e� 0 and t= m

pe we have

F e!τ(M, f t) = Ce(fmM) · DeR.

Proof. Immediate from Lemma 4.4 and Lemma 4.6.

§5. Test modules and Bernstein–Sato polynomials

In this section, we prove the main result of this paper. That is, we show

that the roots of the Bernstein–Sato polynomials for e sufficiently large

are precisely the F -jumping numbers in the range (0, 1] of the test module

filtration.

Recall that given a morphism γ : SpecR→ SpecR[t] and a right DeR-

module M we denote the image of the natural map γ∗M → γ+M again by

γ∗M . In particular, γ∗M is then contained in HomR[t](F
e
∗R[t], γ∗M) (see

Proposition 3.3).

Lemma 5.1. Let R be a regular F -finite ring and (M, κ) a Cartier

module with adjoint C. Let f ∈R and denote by γ : SpecR→ SpecR[t] the

graph embedding along f . Then we have an eigenspace decomposition

(γ∗C
e(M))DeR[θ1, . . . , θpe−1 ] =

⊕
i∈Fep

(γ∗C
e(M))DeR ◦ πi,
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where

πi : F e∗R[t]→ F e∗R[t], πi(rt
j) =

{
rtj j =

∑e
l=1 ilp

l−1,

0 else,

is the projection onto the eigenspace.

Proof. We denote (γ∗C
e(M))DeR[θ1, . . . , θpe−1 ] by N and its eigenspaces

by Ni. First of all, note that Lucas’ theorem shows that πi is the projection

onto the eigenspace i1, . . . , ie for the θ1, . . . , θpe−1 .

Assume that ϕ ∈Ni. Then viewing ϕ as an element of

HomR[t](F
e
∗R[t], γ∗M) we have ϕ(rtm) = 0 for m 6= i1 + i2p+ · · ·+ iep

e−1

so that ϕ factors through πi.

In the other direction note that given ϕ ∈N we have ϕ=∑
i∈Fep ϕ ◦ πi which is a decomposition of ϕ in the ambient module

(γ∗F
!M)DeR[θ1, . . . , θpe−1 ] as eigenvectors. Since this decomposition is pre-

served by morphisms (see Lemma 3.1) the above has to be the decomposition

of ϕ in N as well.

Proposition 5.2. Let R be a regular F -finite ring and (M, κ) a

Cartier module with adjoint C. Let f ∈R and denote by γ : SpecR→
SpecR[t] the graph embedding along f . Then the (i1, . . . , ie)-eigenspace of

(γ∗C
e(M))DeR[θ1, . . . , θpe−1 ] is isomorphic to Ce(f i1+i2p+···iepe−1

M) · DeR as

a right DeR-module.

Proof. We write m= i1 + i2p+ · · ·+ iep
e−1. Clearly, the right DeR-

submodule F e∗R · tm of F e∗R[t] is isomorphic to F e∗R by sending tm to 1.

In particular, we have a commutative diagram

F e∗Rt
m

��

ϕ
// γ∗M

F e∗R

ϕ(fm)

::

for any element ϕ of the eigenspace. This induces the desired isomorphism

of right DeR-modules.

Corollary 5.3. The quotient

(γ∗C
e(M))DeR[θ1, . . . , θpe−1]/(γ∗C

e(fM))DeR[θ1, . . . , θpe−1]
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is a right DeR[θ1, . . . , θpe−1]-module and the (i1, . . . , ie)-eigenspace of the

quotient is isomorphic to

Ce(f i1+i2p+···+iepe−1
M) · DeR/Ce(f1+i1+i2p+···+iepe−1

M) · DeR

as a right DeR-module.

Proof. The first claim is just Lemma 3.6. Since the eigenspace decomposi-

tion is preserved by the canonical projection we get the desired isomorphism

on the quotient by Proposition 5.2.

Following [23] we introduce some notation. Namely, given λ ∈ (0, 1] we

can write it uniquely as

λ=
∑
i>1

ci(λ)

pi

with all ci(λ) ∈ {0, . . . , p− 1}, and such that infinitely many of them are

nonzero. Moreover, one obtains for every e> 1 that

e∑
i=1

ci(λ)

pi
=
dλpee − 1

pe
.

We are now ready to state and prove our main result:

Theorem 5.4. Let R be regular essentially of finite type over an F -finite

field. Let (M, κ) be an F -regular Cartier module and f ∈R a nonzero divisor

on M . The roots of the Bernstein–Sato polynomials beM,f (s) are given for e

sufficiently large by dλp
ee−1
pe , where λ varies over the F -jumping numbers of

the test module filtration τ(M, f t) for t ∈ (0, 1].

Proof. By definition λ ∈ (0, 1] is an F -jumping number if and only if

for all e� 0 we have

τ(M, κ, f
dλpee−1

pe ) 6= τ(M, κ, f
dλpee
pe ).

Using the fact that F e! is fully faithful (Proposition 2.2) this inequality is

equivalent to

F e!τ(M, κ, f
dλpee−1

pe ) 6= F e!τ(M, κ, f
dλpee
pe )

for all e� 0. We write dλpee − 1 = i1 + i2p+ · · ·+ iep
e−1. Then by Corol-

lary 4.8 the above means that

Ce(f i1+i2p+···+iepe−1
M) · DeR 6= Ce(f1+i1+i2p+···+iepe−1

M) · DeR
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for all e� 0. Finally, by Corollary 5.3 this is equivalent to dλp
ee−1
pe being a

zero of beM,f (s) for all e� 0.

Remark 5.5.

(a) We recall that there are only finitely many F -jumping numbers in (0, 1]

and that they are all rational. In particular, the limit over the beM,f (s)

for e→∞ is a polynomial with rational roots.

(b) The case where M is locally constant (and R is smooth over a perfect

field), that is, when there exists a finite étale morphism ϕ : Spec S→
SpecR such that ϕ∗M ∼= ωnS can also be directly deduced from the

constant case treated in [23]. This essentially boils down to the fact

that differential operators along étale morphisms are well behaved (one

obtains an inclusion DeR→DeS and the natural map M → ϕ!M is DeR-

linear — see [22, Theorem 2.2.5, Corollary 2.2.6] for the first statement.

The latter may be extracted from [22, Theorem 2.2.10] and [3, 2.1.3]).

Then one uses [25, Theorem 8.5] to see that the F -jumping numbers

of M are the same as that of ωS . In fact, writing this up precisely was

the original motivation for this paper.

(c) Note that Mustaţă’s result [23, Theorem 6.7] is valid for any e> 1 while

we only obtain a result for e� 0.

§6. A comparison with Stadnik’s b-functions

The goal of this section is to point out the relation of our Bernstein–Sato

polynomials to the b-functions of Stadnik defined in [26, Definition 4.4].

Stadnik works in the context of unit R[F ]-modules which were introduced

by Lyubeznik [20] and Emerton–Kisin [14]. We briefly recall the relevant

notions. A unit R[F ]-module is an R-moduleM equipped with a structural

isomorphism θ : F ∗M
∼=−→M. A root ofM is an R-module M together with

an injective R-linear map Φ :M → F ∗M such that colime F
e∗M and M

are isomorphic as unit R[F ]-modules. In particular, if M is a root for M
then γ∗M ⊗ ω−1

R[t]/R is a root for γ+M, where γ : SpecR→ SpecR[t] is the

graph embedding for some hypersurface f (Proposition 3.5 above shows

that γ+ is the D-module pushforward and [14, 14.3.10, 15.2] shows that

the D-module pushforward coincides with the pushforward on unit R[F ]-

modules). By abuse of notation we denote the image of the natural map

γ∗M ⊗ ω−1
R[t]/R→ F e∗(γ∗M ⊗ ω−1

R[t]/R) again by γ∗M ⊗ ω−1
R[t]/R.
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Given a sequence il of integers in {0, . . . , p− 1} we refer to
∑e−1

l=0 ilp
l

as the base-p expansion of (i1, . . . , ie). Varying e we call the number

lime→∞
∑e−1

l=0 ilp
l/pe the p-weighted limit of the base-p expansion if it exists.

With this notation Stadnik defines a b-function (for the pair (γ∗M ⊗
ω−1
R[t]/R, γ+M)) as any polynomial b(s) ∈ C[s] with roots in (0, 1] that

satisfies the following property:

If λ is a root of b(1− s) then there exists an integer n such that for all

e> 0 the set

{dλpee − a | 0 6 a6 pn}

contains the base p-expansions of the eigenvalues of the θpl , l = 0, . . . , e− 1,

on the quotient

De
R[θ1, . . . , θpe−1 ](γ∗M ⊗ ω−1

R[t]/R)/De
R[θ1, . . . , θpe−1 ]t(γ∗M ⊗ ω−1

R[t]/R).

The set of b-functions forms an ideal in C[s] and we denote its monic

generator by b̃M,f (s).

The main result of [26] is that b̃M,f (s) is a nonzero polynomial with

rational roots. We reprove this here using Theorem 5.4 under the additional

assumption that M ⊗ ωR is F -regular and that f is not a zero divisor on M .

Remark 6.1. Note that ΩR[t]/R is free of rank 1 and dt= d(t− f).

By definition ∂t is the differential operator in HomR(ΩR[t]/R, R) =R⊕
DerR[t]/R given by the dual of dt. In particular, we have ∂t = ∂t−f . Hence,

applying the automorphism t 7→ t+ f we are precisely in the setting where

our hypersurface equation is given by t= 0 and the Euler operators are

given by θe = tp
e
∂

[pe]
t , where we use the inclusion DR[t]/R ⊆DR[t]. The latter

is the setting in which Stadnik works.

Also note that Stadnik considers the quotient

De
R[t, θ1, . . . , θpe−1 ](γ∗M ⊗ ω−1

R[t]/R)/De
R[t, θ1, . . . , θpe−1 ]t(γ∗M ⊗ ω−1

R[t]/R)

but since [t, θi] = θi−1 and t(γ∗M ⊗ ω−1
R[t]/R) = γ∗fM ⊗ ω−1

R[t]/R this quotient

coincides with the one we consider.

The equivalence of our notion and that of Stadnik is obtained from the

equivalence of left and right DeS-modules which we recall in a special setting.

For an S-module M the eth Frobenius pull back5 F e∗M = F e∗R⊗RM is a

5Note that again we view F e∗S as an S-bimodule where the structure on the left is
obtained by the ring isomorphism S→ F e∗S.
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left DeS-module via the action of DeS on F e∗S. Tensoring with ωS one obtains

an isomorphism ωS ⊗ F e∗M ∼= F e!(ωS ⊗M) = HomS(F e∗S, ωS ⊗M) and

the latter naturally carries the structure of a right DeS-module via the action

on F e∗S. Since ωS is invertible this induces an equivalence of categories

between left and right DeS-modules.

Given a smooth ring S over a perfect field k we can choose a set of local

coordinates x1, . . . , xn. For i ∈ Nn write ∂
[mi]
i = ∂

[m1]
xi1
· · · ∂[mn]

xin . Now given

any differential operator P we can write it locally as∑
i∈Nn

si∂
[mi]
i ,

where almost all i are zero. Then we denote the adjoint operator∑
i

(−1)
∑n
j=1 ij∂

[mi]
i si

by P t. Finally, note that one has (PQ)t =QtP t.

Proposition 6.2. Let S =R[t] for R smooth over a perfect field k and
M an S-module. Then for a set of local coordinates t, x1, . . . , xn the right
DeS-module structure on ωS ⊗ F e∗M is locally given by

(dt ∧ dx1 ∧ · · · ∧ dxn ⊗m) · P = dt ∧ dx1 ∧ · · · ∧ dxn ⊗ P tm

and the isomorphism ωS ⊗ F e∗M → F e!(ωS ⊗M) is DeS-linear. In par-
ticular, for 1⊗ v ⊗m ∈ ωS/R ⊗R ωR ⊗ F e∗M one has (1⊗ v ⊗m) · θpl =
(1⊗ v ⊗−ϑplm) for any 0 6 l 6 e− 1.

Proof. First of all, we reduce to the case M = S. The DeS-module
structure on F e∗M = F e∗S ⊗S M and on F e!(ωS ⊗M) = HomS(F e∗S, ωS ⊗
M) is given by the action of DeS on F e∗S. Moreover, the isomorphism
ωS ⊗ F e∗M → F e!(ωS ⊗M) factors as the composition of the canonical
isomorphisms

ωS ⊗ F e∗M //ωS ⊗ F e∗S ⊗M
Σ⊗id

//F e!ωS ⊗M //F e!(ωS ⊗M) ,

where Σ : ωS ⊗ F e∗S→ F e!ωS denotes the isomorphism ds⊗ f 7→ Ce(ds) ·
f = [x 7→ κe(xfds)].

Now the claim follows from [3, Proposition 1.1.7(i), Corollary 1.2.6]
with M= ωS and E = F e∗S: Since k is perfect we have DeS/k =DeS . By

[2, Proposition 2.2.7] the image of D(e)
S in DS corresponds to DeS so that

Berthelot’s results also apply to DeS-modules.

https://doi.org/10.1017/nmj.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.11


BERNSTEIN–SATO POLYNOMIALS IN POSITIVE CHARACTERISTIC 95

Corollary 6.3. Let S =R[t] for a regular ring R essentially of finite
type over an F -finite field and M an S-module. Then F e∗M admits a
nontrivial (−i1, . . . ,−ie)-eigenspace for the −ϑ if and only if F e!(M ⊗ ωS)
admits a nontrivial (i1, . . . , ie)-eigenspace for the θ.

Proof. The “only if”-part is immediate from Proposition 6.2. Conversely,
F e!(M ⊗ ωS)⊗ ω−1

S is canonically isomorphic to F e∗M and a similar
argument applies in this case.

Lemma 6.4. Let (M, Φ) be a root of a unit R[F ]-module M and γ :
SpecR→ Spec S =R[t] a closed immersion and (γ∗M ⊗ ω−1

S/R, Φ⊗ id) the
corresponding root for γ+M.

Then (γ∗(ωR ⊗M), C̃) and (ωR ⊗M, C) are naturally Cartier modules
and the map C̃ : γ∗(ωR ⊗M)→ F !γ∗ωR ⊗M is given by the composition
of γ∗(ωR ⊗M)→ γ∗F

!(ωR ⊗M)→ F !(γ∗ωR ⊗M), where the first map is
γ∗C and the second is the composition of maps described in Proposition 3.3.
In particular, if N denotes the image of the natural map γ∗M ⊗ ω−1

R[t]/R→
F e∗(γ∗M ⊗ ω−1

R[t]/R) then ωR[t] ⊗N is the image of the natural map γ∗(ωR ⊗
M)→ F e!(γ∗ωR ⊗M).

Proof. We shorten ωR ⊗M to M ′. It is easy to see that the Cartier
structure given on γ∗M

′ is the one induced from M ′ by

F∗γ∗M
′ ∼ //γ∗F∗M

′
γ∗κM′

//γ∗M
′ .

Hence, one may reduce the problem to checking that given a Cartier module
(A, κ) with adjoint C the adjoint of the structural map of γ∗A is given by
the composition of the map described in Proposition 3.3 with γ∗C. This is
an easy computation which will be left to the reader.

Lemma 6.5. Let R be smooth over a perfect field and f ∈R a hypersur-
face. Let γ : SpecR→ SpecR[t] be the graph embedding along f . Given an
R-module M we have

ωR[t] ⊗ (DeR[θ1, θp, . . . , θpe−1 ]γ∗M ⊗ ω−1
R[t]/R)

= (γ∗ωR ⊗M)DeR[θ1, θp, . . . , θpe−1 ].

Proof. According to our established abuse of notation we have to

show that for m in the image of γ∗M ⊗ ω−1
R[t]/R→ F e∗γ∗M ⊗ ω−1

R[t]/R

one has that ω ⊗ P ·m for any P ∈De
R[θ1, . . . , θpe−1 ] is contained in

the DeR[θ1, . . . , θpe−1 ]-module generated by the image of γ∗(ωR ⊗M)→
F e!γ∗(ωR ⊗M) and vice versa. We may verify this locally and then it follows
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from Proposition 6.2 and the fact that DeR[θ1, . . . , θpe−1 ] is closed under

taking adjoints. This is clear for DeR and for θpi one has for the transposed

operator (θpi)
t =−ϑpi =−(1 + θpi) by Lemma 1.1 (i).

Corollary 6.6. In the situation of Lemma 6.5 we have an isomor-

phism

(DeR[θ1, . . . , θpe−1 ]γ∗M ⊗ ω−1
R[t]/R/D

e
R[θ1, . . . , θpe−1 ]tγ∗M ⊗ ω−1

R[t]/R)⊗ ωR[t]

∼= (γ∗ωR ⊗M)DeR[θ1, . . . , θpe−1 ]/(γ∗ωR ⊗M)tDeR[θ1, . . . , θpe−1 ].

Proof. Note that

(tγ∗M)DeR[θ1, . . . , θpe−1 ] = γ∗(fMDeR)DeR[θ1, . . . , θpe−1 ]

so that the claim follows from Lemma 6.5 and tensoring the obvious short

exact sequence with ωS .

Corollary 6.7. The DeR[θ1, . . . , θpe−1 ]-module

De
R[θ1, . . . , θpe−1 ]γ∗M ⊗ ω−1

R[t]/R/D
e
R[θ1, . . . , θpe−1 ]tγ∗M ⊗ ω−1

R[t]/R

has a nontrivial ϑ-eigenspace with eigenvalue (−i1, . . . ,−ie) if and only if

the right DeR[θ1, . . . , θpe−1 ]-module

(γ∗ωR ⊗M)De
R[θ1, . . . , θpe−1 ]/(γ∗ωR ⊗M)tDe

R[θ1, . . . , θpe−1 ]

has a nontrivial θ-eigenspace with eigenvalue (i1, . . . , ie).

Proof. Note that the left module embeds into DeRγ∗M ⊗ ω
−1
R[t]/R/γ∗M ⊗

ω−1
R[t]/R and similarly for the right module. Then the claim follows from

Corollaries 6.3 and 6.6

Remark 6.8. One should be able to obtain a similar correspondence

between right and left DeR[θ1, . . . , θpe−1 ]-modules under the weaker assump-

tion that R is regular, essentially of finite type over an F -finite field.

However, in this case one cannot appeal to Berthelot’s results. Since Stadnik

works under the assumptions that R is smooth over a perfect field we did

not pursue this further.

We now have the necessary ingredients to state and prove the main results

of this section.

Theorem 6.9. Let γ : SpecR→ SpecR[t] be the graph embedding along

a hypersurface f and let (M, Φ) be a root of a unit R[F ]-moduleM. Assume

https://doi.org/10.1017/nmj.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.11


BERNSTEIN–SATO POLYNOMIALS IN POSITIVE CHARACTERISTIC 97

that the Cartier module M ⊗ ωR is F -regular6 and that f is not a zero

divisor on M . Then if µe denotes the base-p expansions of the eigenvalues

of the θpl operating on the left modules

DeR[θ1, . . . , θpe−1 ]γ∗M ⊗ ω−1
R[t]/R/D

e
R[θ1, . . . , θpe−1 ]γ∗tM ⊗ ω−1

R[t]/R

and λe denotes the base-p expansions of the eigenvalues of θpl operating on

the right modules

(γ∗ωR ⊗M)DeR[θ1, . . . , θpe−1 ]/(γ∗ωR ⊗M)tDeR[θ1, . . . , θpe−1 ]

one has the following relation µe + λe = pe − 1 and

lim
e→∞

µe
pe

= 1− lim
e→∞

λe
pe
.

In particular, the p-weighted limit of the µe exists.

Proof. If θpl operates from the left with eigenvalue −il − 1 then by

Corollary 6.7 and the relation θpl + 1 = ϑpl we have that θpl operates via il
on the right. So we get µe =

∑e−1
l=0 (p− 1− il)pl as the base-p expansion for

the operation of the θpl on the left. Similarly, we have λe =
∑e−1

l=0 ilp
l.

By Theorem 5.4 the p-weighted limit over the λe exists. Moreover,

lim
e→∞

e−1∑
l=0

(p− 1)pl

pe
= 1

so that the claim follows.

We denote the limit for e→∞ of the polynomials beM,f (s) introduced in

Definition 3.7 by bM,f (s). With this notation we can now compare Stadnik’s

notion of Bernstein–Sato polynomial to our notion:

Corollary 6.10. Assume the situation of Theorem 6.9. Let λ1, . . . , λm
be p-weighted limits of the base-p expansions of the eigenvalues of the θpl
acting on

(γ∗ωR ⊗M)De
R[θ1, . . . , θpe−1 ]/(γ∗ωR ⊗M)tDe

R[θ1, . . . , θpe−1 ].

Then b̃M,f (s) =
∏
i(s− λi). In particular, b̃M,f (s) = bM,f (s)

6If M denotes the unique minimal root of M in the sense of [5, Definition 2.7] then
this just means that M is generically simple. That is, any submodule N of M for which
N → F ∗M factors through N → F ∗N which agrees at all generic points of SuppM with
M coincides with M .
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Proof. First of all, we use Theorem 6.9 to ensure that the p-weighted

limits actually do exist. Recall from the discussion before Theorem 5.4 that

for all e> 1 the base-p expansions of the eigenvalues of θ are given by

dλpee − 1. This implies that b(s) is a Bernstein–Sato polynomial.

In the other direction we have to show that b(s) is minimal in the sense

that we may not omit any of the λi. Assume that we have omitted λm
and for some n> 0 the set {dλmpee − a | 0 6 a6 pn} is contained in the

set {dλipee − a | 0 6 a6 pn, 1 6 i6m− 1}. In particular, the dλmpee − 1

are all contained in this set. Since all parameters except e of this set are

finite we may assume that dλmpee − 1 = dλipee − a for some fixed a, i and

infinitely many e. Dividing by pe and passing to the limit e→∞ yields

λi = λm — a contradiction.
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wara)”, in Géométrie algébrique et applications III, Travaux en cours 24, 1987, 53–98.
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