A DETERMINANT FORMULA FOR RELATIVE CONGRUENCE ZETA FUNCTIONS FOR CYCLOTOMIC FUNCTION FIELDS

DAISUKE SHIOMI

(Received 14 April 2009; accepted 13 April 2010)

Communicated by F. Calegari

Abstract

Rosen gave a determinant formula for relative class numbers for cyclotomic function fields, which may be regarded as an analogue of the classical Maillet determinant. In this paper, we give a determinant formula for relative congruence zeta functions for cyclotomic function fields. Our formula may be regarded as a generalization of the determinant formula for the relative class number.

2000 *Mathematics subject classification*: primary 11M38; secondary 11R60. *Keywords and phrases*: congruence zeta function, cyclotomic function fields.

1. Introduction

Let h_p^- be the relative class number of the cyclotomic field of *p*th roots of unity. Carlitz and Olson [CO] computed the number h_p^- in terms of a certain classical determinant, known as the Maillet determinant.

In the cyclotomic function field case, several authors gave analogues of the Maillet determinant. Let *k* be the field of rational functions over the finite field \mathbb{F}_q with *q* elements. Fix a generator *T* of *k*, and let *A* be the polynomial subring $\mathbb{F}_q[T]$ of *k*. Let *m* be a monic polynomial of *A*, and Λ_m be the set of all *m*-torsion points of the Carlitz module. The field K_m obtained by adjoining the points of Λ_m to *k* is called the *m*th cyclotomic function field. For the definition of the Carlitz module and the basic facts about cyclotomic function fields, see Section 2 below. Let K_m^+ be the decomposition field of the infinite prime of *k* in K_m/k , which is called the 'maximal real subfield' in K_m .

Let h_m and h_m^+ be the orders of the divisor class group of degree zero for K_m and K_m^+ . Define the relative class number h_m^- of K_m by $h_m^- = h_m / h_m^+$.

This work was supported by a Grant-in-Aid for JSPS Fellows (21-1611).

^{© 2010} Australian Mathematical Publishing Association Inc. 1446-7887/2010 \$16.00

Rosen [Ro1] gave a determinant formula for h_P^- in the case of the monic irreducible polynomial *P*, which is regarded as an analogue of the Maillet determinant. Recently, several authors generalized Rosen's formula and gave class number formulas (see, for instance, [ACJ, BK]).

Let $\zeta(s, K_m)$ be the congruence zeta function for K_m . The function $\zeta(s, K_m)$ can be expressed in the form

$$\zeta(s, K_m) = \frac{Z_m(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}$$

where $Z_m(X)$ is a polynomial with integral coefficients. Then we have the decomposition

$$Z_m(X) = Z_m^{(+)}(X) Z_m^{(-)}(X),$$

where $Z_m^{(+)}(X)$ is the polynomial corresponding to the congruence zeta function $\zeta(s, K_m^+)$ for K_m^+ . For the polynomial $Z_m^{(+)}(X)$, the author gave the determinant formula in the paper [Sh]. We see that

$$Z_m^{(-)}(q^{-s}) = \frac{\zeta(s, K_m)}{\zeta(s, K_m^+)};$$

this is called the relative congruence zeta function for K_m .

The main result of this paper is a determinant formula for $Z_m^{(-)}(X)$. Since $Z_m^{(-)}(1) = h_m^-$, our formula may be regarded as a generalization of the determinant formula for the relative class number.

As an application of our determinant formula, we will give an explicit formula for some coefficients of low-degree terms for $Z_m^{(-)}(X)$.

2. Basic facts

In this section, we outline several basic facts about cyclotomic function fields and their zeta functions. For the proofs of these facts, see [GR, Ha, Ro2, Wa].

2.1. Cyclotomic function fields. Let K^{ac} be the algebraic closure of k. For $x \in K^{ac}$ and $m \in A$, we define the action

$$m \cdot x = m(\varphi + \mu)(x),$$

where φ and μ are the \mathbb{F}_q -linear maps of K^{ac} defined by

$$\begin{split} \varphi &: K^{\mathrm{ac}} \longrightarrow K^{\mathrm{ac}} \quad x \mapsto x^q, \\ \mu &: K^{\mathrm{ac}} \longrightarrow K^{\mathrm{ac}} \quad x \mapsto T \cdot x \end{split}$$

Under the above action, K^{ac} becomes an A-module, called the Carlitz module. Let Λ_m be the set of all x such that $m \cdot x = 0$; this is a cyclic sub-A-module of K^{ac} . Fix a generator λ_m of Λ_m . Then we have the following isomorphism of A-modules:

$$A/(m) \longrightarrow \Lambda_m \quad a \mod m \mapsto a \cdot \lambda_m$$

where (*m*) is the principal ideal *mA* generated by *m*. Let $(A/(m))^{\times}$ be the group of units of A/(m), and $\Phi(m)$ be the order of $(A/(m))^{\times}$. Let K_m be the field obtained by

adjoining all the elements of Λ_m to k. We call K_m the *m*th cyclotomic function field. The extension K_m/k is abelian, and the following isomorphism is valid:

$$(A/(m))^{\times} \longrightarrow \operatorname{Gal}(K_m/k) \quad a \mod m \mapsto \sigma_{a \mod m},$$
 (2.1)

where $\operatorname{Gal}(K_m/k)$ is the Galois group of K_m/k , and $\sigma_{a \mod m}$ is the isomorphism given by $\sigma_{a \mod m}(\lambda_m) = a \cdot \lambda_m$. By using isomorphism (2.1), we find that the extension degree of K_m/k is $\Phi(m)$. We see that \mathbb{F}_q^{\times} is contained in $(A/(m))^{\times}$. Let K_m^+ be the subfield of K_m corresponding to \mathbb{F}_q^{\times} . Again from isomorphism (2.1), we find that the extension degree of K_m^+/k is $\Phi(m)/(q-1)$. Let P_{∞} be the unique prime of k which corresponds to the valuation v_{∞} with $v_{\infty}(T) < 0$. The prime P_{∞} splits completely in K_m^+/k , and any prime of K_m^+ over P_{∞} is totally ramified in K_m/K_m^+ . Hence $K_m^+ = K_m \cap k_{\infty}$ where k_{∞} is the completion of k by v_{∞} . The field K_m^+ is called the maximal real subfield of K_m ; it is an analogue of the maximal real subfield of a cyclotomic field.

Next, we review some basic facts about Dirichlet characters. For a monic polynomial $m \in A$, let X_m be the group of all primitive Dirichlet characters of $(A/(m))^{\times}$. Let X_m^+ be the set of all characters in X_m such that $\chi(a) = 1$ for any $a \in \mathbb{F}_q^{\times}$. Put

$$\widetilde{K} = \bigcup_{m \text{ monic}} K_m$$

where *m* runs through all monic polynomials of *A*. Let \mathbb{D} be the group of all primitive Dirichlet characters. By the same argument as in [Wa, Ch. 3], we have a one-to-one correspondence between finite subgroups of \mathbb{D} and finite subextension fields of \widetilde{K}/k . The following theorem is useful for obtaining information about primes.

THEOREM 2.1 (See [Wa, Theorem 3.7]). Let X be a finite subgroup of \mathbb{D} , and K_X the associated field. For an irreducible monic polynomial $P \in A$, put

$$Y = \{ \chi \in X \mid \chi(P) \neq 0 \}, \quad Z = \{ \chi \in X \mid \chi(P) = 1 \}.$$

Then the following hold.

- X/Y is isomorphic to the inertia group of P in K_X/k .
- Y/Z is isomorphic to the cyclic group of order f_P ; where f_P is the residue class degree of P in K_X/k .
- X/Z is isomorphic to the decomposition group of P in K_X/k .

2.2. The relative congruence zeta function. Our next task is to investigate congruence zeta functions for cyclotomic function fields. Let K be a geometric extension of k of finite degree. We define the congruence zeta function of K as

1

$$\zeta(s, K) = \prod_{\mathcal{P} \text{ prime}} \left(1 - \frac{1}{\mathcal{NP}^s}\right)^{-1}$$

where \mathcal{P} runs through all primes of K, and \mathcal{NP} is the number of elements of the residue class field of the prime \mathcal{P} . We see that $\zeta(s, K)$ converges absolutely when $\operatorname{Re}(s) > 1$.

THEOREM 2.2 (See [Ro2, Theorem 5.9]). Let g_K be the genus of K and h_K be the order of the divisor class group of degree zero. Then there is a polynomial $Z_K(X) \in \mathbb{Z}[X]$ of degree $2g_K$ satisfying

$$\zeta(s, K) = \frac{Z_K(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})},$$
(2.2)

and $Z_K(0) = 1$ and $Z_K(1) = h_K$.

Since the right-hand side of Equation (2.2) is meromorphic on the whole of \mathbb{C} , this equation provides the analytic continuation of $\zeta(s, K)$ to the whole of \mathbb{C} .

Next, we explain the zeta function of \mathcal{O}_K , which is the integral closure of A in the field K. We define the zeta function $\zeta(s, \mathcal{O}_K)$ for the ring \mathcal{O}_K by

$$\zeta(s, \mathcal{O}_K) = \prod_{\mathcal{P}} \left(1 - \frac{1}{\mathcal{N}\mathcal{P}^s} \right)^{-1},$$

where the product runs over all primes of \mathcal{O}_K . Let X be a finite subgroup of \mathbb{D} , and K_X be the associated field. By the same argument as in the case of number fields (see [Wa]), we have the *L*-function decomposition

$$\zeta(s, \mathcal{O}_{K_X}) = \prod_{\chi \in X} L(s, \chi)$$

where the L-function is defined by

$$L(s, \chi) = \prod_{P} \left(\frac{1 - \chi(P)}{\mathcal{N}P^s} \right)^{-1},$$

where P runs through all monic irreducible polynomials of A. Let f_{∞} be the residue class degree of P_{∞} in K_X/k and g_{∞} be the number of primes in K_X over P_{∞} . Then

$$\zeta(s, K_X) = \zeta(s, \mathcal{O}_{K_X})(1 - q^{-sf_\infty})^{-g_\infty}.$$

From now on, we will focus on the cyclotomic function field case. For a monic polynomial $m \in A$, let K_m and K_m^+ be the *m*th cyclotomic function field and its maximal real subfield. The relative congruence zeta function for K_m is defined by

$$\zeta^{(-)}(s, K_m) = \frac{\zeta(s, K_m)}{\zeta(s, K_m^+)}$$

By Theorem 2.2, there are polynomials $Z_m(X)$ and $Z_m^{(+)}(X)$ with integral coefficients such that

$$\zeta(s, K_m) = \frac{Z_m(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})},$$

$$\zeta(s, K_m^+) = \frac{Z_m^{(+)}(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}.$$

Put

$$Z_m^{(-)}(X) = \frac{Z_m(X)}{Z_m^{(+)}(X)};$$

then

$$\zeta^{(-)}(s, K_m) = Z_m^{(-)}(q^{-s}).$$

Notice that the fields K_m and K_m^+ are associated with X_m and X_m^+ respectively. Since any prime in K_m^+ above P_∞ is totally ramified in K_m/K_m^+ ,

$$Z_m^{(-)}(q^{-s}) = \prod_{\chi \in X_m^-} L(s, \chi)$$
(2.3)

where $X_m^- = X_m - X_m^+$. The *L*-function associated with the nontrivial character can be expressed by a polynomial of q^{-s} with complex coefficients. Hence, we see that $Z_m^{(-)}(X)$ is a polynomial with integral coefficients.

3. The determinant formula for $Z_m^{(-)}(X)$

In the previous section, we defined the relative congruence zeta function $\zeta^{(-)}(s, K_m)$ for the *m*th cyclotomic function field, and showed that $\zeta(s, K_m)$ is given by a polynomial $Z_m^{(-)}(X)$ with integral coefficients. The goal of this section is to give a determinant formula for $Z_m^{(-)}(X)$. First, we need some notation to construct the determinant formula. Let *m* be a monic polynomial of degree *d*. For $\alpha \in (A/(m))^{\times}$, there is a unique element $r_{\alpha} \in A$ satisfying

$$r_{\alpha} = a_n T^n + a_{n-1} T^{n-1} + \dots + a_0$$
 where $n = \deg r_{\alpha} < d$,
 $r_{\alpha} \equiv \alpha \mod m$,

where deg f denotes the degree of the polynomial f. Then we define

$$\operatorname{Deg}(\alpha) = n, \quad L(\alpha) = a_n \in \mathbb{F}_a^{\times},$$

and $c^{\lambda}(\alpha) = \lambda^{-1}(L(\alpha))$, where λ is a character of \mathbb{F}_q^{\times} . Put $N_m = \Phi(m)/(q-1)$. Let $\alpha_1, \alpha_2, \ldots, \alpha_{N_m}$ be all of the elements of $(A/(m))^{\times}$ such that $L(\alpha) = 1$; these form a complete system of representatives for $\mathcal{R}_m = (A/(m))^{\times}/\mathbb{F}_q^{\times}$. We put

$$c_{ij}^{\lambda} = c^{\lambda}(\alpha_i \alpha_j^{-1}) \quad \forall i, j = 1, 2, \dots, N_m,$$

$$d_{ij} = \text{Deg}(\alpha_i \alpha_j^{-1}) \quad \forall i, j = 1, 2, \dots, N_m.$$

For any character λ of \mathbb{F}_{a}^{\times} , we define the matrix

$$D_m^{(\lambda)}(X) = (c_{ij}^{\lambda} X^{d_{ij}})_{i,j=1,2,...,N_m}.$$

This matrix plays an essential role in our argument. Note that $d_{ij} > 0$ when $i \neq j$, and $d_{ij} = 0$ and $c_{ij}^{\lambda} = 1$ when i = j. Thus $D_m^{(\lambda)}(0)$ is the unit matrix. We put

$$D_m^{(-)}(X) = \prod_{\lambda \neq 1} \det D_m^{(\lambda)}(X),$$

[5]

where the product runs over all nontrivial characters of \mathbb{F}_q^{\times} . To be able to state the main result, we define the polynomial $J_m^{(-)}(X)$ by

$$J_m^{(-)}(X) = \prod_{\chi \in X_m^-} \prod_{Q \mid m} (1 - \chi(Q) X^{\deg Q}),$$

where Q is an irreducible monic polynomial dividing m. First, we prove the following proposition.

PROPOSITION 3.1. With the notation above,

$$J_m^{(-)}(X) = \prod_{Q|m} \frac{(1 - X^{f_Q \deg Q}) s_Q}{(1 - X^{f_Q^+ \deg Q}) s_Q^+}$$

where f_Q and f_Q^+ are the residue class degrees of Q in K_m/k and K_m^+/k , and g_Q and g_Q^+ are the numbers of primes in K_m and K_m^+ over Q.

PROOF. Notice that X_m and X_m^+ are associated with the *m*th cyclotomic function field K_m and its maximal real subfield K_m^+ respectively. Let Q be an irreducible monic polynomial dividing *m*. Put

$$Y_Q = \{ \chi \in X_m \mid \chi(Q) \neq 0 \} \text{ and } Z_Q = \{ \chi \in X_m \mid \chi(Q) = 1 \}.$$

From Theorem 2.1,

$$\prod_{\chi \in X_m} (1 - \chi(Q) X^{\deg Q}) = \prod_{\chi \in Y_Q} (1 - \chi(Q) X^{\deg Q})$$
$$= \prod_{\chi \in Y_Q/Z_Q} \prod_{\psi \in Z_Q} (1 - \chi \psi(Q) X^{\deg Q})$$
$$= \left(\prod_{\chi \in Y_Q/Z_Q} (1 - \chi(Q) X^{\deg Q})\right)^{g_Q}.$$

Since Y_Q/Z_Q is a cyclic group of order f_Q ,

$$\prod_{\chi \in Y_{\mathcal{Q}}/Z_{\mathcal{Q}}} (1 - \chi(\mathcal{Q})X^{\deg \mathcal{Q}}) = (1 - X^{f_{\mathcal{Q}} \deg \mathcal{Q}}).$$

Hence we obtain the formula

$$\prod_{\chi \in X_m} (1 - \chi(Q) X^{\deg Q}) = (1 - X^{f_Q \deg Q})^{g_Q}.$$

By the same argument,

$$\prod_{\chi \in X_m^+} (1 - \chi(Q) X^{\deg Q}) = (1 - X^{f_Q^+ \deg Q})^{g_Q^+}.$$

Noting that $X_m^- = X_m - X_m^+$, we can deduce the proposition from the last two equations.

There are several consequences of this proposition. First of all, by Proposition 3.1, we see that $J_m^{(-)}(X)$ is a polynomial with integral coefficients. Second, if *m* is a power of an irreducible polynomial *P*, the prime *P* is totally ramified in K_m/k (see [Ro2]). Hence $J_m^{(-)}(X) = 1$ in this case.

The next theorem is the main result of this paper.

THEOREM 3.2. Let $m \in A$ be a monic polynomial. Then

$$D_m^{(-)}(X) = Z_m^{(-)}(X) J_m^{(-)}(X).$$

PROOF. For any $\chi \in X_m$, let the monic polynomial f_{χ} be the conductor of χ . Define $\tilde{\chi}$ by

$$\tilde{\chi} = \chi \circ \pi_{\chi}$$

where $\pi_{\chi}: (A/(m))^{\times} \to (A/(f_{\chi}))^{\times}$ is the natural homomorphism. Then

$$L(s, \tilde{\chi}) = L(s, \chi) \cdot \prod_{Q \mid m} (1 - \chi(Q)q^{-s \deg Q}).$$

Fix a nontrivial character λ of \mathbb{F}_q^{\times} and $\psi \in X_m^-(\psi|_{\mathbb{F}_q^{\times}} = \lambda)$. Then

$$\psi \cdot X_m^+ = \{ \chi \in X_m^- \mid \chi \mid_{\mathbb{F}_q^{\times}} = \lambda \}.$$

For each character $\chi \in X_m^-(\chi|_{\mathbb{F}_q^{\times}} = \lambda)$, there is a unique character $\phi \in X_m^+$ with $\chi = \psi \cdot \phi$. By the same argument as in [GR, Lemma 3],

$$L(s, \tilde{\chi}) = \sum_{i=1}^{N_m} \tilde{\chi}(\alpha_i) q^{-\text{Deg}(\alpha_i)s}$$
$$= \sum_{i=1}^{N_m} \tilde{\phi}(\alpha_i) \tilde{\psi}(\alpha_i) c^{\lambda}(\alpha_i) q^{-\text{Deg}(\alpha_i)s}$$

Notice that $\tilde{\psi}(\alpha)c^{\lambda}(\alpha)$ and Deg are functions over \mathcal{R}_m , and $\tilde{\phi}$ runs through all characters of \mathcal{R}_m when ϕ runs through all characters of X_m^+ . By the Frobenius determinant formula (see [Wa, Lemma 5.26]),

$$\prod_{\chi|_{\mathbb{F}_q^{\chi}}=\lambda} L(s,\,\tilde{\chi}) = \prod_{\phi\in X_m^+} \sum_{i=1}^{N_m} \tilde{\phi}(\alpha_i) \tilde{\psi}(\alpha_i) c^{\lambda}(\alpha_i) q^{-\operatorname{Deg}(\alpha_i)s}$$
$$= \det(\psi(\alpha_i \alpha_j^{-1}) c_{ij}^{\lambda} q^{-sd_{ij}})_{i,j=1,2,\dots,N_m}$$
$$= \det D_m^{(\lambda)}(q^{-s}).$$

From the decomposition

$$X_m^- = \bigcup_{\lambda \neq 1} \{ \chi \in X_m \mid \chi \mid_{\mathbb{F}_q^{\times}} = \lambda \},\$$

we see that

$$D_m^{(-)}(q^{-s}) = \left(\prod_{\chi \in X_m^-} L(s, \chi)\right) \times J_m^{(-)}(q^{-s}).$$

By Equation (2.3), we obtain the formula

$$D_m^{(-)}(q^{-s}) = Z_m^{(-)}(q^{-s})J_m^{(-)}(q^{-s})$$

Putting $X = q^{-s}$, we obtain the desired result.

We offer two remarks about this theorem. First, $Z_m^{(-)}(X) = 1$ when *m* is a monic polynomial of degree one. In fact, we can calculate that $D_m^{(-)}(X) = 1$ in this case. Second, recall that $J_m^{(-)}(X) = 1$ when *m* is a power of an irreducible polynomial. Hence $D_m^{(-)}(X) = Z_m^{(-)}(X)$ in this case.

As a special case of our result, we obtain the following determinant formula for relative class numbers.

COROLLARY 3.3 (See [ACJ, BK]). Let h_m^- be the relative class number of K_m . Put $f_Q^- = f_Q/f_Q^+$ and $g_Q^- = g_Q/g_Q^+$. Then

$$\prod_{\lambda \neq 1} \det(c_{ij}^{\lambda})_{i,j=1,2,\dots,N_m} = W_m^- \cdot h_m^-,$$

where

$$W_m^- = \begin{cases} \prod_{Q|m} (f_Q^-)^{g_Q^+} & \text{if } g_Q^- = 1 \text{ for every prime } Q \text{ dividing } m, \\ 0 & \text{otherwise.} \end{cases}$$

PROOF. Putting X = 1 in Theorem 3.2, we see that

$$D_m^{(-)}(1) = \prod_{\lambda \neq 1} \det(c_{ij}^{\lambda}).$$

and $J_m^{(-)}(1) = W_m^-$ by Proposition 3.1. Since $Z_m^{(-)}(1) = h_m^-$, we obtain the desired result.

If *m* is a power of an irreducible polynomial, we see that $W_m^- = 1$. Otherwise, each finite prime in K_m^+ is not ramified in K_m/K_m^+ . Thus we see that $f_Q^- = q - 1$ for a prime *Q* with $g_Q^- = 1$.

4. Some coefficients of the low degree terms of $D_m^{(-)}(X)$

In this section, we will calculate the coefficients of $D_m^{(-)}(X)$ of degrees one and two, by using the derivative of the determinant. Let $m \in A$ be a monic polynomial. Noting that $D_m^{(-)}(0) = 1$, we see that $D_m^{(-)}(X)$ may be written in the form

$$D_m^{(-)}(X) = 1 + a_1 X + a_2 X^2 + \cdots,$$

where each a_i is an integer (i = 1, 2, ...).

140

PROPOSITION 4.1. Let $m \in A$ be a monic polynomial of degree d, where d > 1. Then

$$a_1 = 0, \tag{4.4}$$

$$a_{2} = 0 \quad if \deg m > 2, \tag{4.5}$$

$$a_{2} = \frac{N_{m}}{2} \{ (q-1)(1-C_{m}) + N_{m} - 1 \} \quad if \deg m = 2,$$

where

$$C_m = \#\{i = 1, 2, \dots, N_m \mid L(\alpha_i^{-1}) = 1\}$$

Here #A is the number of elements of a set A.

By Proposition 3.1, we can find $J_m^{(-)}(X)$. Hence we can also calculate the coefficients of the low-degree terms of $Z_m^{(-)}(X)$. As a preliminary to Proposition 4.1, we first state the next lemma, which can be proved by simple calculations.

LEMMA 4.2. Let $F(X) = (f_{ij}(X))_{i,j}$ be a matrix with coefficients in the ring of functions of one variable. If F(X) is twice differentiable and invertible when $X = X_0$, then

$$\frac{d \det F(X)}{dX}\Big|_{X=X_0} = \det F(X_0) \cdot \operatorname{Tr}\left(F(X_0)^{-1}\frac{dF}{dX}(X_0)\right),$$

$$\frac{d^2 \det F(X)}{dX^2}\Big|_{X=X_0} = \det F(X_0) \cdot \left\{\operatorname{Tr}\left(F(X_0)^{-1}\frac{d^2F}{dX^2}(X_0)\right) - \operatorname{Tr}\left(F(X_0)^{-1}\frac{dF}{dX}(X_0)F(X_0)^{-1}\frac{dF}{dX}(X_0)\right) + \operatorname{Tr}\left(F(X_0)^{-1}\frac{dF}{dX}(X_0)\right)^2\right\},$$

where Tr(A) denotes the trace of the matrix A.

We now prove Proposition 4.1.

PROOF. Let λ be a nontrivial character of \mathbb{F}_q^{\times} , and write

$$\det D_m^{(\lambda)}(X) = 1 + a_1^{\lambda} X + a_2^{\lambda} X^2 + \cdots$$

Note that $D_m^{(\lambda)}(0)$ is the unit matrix, and

$$\frac{d D_m^{(\lambda)}}{d X}(0) = (l_{ij})_{i,j=1,2,...,N_m},$$

where

$$l_{ij} = \begin{cases} 0 & \text{if } d_{ij} = 0 \text{ or } d_{ij} > 1, \\ c_{ij}^{\lambda} & \text{if } d_{ij} = 1. \end{cases}$$

[9]

By Lemma 4.2, $a_1^{\lambda} = 0$ and

$$a_2^{\lambda} = -\frac{1}{2} \operatorname{Tr}\left(\left(\frac{d D_m^{(\lambda)}}{d X}(0)\right)^2\right).$$

Thus we have shown assertion (4.4).

If deg m > 2, there is no pair (i, j) such that $d_{ij} = 1$ and $d_{ji} = 1$. Thus $a_2^{\lambda} = 0$ in the case where deg m > 2. Since $a_2 = \sum_{\lambda \neq 1} a_2^{\lambda}$, we obtain assertion (4.5). Next we consider the case where deg m = 2. In this case,

$$l_{ij} = \begin{cases} 0 & \text{if } i = j, \\ c_{ij}^{\lambda} & \text{if } i \neq j. \end{cases}$$

Thus

$$\sum_{\lambda \neq 1} a_2^{\lambda} = \sum_{\lambda \neq 1} \left(\frac{N_m}{2} - \frac{1}{2} \sum_{i=1}^{N_m} \sum_{j=1}^{N_m} \lambda^{-1} (L(\alpha_i \alpha_j^{-1}) L(\alpha_j \alpha_i^{-1})) \right)$$
$$= \frac{N_m (q-2)}{2} - \frac{1}{2} \sum_{i=1}^{N_m} \sum_{j=1}^{N_m} e_{ij},$$

where

$$e_{ij} = \begin{cases} q-2 & \text{if } L(\alpha_i \alpha_j^{-1}) L(\alpha_j \alpha_i^{-1}) = 1, \\ -1 & \text{otherwise.} \end{cases}$$

For any $i, j \in \{1, 2, ..., N_m\}$, there exist $\gamma_{ij} \in \mathbb{F}_q^{\times}$ and $\beta_{ij} \in (A/(m))^{\times}$ such that $L(\beta_{ij}) = 1$ and $\alpha_i \alpha_i^{-1} = \gamma_{ij} \beta_{ij}$. Then

$$L(\alpha_i \alpha_j^{-1}) L(\alpha_j \alpha_i^{-1}) = L(\beta_{ij}^{-1}).$$

By noting that

$$\{\beta_{ij} \mid j = 1, 2, \ldots, N_m\} = \{\alpha_j \mid j = 1, 2, \ldots, N_m\},\$$

we see that

$$\sum_{j=1}^{N_m} e_{ij} = (q-1)C_m - N_m.$$

Thus we have completed the proof of Proposition 4.1.

We consider the case where $m = T^2 + aT + b \in A$. If $\alpha = T - c$ satisfies $L(\alpha^{-1}) = 1$, then *c* is a root of the equation $T^2 + aT + b + 1$. Thus $C_m \le 3$.

5. Examples

We conclude this paper with some examples.

142

EXAMPLE 5.1. When q = 3 and $m = T^2 + 1$, we see that the extension degree of K_m/k is 8 and $N_m = 4$. Since the polynomial *m* is irreducible, $D_m^{(-)}(X) = Z_m^{(-)}(X)$. Put

$$\alpha_1 = 1, \quad \alpha_2 = T, \quad \alpha_3 = T + 1, \quad \alpha_4 = T + 2.$$

Then

$$Z_m^{(-)}(X) = D_m^{-}(X)$$

$$= \begin{vmatrix} 1 & -X & X & X \\ X & 1 & -X & X \\ X & -X & 1 & -X \\ X & X & X & 1 \end{vmatrix}$$

$$= 1 - 2X^2 + 9X^4.$$

The relative class number h_m^- of K_m is $Z_m^{(-)}(1) = 8$.

EXAMPLE 5.2. When q = 3 and $m = T^3 + T^2$, we see that the extension degree of K_m/k is 12 and $N_m = 6$. Put

$$\alpha_1 = 1, \quad \alpha_2 = T^2 + 2T + 2, \quad \alpha_3 = T^2 + T + 1,$$

 $\alpha_4 = T + 2, \quad \alpha_5 = T^2 + 1, \quad \alpha_6 = T^2 + T + 2.$

Then

$$D_m^{(-)}(X) = \begin{vmatrix} 1 & X & -X^2 & X^2 & X^2 & -X^2 \\ X^2 & 1 & -X^2 & -X^2 & -X^2 & -X \\ X^2 & X^2 & 1 & X & -X^2 & X^2 \\ X & X^2 & X^2 & 1 & X^2 & X^2 \\ X^2 & X^2 & -X & -X^2 & 1 & X^2 \\ X^2 & -X^2 & -X^2 & X^2 & X & 1 \end{vmatrix}$$
$$= 1 - 6X^3 - 3X^4 - 6X^5 + 23X^6 + 30X^7 + 6X^8 - 18X^9 - 27X^{10}$$

and

$$J_m^{(-)}(X) = 1 + X - X^3 - X^4.$$

Thus

$$Z_m^{(-)}(X) = \frac{D_m^{(-)}(X)}{J_m^{(-)}(X)}$$

= 1 - X + X² - 6X³ + 3X⁴ - 9X⁵ + 27X⁶

The relative class number h_m^- of K_m is $Z_m^{(-)}(1) = 16$.

Acknowledgement

I would like to thank Professor Kohji Matsumoto for his valuable comments.

References

- [ACJ] J. Ahn, S. Choi and H. Jung, 'Class number formulae in the form of a product of determinants in function fields', *J. Aust. Math. Soc.* **78**(2) (2005), 227–238.
- [BK] S. Bae and P.-L. Kang, 'Class numbers of cyclotomic function fields', Acta Arith. 102(3) (2002), 251–259.
- [CO] L. Carlitz and F. R. Olson, 'Maillet's determinant', Proc. Amer. Math. Soc. 6 (1955), 265-269.
- [GR] S. Galovich and M. Rosen, 'The class number of cyclotomic function fields', J. Number Theory 13(3) (1981), 363–375.
- [Ha] D. R. Hayes, 'Explicit class field theory for rational function fields', *Trans. Amer. Math. Soc.* 189 (1974), 77–91.
- [Ro1] M. Rosen, 'A note on the relative class number in function fields', Proc. Amer. Math. Soc. 125(5) (1997), 1299–1303.
- [Ro2] M. Rosen, Number Theory in Function Fields (Springer, Berlin, 2002).
- [Sh] D. Shiomi, 'A determinant formula of congruence zeta functions for maximal real cyclotomic function fields', *Acta Arith.* **138**(3) (2009), 259–268.
- [Wa] L. C. Washington, Introduction to Cyclotomic Fields (Springer, New York, 1982).

DAISUKE SHIOMI, Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan e-mail: m05019e@math.nagoya-u.ac.jp

144

[12]