THE DENSEST PACKING OF SIX SPHERES IN A CUBE

J. Schaer

(received February 22, 1965)

This packing problem is obviously equivalent to the problem of locating six points $P_{i}(1 \leq i \leq 6)$ in a closed unit cube C such that $\min _{i \neq j} d\left(P_{i}, P_{j}\right)$ is as large as possible, where $d\left(P_{i}, P_{j}\right)$ $i \neq j$
denotes the distance between P_{i} and P_{j}. We shall prove that this minimum distance cannot exceed $\frac{3 \sqrt{2}}{4}(=m$, say $)$, and that it attains this value only if the points form a configuration which is congruent to the one of the points $R_{i}(1 \leq i \leq 6)$ shown infig. 1 . Note that $d\left(R_{i}, A_{i}\right)=\frac{1}{4}(1 \leq i \leq 6)$, and so the six points are the vertices of a regular octahedron.

1) For our proof we shall need the solution of the analogous problem for three points in a right square prism P of side 1 and height $\frac{1}{4}: 0 \leq y_{i} \leq 1 \quad(i=1,2), \quad 0 \leq y_{3} \leq \frac{1}{4}$.

PROPOSITION 1. For any three points Q_{1}, Q_{2}, Q_{3} of P, $\min _{i \neq j} d\left(Q_{i}, Q_{j}\right) \leq \frac{3 \sqrt{2}}{4}=m$, and equality holds only for a configuration congruent to the set of the points $V_{1}\left(\frac{1}{4}, 1, \frac{1}{4}\right)$, $V_{2}\left(1, \frac{1}{4}, \frac{1}{4}\right)$, and $V_{3}(0,0,0)$. See fig. 2. Note that $d\left(V_{i}, V_{j}\right)=m(i \neq j)$.

Proof. Consider any best configuration ${ }^{1} T$ of three points Q_{1}, Q_{2}, Q_{3} in P. Of course

Canad. Math. Bull. vol. 9, no. 3, 1966
$\min _{i \neq j} d\left(Q_{i}, Q_{j}\right) \geq m$.
(A) Assume first that a point of T lies in a vertex of P, say $Q_{3}=V_{3}$. Then by (1) no other point of T can lie in the convex hull H of the vertices $\mathrm{V}_{3},\left(0,0, \frac{1}{4}\right),(1,0,0),\left(1,0, \frac{1}{4}\right)$, $(0,1,0),\left(0,1, \frac{1}{4}\right)$ of $T, V_{1}, V_{2}, U_{1}\left(\frac{\sqrt{2}}{4}, 1,0\right)$, and $U_{2}\left(1, \frac{\sqrt{2}}{4}, 0\right)$, except possibly at V_{1}, V_{2}, U_{1}, or U_{2}. Note that $d\left(V_{3}, V_{i}\right)=d\left(V_{3}, U_{i}\right)=m(i=1,2)$. Therefore Q_{1} and Q_{2} must lie in the closure of $P-H$. But this polyhedron ${ }^{2}$ assumes its diameter m only between the points V_{1} and V_{2}. Therefore $\left\{Q_{1}, Q_{2}\right\}=\left\{V_{1}, V_{2}\right\}$.
(B) We are left to show that at least one point of T must lie in a vertex of P. If we assume the contrary, then Q_{1}, Q_{2}, and Q_{3} must lie on mutually orthogonal non-intersecting edges of P. This follows from the basic lemma according to which on every face of P there must be at least one point of any best configuration [1]. Thus we may assume $Q_{1}=\left(y_{1}, 1, \frac{1}{4}\right)$, $Q_{2}=\left(1, y_{2}, 0\right)$, and $Q_{3}=\left(0,0, y_{3}\right)$, with $0<y_{i}<1(i=1,2)$, and $0<y_{3}<\frac{1}{4}$. $B y(1) d^{2}\left(Q_{3}, Q_{i}\right)>m^{2}(i=1,2)$. This leads to

$$
\mathrm{y}_{1}>\sqrt{\frac{1}{8}-\left(\frac{1}{4}-\mathrm{y}_{3}\right)^{2}} \text { and } \mathrm{y}_{2}>\sqrt{\frac{1}{8}-\mathrm{y}_{3}^{2}} .
$$

But then $d^{2}\left(Q_{1}, Q_{2}\right)=\left(1-y_{1}\right)^{2}+\left(1-y_{2}\right)^{2}+\frac{1}{16}$

$$
<2+\frac{1}{2} y_{3}-2 y_{3}^{2}-2 \sqrt{\frac{1}{8}-\left(\frac{1}{4}-y_{3}\right)^{2}}-2 \sqrt{\frac{1}{8}-y_{3}^{2}} .
$$

For $0<y_{3}<\frac{1}{4}$ this expression is less than $\frac{9}{8}$, in contradiction to (1), q.e.d.

This proves that if three points with mutual distances at least $m=\frac{3 \sqrt{2}}{4}$ lie in a right square prism of side 1 , then the height of the prism must be at least $\frac{1}{4}$.
${ }^{2}$ The diameter of a closed polyhedron is obviously always assumed between two of its vertices.
2) Let S be any set of six points $P_{i}(1 \leq i \leq 6)$ of C such that

$$
\begin{equation*}
d\left(P_{i}, P_{j}\right) \geq m(1 \leq i<j \leq 6) \tag{2}
\end{equation*}
$$

We shall prove that $\left\{R_{i}(1 \leq i \leq 6)\right\}$ of fig. 1 is, up to congruent ones, the only such set.

The unit cube C : $0 \leq x_{j} \leq 1 \quad(1 \leq j \leq 3)$ is the union of eight closed cubes C_{k} of side $\frac{1}{2}: a_{j} \leq x_{j} \leq b_{j}$, where either $a_{j}=0$ and $b_{j}=\frac{1}{2}$, or $a_{j}=\frac{1}{2}$ and $b_{j}=1$. Let us enumerate them such that the vertices $A_{k} \in C_{k}(1 \leq k \leq 8)$ (seefig. 1). Since $\frac{\sqrt{3}}{2}<m$, by (2) in every C_{k} there can at most be one point of S. Therefore we may choose six cubes C_{k} containing one point of S each, and two "empty" cubes that do not contain any point of S except possibly on their intersection with a "containing" cube. This choice may be not unique, but all we need is the existence of (at least) two such "empty" cubes C_{k}.

PROPOSITION 2. If two "containing" cubes C_{i}, C_{j} are adjacent, then the points of S which they contain have at least a distance $\frac{1}{2}$ - a from their common face, $a \equiv 1-\frac{\sqrt{10}}{4}<\frac{1}{4}$. Indeed, consider the right square prism of side $\frac{1}{2}$ and diagonal m which contains all of C_{i} and as much of C_{j} as possible (see fig. 3). Excluding its base, which lies completely in C_{j}, it can, because of (2), contain at most one point of S. But it contains already the point of S in C_{i}. Therefore the point of S in C_{j} must lie in the indicated right square prism of side $\frac{1}{2}$ and height a, a being defined by $(1-a)^{2}+2\left(\frac{1}{2}\right)^{2}=m^{2}$. q.e.d.

COROLLARY. If a "containing" cube C_{k} is adjacent to two other "containing" cubes, then the point of S in C_{k} is confined in a right square prism of side a and height $\frac{1}{2}$ with one edge common with that edge of C_{k} which has no points in
common with the two adjacent "containing" cubes.
3) PROPOSITION 3. The six points P_{i} must lie in right square prisms of side $a\left(<\frac{1}{4}\right)$ and height $\frac{1}{2}$, namely (see fig. 4) $\quad P_{i}$ in $\frac{1}{2} \leq x_{i} \leq 1, \quad 0 \leq x_{j} \leq a(j \neq i) \quad(i=1,2,3)$ resp. in $0 \leq x_{i-3} \leq \frac{1}{2}, \quad 1-a \leq x_{j} \leq 1 \quad(j \neq i-3) \quad(i=4,5,6)$

Proof. The two "empty" cubes C_{k} are not adjacent, nor can they have a common edge. Otherwise their centers would have at least one equal coordinate, say $x_{3}=\frac{3}{4}$, and the four cubes $C_{k}: 0 \leq x_{3} \leq \frac{1}{2}$ would all be "containing". By the corollary of Proposition 2 the points of S which they contain would be confined to $0 \leq x_{j} \leq a$ or $1-a \leq x_{j} \leq 1 \quad(j=1,2)$. The four right square prisms of side 1 and height $\frac{1}{4}$: $0 \leq x_{j} \leq \frac{1}{4}$ or $\frac{3}{4} \leq x_{j} \leq 1 \quad(j=1$ or 2$), \quad 0 \leq x_{h} \leq 1 \quad(h \neq j)$, would therefore already contain at least 2 points of S each. Thus by Proposition 1 the two other points of S, i.e. those with $\frac{1}{2} \leq x_{3} \leq 1$, would be restricted to $\frac{1}{4} \leq x_{j} \leq \frac{3}{4}(j=1,2)$. But this is impossible, because this point set is a cube of side $\frac{1}{2}$ and diameter $\frac{\sqrt{3}}{2}<m$.

Thus the two "empty" cubes must lie opposite to the center of C, e.g. let them be C_{7} and C_{8}. We may then assume $P_{i} \in C_{i}(1 \leq i \leq 6)$. Proposition 3 follows now from the corollary of Proposition 2.
4) Using Proposition 3 and applying Proposition 1 to the six right square prisms in C of height $\frac{1}{4}$, which contain one face of C each, the location of the P_{i} can in addition be restricted to P_{1}, P_{2}, P_{3} all in $0 \leq x_{j} \leq \frac{3}{4} \quad(1 \leq j \leq 3), P_{4}, P_{5}, P_{6}$ all in $\frac{1}{4} \leq x_{j} \leq 1 \quad(1 \leq j \leq 3)$.
5) According to the solution of the analogous problem of placing three points in a cube [1] the only way to locate three
points with minimum distance $\frac{3 \sqrt{2}}{4}$ in a cube of side $\frac{3}{4}$ consists in placing them in vertices with mutual distances $\frac{3 \sqrt{2}}{4}$.
Applying this result to 4) and Proposition 3 we deduce $P_{i}=R_{i} \quad(1 \leq i \leq 6)$.

Figure 1

Figure 2

Figure 3

Figure 4

REFERENCES

1. J. Schaer, On the densest packing of spheres into a cube. Canad. Math. Bull. vol. 9, no. 3, 1966.

University of Alberta, Calgary

