BIJECTIVE PROOFS OF SOME n-COLOR PARTITION IDENTITIES

BY
A. K. AGARWAL

AbSTRACT. Using a technique of Agarwal and Andrews (1987), bijective proofs of some n-color partition identities discovered recently by the author, are given.

1. Introduction, Definitions and the Main Result.

Recently in [3] the following q-identitites of Rogers [5]

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{2 n}}=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{2 n+1}\right)\left(1-q^{20 n+4}\right)\left(1-q^{20 n+16}\right)} \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{(q ; q)_{2 n+1}}=\prod_{\substack{n=1 \\ n \neq \pm 3, \pm 4, \pm 7,10(\bmod 20)}}^{\infty}\left(1-q^{n}\right)^{-1} \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{(q ; q)_{2 n}}=\prod_{\substack{n=1 \\ n \neq \pm 1, \pm 8, \pm 9,10(\bmod 20)}}^{\infty}\left(1-q^{n}\right)^{-1} \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n(n+2)}}{(q ; q)_{2 n+1}}=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{2 n+1}\right)\left(1-q^{20 n+8}\right)\left(1-q^{20 n+12}\right)} \tag{1.4}
\end{equation*}
$$

where $(a ; q)_{n}$ is a rising q-factorial which in general is defined by

$$
(a ; q)_{n}=\sum_{i=0}^{\infty} \frac{\left(1-a q^{i}\right)}{\left(1-a q^{n+i}\right)},
$$

if n is a positive integer, then obviously

$$
(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right),
$$

[^0]and
$$
(a ; q)_{\infty}=(1-a)(1-a q)\left(1-a q^{2}\right) \ldots,
$$
were interpreted combinatorially as follows:
Theorem 1.1. Let $A_{1}(\nu)$ denote the number of partitions of ν such that the anti-hook differences on diagonal 0 are 0 or 1. Let $B_{1}(\nu)$ denote the number of partitions of ν in which each part is either odd or congruent to $\pm 4(\bmod 20)$. Then $A_{1}(\nu)=B_{1}(\nu)$ for all ν.

Theorem 1.2. Let $A_{2}(\nu)$ denote the number of partitions of ν such that the anti-hook differences on diagonal -1 are 0 or 1 . Let $B_{2}(\nu)$ denote the number of partitions of ν into parts $\not \equiv \pm 3, \pm 4, \pm 7,10(\bmod 20)$. Then $A_{2}(\nu)=B_{2}(\nu)$ for all ν.

Theorem 1.3. Let $A_{3}(\nu)$ denote the number of partitions of ν such that the anti-hook differences on diagonal -1 are 1 or 2 . Let $B_{3}(\nu)$ denote the number of partitions of ν into parts $\not \equiv \pm 1, \pm 8, \pm 9,10(\bmod 20)$. Then $A_{3}(\nu)=B_{3}(\nu)$ for all ν.

Theorem 1.4. Let $A_{4}(\nu)$ denote the number of partitions of ν such that the anti-hook differences on diagonal -2 are 1 or 2 . Let $B_{4}(\nu)$ denote the number of partitions of ν in which each part is either odd or congruent to $\pm 8(\bmod 20)$. Then $A_{4}(\nu)=B_{4}(\nu)$ for all ν.

Note. Theorems 1.3 and 1.4 were incorrectly stated in [3].
Later in [2] following the method of [1], n-color partition theoretic interpretations for the same q-identities (1.1)-(1.4) were given in the following form:

Theorem 1.5. Let $C_{1}(\nu)$ denote the number of partitions of ν with " n copies of n " such that
(1.5.a) even parts appear with even subscripts and odd with odd, and
(1.5.b) each pair of parts has nonnegative weighted difference. Then $C_{1}(\nu)=B_{1}(\nu)$ for all ν.

Theorem 1.6. Let $C_{2}(\nu)$ denote the number of partitions of ν with " $n+1$ copies of n" such that
(1.6.a) even parts appear with odd subscripts and odd with even,
(1.6.b) each pair of parts has nonnegative weighted difference,
(1.6.c) for some i, i_{i+1} is a part, and
(1.6.d) the parts are nonnegative. Then $C_{2}(\nu)=B_{2}(\nu)$ for all ν.

Theorem 1.7. Let $C_{3}(\nu)$ denote the number of partitions of ν with " n copies of n " such that
(1.7.a) even parts appear with even subscripts and odd with odd subscripts greater than 1, and
(1.7.b) the weighted difference of each pair of parts m_{i}, m_{j} is either nonnegative or -2 .

Then $C_{3}(\nu)=B_{3}(\nu)$ for all ν.
Theorem 1.8. Let $C_{4}(\nu)$ denote the number of partitions of ν with " $n+2$ copies of n " such that
(1.8.a) even parts appear with even subscripts and odd with odd,
(1.8.b) each pair of parts has a nonnegative weighted difference,
(1.8.c) for some i, i_{i+2} is a part,
and
(1.8.d) the parts are nonnegative.

Then $C_{4}(\nu)=B_{4}(\nu)$ for all ν.
Using a technique of [4] we give here a bijective proof of the following:
Theorem 1.9. For $1 \leqq \kappa \leqq 4$,

$$
A_{\kappa}(\nu)=C_{\kappa}(\nu)
$$

Before we give the proof of this theorem we recall the definitions of anti-hook differences from [3] and those of partitions with " $n+l$ copies of n " and the weighted difference from [4].

Definition 1. Let Π be a partition whose Ferrers graph is embedded in the fourth quadrant. Each node (i, j) of the fourth quadrant which is not in the Ferrers graph of Π is said to possess an anti-hook difference $\rho_{I}-\kappa_{j}$ relative to Π, where ρ_{i} is the number of nodes on the i-th row of the fourth quadrant to the left of node (i, j) that are not in the Ferrers graph of Π and κ_{j} is the number of nodes in the j-th column of the fourth quadrant that lie above node (i, j) and are not in the Ferrers graph of Π.

Definition 2. A partition with " $n+l$ copies of n " $l \geqq 0$ is a partition in which a part of size $n, n \geqq 0$, can come in $n+l$ different colors denoted by subscripts: $n_{1}, n_{2}, \ldots, n_{n+l}$. Thus for example, the partitions of 2 with " $n+1$ copies of n " are:

$$
\begin{aligned}
& 2_{1}, 2_{1}+0_{1}, 1_{1}+1_{1}, 1_{1}+1_{1}+0_{1} \\
& 2_{2}, 2_{2}+0_{1}, 1_{2}+1_{1}, 1_{2}+1_{1}+0_{1} \\
& 2_{3}, 2_{3}+0_{1}, 1_{2}+1_{2}, 1_{2}+1_{2}+0_{1}
\end{aligned}
$$

Note that zeros are permitted if and only if l is greater than or equal to 1.
Definition 3. The weighted difference of two parts m_{i} and $n_{j}, m \geqq n$ is defined by $m-n-i-j$ and is denoted by $\left(\left(m_{i}-n_{j}\right)\right)$.

2. Proof of the Theorem 1.9 .

Each of these four cases is proved in a similar way. We provide the details for $\kappa=1$ and sketch the main steps to treat the remainder.

Let Π be a partition enumerated by $A_{1}(\nu)$. Let

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right),
$$

where $a_{1}>a_{2}>\ldots>a_{r} \geqq 0, b_{1}>b_{2}>\ldots>b_{r} \geqq 0$, and $a_{1}+a_{2}+\cdots+a_{r}+$ $b_{1}+b_{2}+\cdots+r=\nu$, be the corresponding Frobenius' notation. Then the anti-hook difference conditions of Theorem 1.1 are equivalent to

$$
\begin{align*}
a_{i} & \geqq b_{i}, \text { and } \tag{2.1.a}\\
b_{i} & \geqq a_{i+1}+1 \tag{2.1b}
\end{align*}
$$

We now establish a 1-1 correspondence between the ordinary partitions enumerated by $A_{1}(\nu)$ and the partitions with n copies of n enumerated by $C_{1}(\nu)$. We do this by mapping each column ${ }_{b}^{a}$ of the Frobenius Symbol to a single part m_{i} of a partition with n copies of n. The mapping ϕ is

$$
\phi:\binom{a}{b} \rightarrow \begin{cases}(a+b+1)_{b-a} & \text { if } a<b \tag{2.2}\\ (a+b+1)_{a-b+1} & \text { if } a \geqq b,\end{cases}
$$

the inverse mapping ϕ^{-1} is then given by

$$
\phi^{-1}: m_{1} \rightarrow \begin{cases}\binom{(m-i-1) / 2}{(m+i-1) / 2} & \text { if } m \neq i(\bmod 2) \tag{2.3}\\ \binom{(m+i-2) / 2}{(m-i) / 2} & \text { if } m \equiv i(\bmod 2)\end{cases}
$$

Now for any two adjacent columns $\begin{array}{lll}a & c & \text { in } \\ b & d\end{array}$ in the Frobenius symbol with $\phi\binom{a}{b}=m_{i}$ and $\phi\binom{c}{d}=n_{j}$ (defined by (2.2)) we have

$$
\left(\left(m_{i}-n_{j}\right)\right)= \begin{cases}2 b-2 c-2 & \text { if } a \geqq b, c \geqq d \tag{2.4}\\ 2 a-2 c-1 & \text { if } a<b, c \geqq d \\ 2 b-2 d-1 & \text { if } a \geqq b, c<d \\ 2 a-2 d & \text { if } a<b, c>d\end{cases}
$$

Clearly (2.1.a) and (2.2) imply (1.5.a) and then (2.1.b) and only the first line of (2.4) will imply (1.5.b).

To see the reverse implication we note that by $(1.5 . \mathrm{a}) m=i, n \equiv j(\bmod 2)$ and so under ϕ^{-1}

$$
\begin{align*}
a-c & =\frac{1}{2}\left(\left(m_{i}-n_{j}\right)\right)+i \tag{2.5}\\
b-d & =\frac{1}{2}\left(\left(m_{i}-n_{j}\right)\right)+j \tag{2.6}\\
a-b & =i-1 \tag{2.7}\\
b-c-1 & =\frac{1}{2}\left(\left(m_{i}-n_{j}\right)\right) \tag{2.8}
\end{align*}
$$

Now (2.5) and (2.6) by (1.5.b) guarantee that $a_{i}>a_{i+1}$ and $b_{i}>b_{i+1}$. (2.7) implies (2.1.a) and (2.8) by (1.5.b) implies (2.1.b). This completes the proof of $A_{1}(\nu)=C_{1}(\nu)$.

For $\kappa=2$, the anti-hook difference conditions are equivalent to

$$
\begin{equation*}
b_{i+1}+2 \leqq a_{i} \leqq b_{i}+1 . \tag{2.9}
\end{equation*}
$$

The map ϕ is

$$
\phi\binom{a}{b} \rightarrow \begin{cases}(a+b+1)_{b-a+2} & \text { if } a \leqq b+1 \tag{2.10}\\ (a+b+1)_{a-b-1} & \text { if } a>b+1\end{cases}
$$

and ϕ^{-1} is given by

$$
\phi^{-1}: m_{i} \rightarrow \begin{cases}\binom{(m+i) / 2}{(m-i-2) / 2} & \text { if } m \neq i+1(\bmod 2) \tag{2.11}\\ \binom{(m-i+1) / 2}{(m+i-3) / 2} & m \equiv i+1(\bmod 2)\end{cases}
$$

For $\kappa=3$, the anti-hook difference conditions are equivalent to

$$
\begin{equation*}
a_{i+1} \leqq b_{i}<a_{i} . \tag{2.12}
\end{equation*}
$$

The map ϕ is

$$
\phi\binom{a}{b} \rightarrow \begin{cases}(a+b+1)_{b-a} & \text { if } a<b \tag{2.13}\\ (a+b+1)_{a-b+1} & \text { if } a>b\end{cases}
$$

and the inverse map ϕ^{1} is given by

$$
\phi^{-1}: m_{i} \rightarrow \begin{cases}\binom{(m-i-2) / 2}{(m+i-1) / 2} & \text { if } m \neq i(\bmod 2) \tag{2.14}\\ \binom{(m+-2) / 2}{(m-i) / 2} & \text { if } m \equiv i(\bmod 2), i \neq 1\end{cases}
$$

Lastly, in the case $\kappa=4$, we see that the anti-hook difference conditions are equivalent to

$$
\begin{equation*}
b_{i+1}+3 \leqq a_{i} \leqq b_{i}+2, a_{i} \neq 1 . \tag{2.15}
\end{equation*}
$$

The map ϕ is

$$
\phi\binom{a}{b} \rightarrow \begin{cases}(a+b+1)_{b-a+3} & \text { if } a \leqq b+2, a \neq 1 \tag{2.16}\\ (a+b+1)_{a-b-2} & \text { if } a>b+2\end{cases}
$$

and ϕ^{-1} is given by

$$
\phi^{-1}: m_{i} \rightarrow \begin{cases}\binom{(m+i+1) / 2}{(m-i-3) / 2} & \text { if } m \neq i+2(\bmod 2) \tag{2.17}\\ \binom{(m-i+2) / 2}{(m+i-4) / 2} & \text { if } m \equiv i+2(\bmod 2), m \neq i .\end{cases}
$$

In Theorems 1.6 and 1.8 the reason why $i_{i+l}(l=1$ in Th. 1.6 and $l=2$ in Th. 1.8) is required as a part and that the parts are nonnegative can be given in a similar way as given in [4, p. 46].

To illustrate the bijections we have constructed we give an example for $\kappa=1$, $\nu=7$ shown in the following table:

Partitions enumerated by $A_{1}(7)$	Frobenius Symbol for partitions enumerated by $A_{1}(7)$	Image under ϕ i.e.,. partitions enumerated by $C_{1}(7)$
7	$\binom{6}{0}$	7_{7}
$6+1$	$\binom{5}{1}$	7_{5}
$5+1+1$	$\binom{4}{2}$	7_{3}
$4+1+1+1$	$\binom{3}{3}$	7_{1}
$4+2+1$	$\left(\begin{array}{ll}3 & 0 \\ 2 & 0\end{array}\right)$	$6_{2}+1_{1}$
$3+3+1$	$\left(\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right)$	$5_{1}+2_{2}$
$5+2$	$\left(\begin{array}{ll}4 & 0 \\ 1 & 0\end{array}\right)$	$6_{4}+1_{1}$

References

1. A. K. Agarwal, Partitions with " N copies of N ", Lecture Notes in Mathematics, 1234, Proceedings of the Colloque De Combinatorie Enumerative, University of Quebec at Montreal, (1985), Springer-Verlag, 1-4.
2. Rogers-Ramanujan identities for n-color partitions, J. Number Theory, 28 (3), (1988), pp. 299-305.
3. A. K. Agarwal and G. E. Andrews, Hook-differences and lattice paths, J. Statist. Plann. Inference, 14 (1986), 5-14.
4. -_Rogers-Ramanunujan identities for partitions with " N copies of N ", J. Combin. Theory Ser A, Vol. 45, No. 1, (1987), 40-49.
5. L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1884), 318-343.

Department of Mathematics

The Pennsylvania State University
(Mont Alto Campus)
Mont Alto, PA 17237, U.S.A.

[^0]: Received by the editors November 2, 1987.
 1985 Mathematics Subject Classification: 05A17, 11 P80.
 © Canadian Mathematical Society 1987.

