THE *G*-HILBERT SCHEME FOR $\frac{1}{r}(1, a, r - a)$

OSKAR KEDZIERSKI

Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland e-mail: oskar@mimuw.edu.pl

(Received 7 April 2010; revised 15 June 2010; accepted 25 June 2010; first published online 25 August 2010)

Abstract. Following Craw, Maclagan, Thomas and Nakamura's works [2, 7] on Hilbert schemes for abelian groups, we give an explicit description of the Hilb^G \mathbb{C}^3 scheme for $G = \langle \text{diag}(\varepsilon, \varepsilon^a, \varepsilon^{r-a}) \rangle$ by a classification of all *G*-sets. We describe how the combinatorial properties of the fan of Hilb^G \mathbb{C}^3 relates to the Euclidean algorithm.

2010 Mathematics Subject Classification. Primary 14E16; Secondary 14C05, 14B05.

1. Introduction. For any finite, abelian subgroup G of $GL(n, \mathbb{C})$ of order r, Nakamura defines the G-Hilbert scheme $Hilb^G \mathbb{C}^n$ as the irreducible component of the G-fixed set of the scheme $Hilb^r \mathbb{C}^n$ which contains free orbits.

For such groups, the normalisation of $\operatorname{Hilb}^{G} \mathbb{C}^{n}$ is a toric variety. The scheme $\operatorname{Hilb}^{G} \mathbb{C}^{n}$ is described in [7] in terms of *G*-sets. In fact, the description is carried by a classification of *G*-sets.

There are several known cases when $\operatorname{Hilb}^G \mathbb{C}^n$ itself is a toric variety (i.e. it is normal): for n = 2 and $G \subset \operatorname{GL}(2, \mathbb{C})$ by Kidoh [5], for n = 3 and $G \subset \operatorname{SL}(3, \mathbb{C})$ by Craw and Reid [3], for any $n \ge 2$ and $G = \langle \operatorname{diag}(\varepsilon, \varepsilon^2, \varepsilon^4, \ldots, \varepsilon^{2^n}) \rangle$ by Sebestean [8]. In all these cases, if $n \ge 3$ the quotient \mathbb{C}^n/G has canonical, non-terminal singularities.

Craw, Maclagan and Thomas in [2] describe $\operatorname{Hilb}^G \mathbb{C}^n$ for any finite, abelian group $G \subset \operatorname{GL}(n, \mathbb{C})$ in terms of initial ideals of some fixed monomial ideal by varying weight order. This gives a numerical method for finding the fan of $\operatorname{Hilb}^G \mathbb{C}^n$.

In this paper, we use [2, 7] to give a conceptual description of Hilb^G \mathbb{C}^3 scheme for any cyclic subgroup $G \subset GL(3, \mathbb{C})$ for which the quotient \mathbb{C}^3/G is a terminal singularity (see Theorem 6.2). By Morrison and Stevens [6], any such group is conjugated to a group generated by a diagonal matrix diag($\varepsilon, \varepsilon^a, \varepsilon^{r-a}$), where *a* and *r* are any coprime natural numbers and ε is an *r*th primitive root of unity.

The description is carried out by classification of all possible *G*-sets in families, called triangles of transformations. These families correspond to steps in the Euclidean algorithm for *b* and r - b, where *b* is an inverse of *a* modulo *r* (see Main Theorem 6.2). We prove that there are $\frac{1}{2}(3r + b(r - b) - 1)$ different *G*-sets (see Theorem 6.4).

We show that for a, r-a > 1 the Hilb^G \mathbb{C}^3 scheme is a normal variety with quadratic singularities. Note that Hilb^G \mathbb{C}^3 for a = 1 or r - a = 1 is isomorphic to the Danilov resolution of \mathbb{C}^3/G singularity by [4].

The paper is organised as follows. Section 2 recalls basic definitions from [7]. Section 3 contains classification of the *G*-sets by the number of valleys. It is used to show that the Hilb^{*G*} is normal. Section 4 contains definition of a primitive *G*-set. Every such *G*-set gives rise to a family of *G*-sets. The union of toric cones corresponding to *G*-sets in such family is called a triangle of transformations. In Section 5, we show how to obtain

OSKAR KĘDZIERSKI

a new primitive *G*-set from another one. In Sections 6, the combinatoric properties of primitive *G*-sets and the triangles of transformations are related to the Euclidean algorithm. We show that all subcones of cones in all triangles of transformations form the fan of Hilb^{*G*} scheme. The formula counting the number of *G*-sets is given at the end of Section 6. Section 7 contains a concrete example of Hilb^{*G*} scheme for $G \cong \mathbb{Z}_{14}$.

I would like to thank Professor Miles Reid for introducing me to this subject.

2. Basic definitions. Let us fix two coprime integers $r, a \ge 2$. Without loss of generality we may assume that a < r - a < r. Denote by *G* the cyclic group \mathbb{Z}_r , considered as a subgroup of GL(3, \mathbb{C}), generated by matrix diag($\varepsilon, \varepsilon^a, \varepsilon^{r-a}$), where $\varepsilon = e^{\frac{2\pi i}{r}}$. The group *G* has *r* characters, which may be identified with 1, $\varepsilon, \varepsilon^2, \ldots, \varepsilon^{r-1}$.

We follow the notation of [7]. Let $N_0 = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2 \oplus \mathbb{Z}e_3$ denote a free \mathbb{Z} -module with \mathbb{Z} -basis e_i . The lattice dual to N_0 will be denoted $M_0 = \text{Hom}_{\mathbb{Z}}(N_0, \mathbb{Z}) = \mathbb{Z}e_1^* \oplus \mathbb{Z}e_2^* \oplus \mathbb{Z}e_3^*$, where $e_i^*(e_j) = \delta_{ij}$. In this paper, the variables x, y, z will be identified with e_1^*, e_2^*, e_3^* and a multiplicative notation will be used in the lattice M_0 . For example, vector $2e_1^* - e_3^*$ will be identified with the Laurent monomial x^2z^{-1} .

Let M_0^0 be the positive octant in M_0 , identified with monomials in the ring $\mathbb{C}[x, y, z]$. Set $N = N_0 + \mathbb{Z}\frac{1}{r}(e_1 + ae_2 + (r - a)e_3)$ and let $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ be a dual lattice. Lattice M will be identified with a sublattice of M_0 consisting of G-invariant Laurent monomials. When no confusion arise, vector $a_1e_1 + a_2e_2 + a_3e_3$ will be denoted (a_1, a_2, a_3) . For example, $\frac{1}{5}(1, 2, 3)$ stands for $\frac{1}{5}e_1 + \frac{2}{5}e_2 + \frac{3}{5}e_3$. Let G^{\vee} denote the character group of G. The group G acts on the left on regular

Let G^{\vee} denote the character group of *G*. The group *G* acts on the left on regular functions on \mathbb{C}^3 by setting $(g \cdot f)(p) = f(g^{-1}p)$, where $g \in G$, $p \in \mathbb{C}^3$ and *f* is a regular function on \mathbb{C}^3 . This action can be extended to the lattice M_0 (by identifying M_0 with the lattice of exponents of Laurent monomials in *x*, *y*, *z*). Thus, we have the natural grading:

$$M_0 = igoplus_{\chi \in G^ee} M_0^\chi$$
 ,

DEFINITION 2.1. Let wt : $M_0 \longrightarrow G^{\vee}$ denote group homomorphism sending an element of the lattice M_0 to its grade.

We will denote by m mod n an integer $k \in 0, ..., n-1$ such that n|(m-k).

DEFINITION 2.2 (Nakamura). A subset Γ of monomials in $\mathbb{C}[x, y, z]$ is called a *G*-set if

(1) it contains the constant monomial 1,

(2) if $vw \in \Gamma$ then $v \in \Gamma$ and $w \in \Gamma$,

(3) the restriction of the function wt to Γ is a bijection.

REMARK. Since wt(1) = wt(yz), it follows that $yz \notin \Gamma$ for any G-set Γ . Hence the monomials in Γ are of the form x^*y^* and x^*z^* , where * stands for any non-negative integer.

DEFINITION 2.3. For any G-set Γ define $i(\Gamma), j(\Gamma), k(\Gamma)$ to be the unique nonnegative integers such that

$$\begin{aligned} x^{i(\Gamma)} \in \Gamma, \quad x^{i(\Gamma)+1} \notin \Gamma, \\ y^{j(\Gamma)} \in \Gamma, \quad y^{j(\Gamma)+1} \notin \Gamma, \\ z^{k(\Gamma)} \in \Gamma, \quad z^{k(\Gamma)+1} \notin \Gamma. \end{aligned}$$

When no confusion arise we write for short:

$$i = i(\Gamma),$$

$$j = j(\Gamma),$$

$$k = k(\Gamma).$$

DEFINITION 2.4 (Nakamura). A monomial $x^m y^n$ (resp. $x^m z^n$) for $m, n \ge 0$ is called a *y*-valley (resp. *z*-valley) for Γ , if

$$x^{m}y^{n}, x^{m+1}y^{n}, x^{m}y^{n+1} \in \Gamma$$
 but $x^{m+1}y^{n+1} \notin \Gamma$
(resp. $x^{m}z^{n}, x^{m+1}z^{n}, x^{m}z^{n+1} \in \Gamma$ but $x^{m+1}z^{n+1} \notin \Gamma$).

We call a *y*-valley or *z*-valley a valley for brevity.

DEFINITION 2.5. For any $v \in M_0^0$ let $wt_{\Gamma}(v)$ denote the unique $w \in \Gamma$ such that wt(v) = wt(w).

3. Classification of *G*-sets. In this section, we show that any *G*-set has at most one *y*-valley and at most one *z*-valley. Following Nakamura, for every *G*-set we construct a semigroup $S(\Gamma)$ in the lattice *M* and prove that it is saturated. It turns out that the *G*-sets correspond to the cones of maximal dimension in the fan of Hilb^{*G*} \mathbb{C}^3 .

REMARK 3.1. The following statements are immediate from the definitions:

(1) if $wt_{\Gamma}(v) = w$, $v \notin \Gamma$ and $u \cdot w \in \Gamma$, then $u \cdot v \notin \Gamma$,

(2) if $wt_{\Gamma}(v) = w$, then $wt_{\Gamma}(u \cdot v) = u \cdot w$ for any $u \in M_0$ such that $u \cdot w \in \Gamma$,

(3) if $wt_{\Gamma}(v) = w$, $u \in M$ then $wt_{\Gamma}(u \cdot v) = w$.

COROLLARY 3.2. Let Γ be a *G*-set and $v \in M_0^0 - \Gamma$. If $x^{-1} \cdot v \in \Gamma$ (resp. $y^{-1} \cdot v \in \Gamma$, $z^{-1} \cdot v \in \Gamma$) then $\operatorname{wt}_{\Gamma}(v) = w$, where $w \in \Gamma$ but $x^{-1} \cdot w \notin \Gamma$ (resp. $z \cdot w \notin \Gamma$, $y \cdot w \notin \Gamma$).

Proof. Use observation (1) and (3) from Remark 3.1.

LEMMA 3.3. A G-set can only have 0, 1 or 2 valleys.

Proof. Suppose that $x^m y^n$ is a y-valley for Γ . Then $v = x^{m+1}y^{n+1}$ satisfies assumptions of Corollary (3.2). Hence, $x^{-1} \cdot \operatorname{wt}_{\Gamma}(v) \notin \Gamma$ and $z \cdot \operatorname{wt}_{\Gamma}(v) \notin \Gamma$, so $\operatorname{wt}_{\Gamma}(v) = z^{k(\Gamma)}$. Therefore, *G*-set Γ has at most one *y*-valley, and, analogously at most one *z*-valley.

COROLLARY 3.4. Suppose that G-set Γ has y-valley w and z-valley v. Then

$$wt_{\Gamma}(y^{j(\Gamma)+1}) = x \cdot w,$$

$$wt_{\Gamma}(z^{k(\Gamma)+1}) = x \cdot v.$$

Proof. Use observation (2) from Remark 3.1.

118

NOTATION 3.5. From now on we will usually denote by i_y, j_y the exponents of the y-valley $x^{i_y}y^{j_y}$ and by i_z, k_z the exponents of the z-valley $x^{i_z}z^{k_z}$ of some fixed G-set Γ .

LEMMA 3.6. The only possible G-sets with no valleys are

$$\Gamma^{\mathbf{x}} = \{1, x, \dots, x^{r-1}\},\$$

$$\Gamma^{\mathbf{yz}}_{l} = \{y^{r-l-1}, \dots, y, 1, z, \dots, z^{l}\} for \ l = 0, \dots r-1.$$

Proof. Let i, j, k be integers like in Definition 2.3. Corollary 3.2 shows that $\operatorname{wt}_{\Gamma}(y^{j+1}) = x^{i'}z^k$, for some $i' \ge 0$. If i' = 0, then $\operatorname{wt}(z^{k+1}) = \operatorname{wt}(y^j)$ and since a, r are coprime, it follows that j = r - k - 1, hence i = 0. Consider the case i' > 0. Then $\operatorname{wt}_{\Gamma}(x^{i'-1}z^{k+1}) = x^{i''}y^j$ by Corollary 3.2. It follows immediately that i'' = i = r - 1 and so j = k = 0.

LEMMA 3.7. Let Γ be a G-set with exactly one valley. If Γ has y-valley equal to $x^{i_z} z^{k_z}$, then

$$wt_{\Gamma}(x^{i+1}) = z^{k-k_z},$$

$$wt_{\Gamma}(z^{k+1}) = x^{i-i_z} y^j.$$

If G-set Γ z-valley equal to $x^{i_y}y^{j_y}$, then

$$wt_{\Gamma}(x^{i+1}) = y^{j-j_y},$$

$$wt_{\Gamma}(y^{j+1}) = x^{i-i_y} z^k.$$

Proof. We prove the lemma in the case of z-valley $w = x^{i_z} z^{k_z}$. The monomial $wt_{\Gamma}(z^{k+1})$ is of the form $x^l y^j$, where $0 \le l \le i$. Noting that $wt_{\Gamma}(xz \cdot w) = y^j$ we get $l = i - i_z$. It follows that the monomials $x^{i-i_z} y^j$ and z^{k+1} are of the same weight, therefore $wt_{\Gamma}(z^{k+1}) = x^{i-i_z} y^j$.

LEMMA 3.8. Let Γ be a G-set with two valleys v, w, where

$$v = x^{i_y} y^{j_y},$$
$$w = x^{i_z} z^{k_z},$$

Then $i_y + i_z + 1 = i$, and

$$wt_{\Gamma}(x^{i+1}) = \begin{cases} y^{(j-j_y)-(k-k_z)} & \text{if } (j-j_y)-(k-k_z) \ge 0, \\ z^{(k-k_z)-(j-j_y)} & \text{otherwise.} \end{cases}$$

Proof. Let *u* be a monomial such that $u \notin \Gamma$ and $x^{-1}u \in \Gamma$. Then $\operatorname{wt}_{\Gamma}(u) = z^{l}$ for some $0 \leq l \leq k$ or $\operatorname{wt}_{\Gamma}(u) = y^{l}$ for $0 \leq l \leq j$. We know already that $\operatorname{wt}_{\Gamma}(xz \cdot w) = y^{j}$ and $\operatorname{wt}_{\Gamma}(xy \cdot v) = z^{k}$, which implies that $\operatorname{wt}_{\Gamma}(x^{i+1}) = y^{(j-j_{y})-(k-k_{z})}$ if $(j - j_{y}) - (k - k_{z}) \geq 0$ and $\operatorname{wt}_{\Gamma}(x^{i+1}) = z^{(k-k_{z})-(j-j_{y})}$ otherwise. The monomial $x^{i_{y}+i_{z}+1}$ has the same weight as x^{i+1} hence they are equal.

DEFINITION 3.9 (Nakamura). For any $v \in M_0$ and a *G*-set Γ define (using a multiplicative notation in the lattice M_0)

$$s_{\Gamma}(v) = v \operatorname{wt}_{\Gamma}^{-1}(v).$$

We will write it simply s(v) when no confusion can arise. Define the cones

$$\sigma(\Gamma) = \{ \alpha \in N_0 \otimes_{\mathbb{Z}} \mathbb{R} | \langle \alpha, s_{\Gamma}(v) \rangle \ge 0, \quad \forall v \in M_0^0 \}, \\ \sigma^{\vee}(\Gamma) = \{ v \in M_0 \otimes_{\mathbb{Z}} \mathbb{R} | \langle \alpha, v \rangle \ge 0, \quad \forall \alpha \in \sigma(\Gamma) \},$$

where $\langle \cdot, \cdot \rangle$ denotes the pairing between N_0 and M_0 .

Let $S(\Gamma)$ be a sub-semigroup of the lattice M, generated by the set $\{s_{\Gamma}(v) \in M \mid v \in M_0^0\}$ as a semigroup. Set

$$V(\Gamma) = \operatorname{Spec} \mathbb{C}[S(\Gamma)].$$

Note that

$$\mathbb{C}[\mathbf{S}(\Gamma)] \subset \mathbb{C}[\sigma^{\vee}(\Gamma) \cap M].$$

Moreover, the cones $\sigma(\Gamma)$, $\sigma^{\vee}(\Gamma)$ are dual to each other and the cone $\sigma^{\vee}(\Gamma) \cap M$ is the saturation of the semigroup $S(\Gamma)$ in the lattice M. It will follow from Lemma (3.11) that $S(\Gamma)$ is finitely generated as a semigroup.

THEOREM 3.10 (Nakamura). Let G be a finite abelian subgroup of GL(3, \mathbb{C}). When Γ varies through all G-sets the set of all faces of all three-dimensional cones $\sigma(\Gamma)$ forms a fan in lattice $N \otimes \mathbb{R}$ supported on the positive octant. Toric variety defined by this fan is isomorphic to the normalisation of the Hilb^G \mathbb{C}^3 scheme (see [7, Theorem 2.11] and [1, Section 5]). Moreover, the affine varieties V(Γ) form an open covering of the Hilb^G \mathbb{C}^3 scheme when Γ varies through all G-sets.

LEMMA 3.11 (Nakamura). Let $A \subset M_0^0 - \Gamma$ be a finite set such that $M_0^0 - \Gamma = A \cdot M_0^0$. If $\sigma(\Gamma)$ is a three-dimensional cone then $S(\Gamma)$ is generated by the finite set $\{s_{\Gamma}(v) \mid v \in A\}$ as a semigroup (see [7, Lemma 1.8]).

REMARK 3.12. Note that Theorem 3.10 and Lemma 3.11 are stated in [7] without the assumption on dimension of $\sigma(\Gamma)$ in which case they are false. A counter-example and a correction can be found in [2, Example 4.12 and Theorem 5.2].

LEMMA 3.13. Suppose that Γ is a *G*-set in the case of $\frac{1}{r}(1, a, r - a)$ action. Then the cone $\sigma(\Gamma)$ is three-dimensional. Moreover, if Γ has 0 or 1 valley then $S(\Gamma) \cong \mathbb{C}[x, y, z]$. If Γ has 2 valleys then $S(\Gamma) \cong \mathbb{C}[x, y, z, w]/(xy - zw)$.

Proof. The lemma will be proven only in the case of a *G*-set with 2 valleys as the method carries over to the other cases.

Suppose that Γ is a *G*-set with 2 valleys, $v = x^{i_y} y^{j_y}$, $w = x^{i_z} z^{k_z}$ and set

$$\alpha = x^{l+1},$$

$$\beta = y^{l+1},$$

$$\gamma = z^{k+1},$$

$$\delta_y = xy \cdot v,$$

$$\delta_z = xz \cdot w$$

where *i*, *j*, *k* are the largest exponents such that x^i , y^j , z^k belong to Γ . We will start by showing that $s(\beta)$, $s(\gamma)$, $s(\delta_y)$ and $s(\delta_z)$ generate semigroup S(Γ). Assume that $u \in M_0^0$, t = x, y or *z* and note that

$$s(t \cdot u) = s(u)s(t \cdot wt_{\Gamma}(u)).$$

By the above formula it suffices to show that for any $u \in \Gamma$ such that $t \cdot u \notin \Gamma$ the Laurent monomial $s(t \cdot u)$ can be expressed as a product of $s(\beta)$, $s(\gamma)$, $s(\delta_y)$ and $s(\delta_z)$ with non-negative exponents. By Lemma 3.8,

$$s(\alpha) = \begin{cases} x^{i+1}y^{-(j-j_y)+(k-k_z)} & \text{if } (j-j_y) \ge (k-k_z), \\ x^{i+1}z^{(j-j_y)-(k-k_z)} & \text{otherwise,} \end{cases}$$

$$s(\beta) = xy^{-(j+1)} \cdot w, \\ s(\gamma) = xz^{-(k+1)} \cdot v, \\ s(\delta_y) = xyz^{-k} \cdot v, \\ s(\delta_z) = xy^{-j}z \cdot w, \end{cases}$$

hence

$$s(\beta)s(\delta_z) = s(\gamma)s(\delta_y) = s(yz),$$

$$s(\alpha) = \begin{cases} s(\delta_y)s(\delta_z)(yz)^{j-j_y-1} & \text{if } (j-j_y) \ge (k-k_z), \\ s(\delta_y)s(\delta_z)(yz)^{k-k_z-1} & \text{otherwise.} \end{cases}$$

Let $u \in \Gamma$ and $y \cdot u \notin \Gamma$. If $u = x^l y^j$, where $l = 0, ..., i_y$ then $s(y \cdot u) = s(\beta)$. If $u = x^l y^j_y$, where $l = i_y + 1, ..., i$ then $s(y \cdot u) = s(\delta_y)$. Analogously $s(z \cdot u)$ is equal to $s(\gamma)$ or to $s(\delta_y)$ for any $u \in \Gamma, z \cdot u \notin \Gamma$.

It remains to consider $u \in \Gamma$ such that $x \cdot u \notin \Gamma$. Observe that $wt_{\Gamma}(x \cdot u)$ is of the form y^{l} or z^{l} for some positive l (l = 0 can happen only if $\Gamma = \Gamma^{x}$). If $u' = y^{-1}u \in \Gamma$ then $x \cdot u' \notin \Gamma$ and

$$s(x \cdot u) = s(y \cdot xu') = s(xu')s(y \operatorname{wt}_{\Gamma}(x \cdot u')) = s(xu')(yz)^n$$
, where $n = 0, 1$.

By induction for any such $u \in \Gamma$ the monomial $s(x \cdot u)$ is equal to $p \cdot (xy)^m$, where m > 0 and $p = s(\alpha)$, $s(\delta_y)$ or $s(\delta_z)$.

This shows that $S(\Gamma)$ is generated by $s(\beta)$, $s(\gamma)$, $s(\delta_y)$ and $s(\delta_z)$. To conclude it is enough to show that some (in fact any) 3 out of 4 generators form a \mathbb{Z} -basis of the lattice *M*. This is implied by computing the following determinant, using equality from Lemma 3.8:

$$\begin{vmatrix} -i_z - 1 & j+1 & -k_z \\ i_y + 1 & j_y + 1 & -k \\ -i_y - 1 & -j_y & k+1 \end{vmatrix} = r.$$

COROLLARY 3.14. The semigroup $S(\Gamma)$ coincides with the semigroup algebra $\mathbb{C}[\sigma^{\vee}(\Gamma') \cap M]$ for any G-set. In particular, $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ is normal.

4. *G*-igsaw transformations. To get an effective description of the fan of the Hilb^G scheme, we introduce Nakamura's *G*-igsaw transformation, which will allow to organise *G*-sets in families and to explain how these are related to each other.

G-igsaw transformation is a method of constructing a new *G*-set from the other. In fact, two *G*-sets Γ and Γ' are related by a *G*-igsaw transformation if and only if the cones $\sigma(\Gamma)$ and $\sigma(\Gamma')$ share a two-dimensional face.

When reading Sections 4–6, it may be useful for a reader to consult an example provided in Section 7.

LEMMA 4.1 (Nakamura). Let Γ be a G-set for the action of type $\frac{1}{r}(1, a, r - a)$ and let τ be a two-dimensional face of $\sigma(\Gamma)$. There exist two monomials $u \in M_0^0$ and $v \in \Gamma$ such that

(1) $v = wt_{\Gamma}(u)$, (2) u, v do not have common factors in M_0^0 , (3) uv^{-1} is a primitive monomial, (4) $\tau = \sigma(\Gamma) \cap (uv^{-1})^{\perp}$,

Proof. This is a particular case of [7, Lemma 2.5]

DEFINITION 4.2 (Nakamura). Let Γ be a *G*-set and let τ be a two-dimensional face of $\sigma(\Gamma)$. Suppose that monomials u, v given by Lemma 4.1 are not equal to 1 and set $c(w) = \max\{c \in \mathbb{Z} \mid wv^{-c} \in M_0^0\}$ for any $w \in \Gamma$. We define the *G*-igsaw transformation of Γ in the direction of τ to be the set

$$\Gamma' = \{ w \cdot u^{c(w)} v^{-c(w)} \mid w \in \Gamma \}.$$

LEMMA 4.3 (Nakamura). The G-igsaw transformation of a G-set is a G-set.

Proof. See [7, Lemma 2.8]

LEMMA 4.4. Suppose that Γ is a G-set for the action $\frac{1}{r}(1, a, r - a)$. Let $\alpha = x^{i+1}$, $\beta = y^{j+1}$, $\gamma = z^{k+1}$, where *i*, *j*, *k* are the maximal exponents such that x^i , y^j , $z^k \in \Gamma$. Let τ be a two-dimensional face of $\sigma(\Gamma)$ and let *u* be the monomial given by Lemma 4.1. If Γ has 0 or 1 valley then $u = \alpha$, β or γ . If Γ has 2 valleys then $u = \beta$, γ , δ_y or δ_z , where δ_y is equal to the y-valley of Γ multiplied by xy and δ_z is equal to the z-valley of Γ multiplied by xz.

Proof. Suppose that Γ has one valley and τ is a face of $\sigma(\Gamma)$ dual to the ray of $\sigma^{\vee}(\Gamma)$ spanned by $s(\alpha)$. The one-dimensional lattice $M \cap \tau^{\perp}$ has 2 generators. Therefore uv^{-1} is equal either to $s(\alpha)$ or $s(\alpha)^{-1}$. Clearly, the only choice is $u = \alpha$, $v = wt_{\Gamma}(\alpha)$. Suppose

 \square

that $d \in M_0^0$ is a common factor of u and v. Then both ud^{-1} , vd^{-1} belong to Γ and they are of the same weight. Hence d = 1.

DEFINITION 4.5. Let Γ be a *G*-set with 0 or 1 valley and let τ be the two-dimensional face of $\sigma(\Gamma)$. The *G*-igsaw transformation of Γ in the direction of τ is called *upper (resp. right, left) transformation* if $u = \alpha$ (resp. $u = \beta$, $u = \gamma$.), where the monomial *u* is as in Lemma 4.1. The upper, left and right transformations of Γ will be denoted by $T_U(\Gamma)$, $T_R(\Gamma)$ and $T_L(\Gamma)$, respectively.

By slight abuse of notation, the *G*-igsaw transformation of *G*-set Γ with 2 valleys is called *left (resp. upper left, right, left) transformation* if the corresponding monomial *u* is equal to β (resp. γ , δ_y , δ_z). The right, left, upper right and upper left *G*-igsaw transformations of Γ will be denoted by $T_{UR}(\Gamma)$, $T_{UL}(\Gamma)$, $T_R(\Gamma)$, $T_L(\Gamma)$, respectively.

DEFINITION 4.6. We say that a G-set Γ is spanned by monomials u_1, \ldots, u_n if Γ consists of all monomials dividing u_1, \ldots, u_n . If G-set Γ is spanned by monomials u_1, \ldots, u_n we write

$$\Gamma = \operatorname{span}(u_1,\ldots,u_n).$$

LEMMA 4.7. Let $\Gamma = \text{span}(x^{i_y}y^j, x^iz^k)$, where $i_y < i$ (resp. let $\Gamma = \text{span}(x^iy^j, x^{i_k}z^k)$, where $i_z < i$) be a G-set with one y-valley equal to x^{i_y} (resp. one z-valley equal to x^{i_z}). Then

$$T_U(\Gamma) = \operatorname{span}(x^{i+i_y+1}, x^{i_y}y^{j-1}, x^i z^k),$$

(resp. $T_U(\Gamma) = \operatorname{span}(x^{i+i_z+1}, x^i y^j, x^{i_k} z^{k-1})).$

In particular, the upper transformation of Γ has

- no valleys if and only if j = 1, k = 0 (resp. j = 0, k = 1). In fact, in this case $T_U(\Gamma) = \Gamma^x$.
- one z-valley (resp. one y-valley) if and only if j = 1, k > 0 (resp. j > 0, k = 1). In both cases the valley is equal to x^i .
- two valleys: the y-valley equal to x^{iy} and the z-valley equal to xⁱ (resp. the y-valley equal to xⁱ and the z-valley equal to x^{iz}) in the remaining cases.

Proof. The upper transformation is obtained by replacing each monomial $w \in \Gamma$, divisible by y^j (resp. by z^k) by the monomial $x^{n(i+1)}y^{-nj} \cdot w$ for some $n \ge 1$. The proof is straightforward.

LEMMA 4.8. Let Γ be a G-set with 2 valleys: y-valley equal to $v = x^{i_y}y^{j_y}$ and z-valley equal to $w = x^{i_z}z^{k_z}$. Assume that Γ is spanned by $x^iy^{j_y}$, $x^iz^{k_z}$, $x^{i_y}y^j$, $x^{i_z}z^k$. Let T stand for right, left, upper right or upper left transformation.

Then $T(\Gamma)$ is spanned by

$$\begin{array}{lll} x^{i}y^{j_{y}}, & x^{i}z^{k_{z}-1}, & x^{i_{y}}y^{j+1}, & x^{i_{z}}z^{k} & T=T_{R}, k_{z} \geq 1, \\ x^{i}y^{j_{y}-1}, & x^{i}z^{k_{z}}, & x^{i_{y}}y^{j}, & x^{i_{z}}z^{k+1} & T=T_{L}, j_{y} \geq 1, \\ x^{i}y^{j_{y}+1}, & x^{i}z^{k_{z}}, & x^{i_{y}}y^{j}, & x^{i_{z}}z^{k-1} & if & T=T_{UR}, \\ x^{i}y^{j_{y}}, & x^{i}z^{k_{z}+1}, & x^{i_{y}}y^{j-1}, & x^{i_{z}}z^{k} & T=T_{UL}. \end{array}$$

Proof. The proof is a matter of straightforward computation. It follows directly by considering each case separately cf. Lemma 4.4). \Box

Note that the *G*-igsaw transformation of a *G*-set with two valleys may have only one valley.

COROLLARY 4.9. Let Γ be a G-set spanned by $x^i y^{j_y}$, $x^i z^{k_z}$, $x^{i_y} y^j$, $x^{i_z} z^k$ with 2 valleys: y-valley equal to $v = x^{i_y} y^{j_y}$ and z-valley equal to $w = x^{i_z} z^{k_z}$. If j_y , $k_z \ge 1$ then

$$T_R(T_{UL}(\Gamma)) = \Gamma, \ T_{UL}(T_R(\Gamma)) = \Gamma,$$

$$T_L(T_{UR}(\Gamma)) = \Gamma, \ T_{UR}(T_L(\Gamma)) = \Gamma,$$

that is right and upper left (resp. left and upper right) transformations are inverse operations. Moreover, if $j, k, j - j_v, k - k_z \ge 2$ then

$$T_{UL}(T_{UR}(\Gamma)) = T_{UR}(T_{UL}(\Gamma)),$$

that is, upper left and upper right transformations commute.

COROLLARY 4.10. Let Γ be a G-set spanned by $x^i y^{j_y}$, $x^i z^{k_z}$, $x^{i_y} y^j$, $x^{i_z} z^k$, with 2 valleys: y-valley equal to $v = x^{i_y} y^{j_y}$ and z-valley equal to $w = x^{i_z} z^{k_z}$. Let $\Gamma' = T^m_{UR}(T^n_{UL}(\Gamma))$, where $m + n \le \min\{j, k, j - j_y, k - k_z, \}$. Then Γ' is spanned by $x^i y^{j_y+m}$, $x^i z^{k_z+n}$, $x^{i_y} y^{j-n}$, $x^{i_z} z^{k-m}$. If $m + n < \min\{j, k, j - j_y, k - k_z\}$ then Γ' has two valleys. If $m + n = \min\{j, k, j - j_y, k - k_z\}$ then Γ' has one valley (one of the monomials $x^i y^{j_y+m}$, $x^i z^{k_z+n}$, $x^{i_y} y^{j-n}$, $x^{i_z} z^{k-m}$ spanning Γ' is redundant).

5. Triangles of transformations and primitive *G*-sets. In this section, we introduce primitive *G*-sets, which have a particular shape. Every primitive *G*-set such gives rise to a family of *G*-sets, called here a triangle of transformations. It will turn out that most *G*-sets belong to some triangle of transformations. We define a sequence of primitive *G*-sets containing every primitive *G*-set for fixed integers r and a.

DEFINITION 5.1. Let Γ be a *G*-set with two valleys, spanned by $x^i y^{j_y}$, $x^i z^{k_z}$, $x^{i_y} y^j$, $x^{i_z} z^k$. The set

$$\Theta(\Gamma) = \{T_{UR}^m(T_{UL}^n(\Gamma)) \mid m+n \le \min\{j, k, j-j_v, k-k_z\}\}$$

will be called *triangle of transformations* of Γ .

The union of the supports of *G*-sets belonging to the set $\Theta(\Gamma)$ is a simplicial cone (see Corollary 5.13), hence we call $\Theta(\Gamma)$ a triangle of transformations.

DEFINITION 5.2. A *G*-set Γ is called *primitive* if it has a *y*-valley equal to x^{i_y} and a *z*-valley equal to x^{i_z} for some non-negative i_y , i_z .

The name primitive is justified by the fact that every G-set with two valleys belong to a triangle of transformations of some primitive G-set. This fact will follow from the Main Theorem.

DEFINITION 5.3. For fixed coprime integers *r*, *a* define let Γ_1 be a *G*-set spanned by x, y^{b-1}, z^{r-b-1} , where $b \in \{1, ..., r-1\}$ is as an inverse of *a* modulo *r*.

The G-set Γ_1 is primitive and the monomial x is simultaneously its y-valley and z-valley.

LEMMA 5.4. Let Γ be a primitive G-set spanned by x^i , $x^{i_y}y^j$, $x^{i_z}z^k$. Then $\Theta(\Gamma)$ consists of $\binom{\min\{j,k\}+2}{2}$ G-sets.

Proof. It is clear from definition of $\Theta(\Gamma)$.

124

LEMMA 5.5. Let Γ be a primitive G-set spanned by x^i , $x^{i_y}y^j$, $x^{i_z}z^k$. Suppose that j < k (resp. k < j). The G-set $T_U(T_{UR}^j(\Gamma))$ (resp. $T_U(T_{UL}^k(\Gamma))$) is spanned by x^{i+i_z+1} , x^iy^j , $x^{i_z}z^{k-(j+1)}$ (resp. x^{i+i_y+1} , $x^iy^{j-(k+1)}$, x^iz^k). Moreover, if j < k - 1 (resp. k < j - 1) it is primitive.

Proof. Assume that j < k. The *G*-set $T_{UR}^{j}(\Gamma)$ is spanned by $x^{i}y^{j}$, $x^{i_{z}}z^{k-j}$ and it has one *z*-valley equal to $x^{i_{z}}$ by Lemma 4.8. To finish the proof apply Lemma 4.7 to the *G*-set $T_{UR}^{j}(\Gamma)$.

The preceding lemma allows us to define a sequence of primitive G-sets.

DEFINITION 5.6. If Γ_n is a primitive *G*-set we set:

$$\Gamma_{n+1} = \begin{cases} T_U(T_{UR}^{j_n}(\Gamma_n)) & \text{if } j_n < k_n, \\ T_U(T_{UL}^{k_n}(\Gamma_n)) & \text{if } j_n > k_n, \end{cases}$$

where j_n , k_n denote the non-negative numbers such that Γ_n is spanned by the monomials x^{i_n} , $x^{i_{y,n}}y^{j_n}$, $x^{i_{z,n}}z^{k_n}$ for some i_n , $i_{y,n}$, $i_{z,n} \ge 0$.

Observe that if $j_n - k_n = \pm 1$ for some *n* then Γ_{n+1} is not primitive and the recursion stops.

COROLLARY 5.7. The numbers j_n , k_n satisfy the following formulas:

$$j_{1} + 1 = b,$$

$$k_{1} + 1 = r - b,$$

$$j_{n+1} + 1 = \begin{cases} j_{n} + 1 & \text{if } j_{n} < k_{n}, \\ j_{n} + 1 - (k_{n} + 1) & \text{if } j_{n} > k_{n}, \end{cases}$$

$$k_{n+1} + 1 = \begin{cases} k_{n} + 1 - (j_{n} + 1) & \text{if } j_{n} < k_{n}, \\ k_{n} + 1 & \text{if } j_{n} > k_{n}. \end{cases}$$

Clearly, there is a direct link between the numbers $j_n + 1$, $k_n + 1$ and the numbers appearing in the Euclidean algorithm for *b* and r - b. This relationship will be exploited later.

DEFINITION 5.8. Let $\Theta(\Gamma)$ be a triangle of transformations of a *G*-set Γ . We define

$$\widetilde{\Theta}(\Gamma) = \bigcup_{\Gamma' \in \Theta(\Gamma)} \sigma(\Gamma')$$

to be the union of supports of the cones $\sigma(\Gamma')$, where Γ' runs through the *G*-sets in $\Theta(\Gamma)$.

To study the location of various cones in the fan $\text{Hilb}^G \mathbb{C}^3$ it is convenient to give names to their rays.

DEFINITION 5.9. Let Γ_n be the primitive *G*-set as defined in (5.6). Denote by ρ_n the common ray of the cones $\Theta(\Gamma_n)$ and $\sigma(\Gamma_n)$.

Let Γ be any *G*-set. A ray of $\sigma^{\vee}(\Gamma)$ will be called *upper*, *(upper) left or right ray* if it dual to the wall of $\sigma(\Gamma)$ corresponding to the upper, (upper) left or right transformation, respectively.

REMARK 5.10. Let Γ , Γ' be any two *G*-sets. Suppose that the cones $\sigma(\Gamma)$ and $\sigma(\Gamma')$ intersect either in a two-dimensional face or in a ray. If the cones $\sigma^{\vee}(\Gamma)$, $\sigma^{\vee}(\Gamma')$ have a common ray ρ then there exists a two-dimensional linear subspace of $N \otimes \mathbb{R}$ containing a two-dimensional face of $\sigma(\Gamma)$ and of $\sigma(\Gamma')$, both of these dual to the ray ρ .

LEMMA 5.11. For any G-set Γ with two valleys the set $\widetilde{\Theta}(\Gamma)$ is a rational simplicial cone.

Proof. Assume that G-set is spanned by the monomials $x^i y^{j_y}$, $x^i z^{k_z}$, $x^{i_y} y^j$, $x^{i_z} z^k$ and let $l = \min j, k, j - j_y, k - k_z$. Because the upper right and upper left transformation commute (see Corollary 4.9), by Remark 5.10 it is enough to establish the three following facts:

- the right rays of the cones $\sigma^{\vee}(T_{UR}^n(\Gamma))$ for n = 0, ..., l are the same,
- the left rays of the cones $\sigma^{\vee}(T_{UL}^n(\Gamma))$ for n = 0, ..., l are the same,
- the upper rays of the cones $\sigma^{\vee}(T_{UR}^m(T_{UL}^n(\Gamma)))$ for m + n = l are the same.

These follow from Corollary 4.10.

LEMMA 5.12. Let Γ be a primitive *G*-set spanned by $x^i, x^{i_y}y^j, x^{i_z}z^k$. If j < k (resp. k < j) then \mathbb{R}_+e_2 (resp. \mathbb{R}_+e_3) is a ray of $\widetilde{\Theta}(\Gamma)$.

Proof. Suppose that j < k. The *G*-set $\Gamma' = T^j_{UL}(\Gamma)$ is spanned by the monomials $x^i z^{k_z+j}$, $x^{i_z} z^k$ and it has one valley (see Corollary 4.10). The upper and left ray of $\sigma(\Gamma')$ are equal to $x^{i+1} z^{-k+k_z}$ and $x^{-i+i_z} z^{k+1}$, respectively. Evidently, the ray of $\sigma \vee (\Gamma')$, dual to the two-dimensional face of $\sigma^{\vee}(\Gamma)$ spanned by the upper and left ray, is equal to $\mathbb{R}_+ e_2$.

Note that the cone $\Theta(\Gamma_i)$ has, besides the ray common with $\sigma(\Gamma_i)$, two other rays: one equal to either e_2 or e_3 and the second which belongs to $\sigma(\Gamma_{i+1})$. We will investigate how the cones $\widetilde{\Theta}(\Gamma_i)$, $\widetilde{\Theta}(\Gamma_{i+1})$ fit together depending on the sign of $(j_i - k_i)(j_{i+1} - k_{i+1})$.

COROLLARY 5.13. Let Γ_n and Γ_{n+1} be two primitive *G*-sets. If $(j_n - k_n)(j_{n+1} - k_{n+1}) > 0$ then the union of the supports of the cones $\widetilde{\Theta}(\Gamma_n)$, $\widetilde{\Theta}(\Gamma_{n+1})$ is a rational simplicial cone.

LEMMA 5.14. Let Γ_n and Γ_{n+1} be two primitive *G*-sets. Then $\widetilde{\Theta}(\Gamma_n) \cup \widetilde{\Theta}(\Gamma_{n+1})$ is equal to the cone spanned by ρ_n , e_2 , e_3 minus (set-theoretical) the cone spanned by ρ_{n+1} , e_2 , e_3 .

Proof. If $(j_n - k_n)(j_{n+1} - k_{n+1}) > 0$ this follows from Corollary 5.13. Otherwise, the cones $\widetilde{\Theta}(\Gamma_n)$, $\widetilde{\Theta}(\Gamma_{n+1})$ have a common ray and a two-dimensional face of $\widetilde{\Theta}(\Gamma_{n+1})$ is contained in a two-dimensional face of $\widetilde{\Theta}(\Gamma_n)$. To finish, note that e_2 and e_3 generate rays of $\widetilde{\Theta}(\Gamma_n)$ and $\widetilde{\Theta}(\Gamma_{n+1})$ (up to the order).

Recall that $\Gamma_l^{yz} = \operatorname{span}(y^l, z^{r-l-1})$. We will prove that the cones $\sigma(\Gamma_l^{yz})$ fit nicely together with the cones $\widetilde{\Theta}(\Gamma_l)$ into the fan of $\operatorname{Hilb}^G \mathbb{C}^3$.

LEMMA 5.15. The upper transformations of Γ_{b-1}^{yz} and Γ_b^{yz} coincide, where $b \in \{1, \ldots, r-1\}$ is an inverse of a modulo r. In fact, they are equal to Γ_1 .

Proof. By definition, the upper transformation of Γ_{b-1}^{yz} and Γ_b^{yz} replaces the monomial z^{r-b} and y^b with the monomial x, respectively.

LEMMA 5.16. The upper rays of the cones $\sigma^{\vee}(\Gamma_0^{y_z}), \ldots \sigma^{\vee}(\Gamma_{b-1}^{y_z})$ (resp. $\sigma^{\vee}(\Gamma_b^{y_z}), \ldots \sigma^{\vee}(\Gamma_{r-1}^{y_z})$) are equal. The one-dimensional cone $\mathbb{R}_{\geq 0}e_1$ is a ray of each the cones $\sigma(\Gamma_i^{y_z})$, for $i = 0, \ldots, r-1$.

Proof. The upper ray of the cones $\sigma^{\vee}(\Gamma_0^{yz}), \ldots \sigma^{\vee}(\Gamma_{b-1}^{yz})$ is spanned by xz^{-r+b} and the upper ray of $\sigma^{\vee}(\Gamma_b^{yz}), \ldots \sigma^{\vee}(\Gamma_{r-1}^{yz})$ is spanned by xy^b . The right and left rays of $\sigma^{\vee}(\Gamma_l^{yz})$ are equal to $y^{-l}z^{r-l}, y^{l+1}z^{r-l-1}$, therefore \mathbb{R}_+e_1 is a ray of $\sigma(\Gamma_l^{yz})$.

COROLLARY 5.17. The sets

$$\bigcup_{l=0}^{b-1} \sigma(\Gamma_l^{\rm yz}), \quad \bigcup_{l=b}^{r-1} \sigma(\Gamma_l^{\rm yz})$$

are rational cones in $N \otimes \mathbb{R}$ spanned by e_1, e_2, ρ_1 and e_1, e_3, ρ_1 , respectively.

Proof. This follows from Remark 5.10 and Lemma 5.16.

6. Main theorem and the Euclidean algorithm. By Theorem 3.10, when Γ varies through all *G*-sets, the cones $\sigma(\Gamma)$ form a fan supported on the cone spanned by e_1, e_2, e_3 . Therefore, it is enough to find *G*-sets different from the *G*-set Γ_l^{yz} which does not belong to any triangle of transformation. By looking at the supports of triangle transformations, it will turn out that those missing *G*-sets are exactly the upper transformations of the last *G*-set Γ_n defined in (5.6). With the help of the Euclidean algorithm we will be able to give a formula for a total number of *G*-set for fixed *r* and *a*.

DEFINITION 6.1. Let *m* be an integer such that Γ_{m+1} is not primitive (i.e. Γ_m is the last primitive *G*-set in the sequence defined in (5.6)).

THEOREM 6.2 (Main Theorem). Let r, a be coprime natural numbers and let b be an inverse of a modulo r. Let G be a cyclic group of order r, acting on \mathbb{C}^3 with weights 1, a, r - a.

If $\Gamma_1, \ldots, \Gamma_{m+1}$ is the sequence from Definition 5.6 (that is, Γ_n is a primitive G-set unless n = m + 1) and if $\Gamma_l^{yz} = \operatorname{span}(y^{r-l-1}, z^l)$ then every G-set either

- belongs to a triangle of transformation of some Γ_n for $n \leq m$, or
- is equal to a G-set Γ_l^{yz} for some l = 1, ..., n, or
- *is equal to an iterated upper transformation of the G-set* Γ_{m+1} .

Proof. The proof uses Nakamura's Theorem 3.10, which asserts that the union of the supports of the cones $\sigma(\Gamma)$ is equal to the positive octant in $N \otimes \mathbb{R}$. Lemma 5.14 and Corollary 5.17 combined imply that if a *G*-set Γ neither belongs to some triangle of transformation nor is equal to Γ_l^{yz} for some *l* then the cone $\sigma(\Gamma)$ is supported in the cone spanned by e_2, e_3, ρ_{m+1} . On the other hand, the *G*-set Γ_{m+1} is equal either to span $(x^{i_{m+1}}, x^{i_{y_{m+1}}}y^{j_{m+1}})$ or to span $(x^{i_{m+1}}, x^{i_{z,m+1}}z^{k_{m+1}})$, cf. Lemma 5.5. Therefore the j_{m+1} th iterated upper transformation of Γ_{m+1} is equal to $\Gamma^x = \text{span}(x^{r-1})$. Moreover, the *G*-sets $T_U^l(\Gamma_{m+1})$ and $T_U^{l+1}(\Gamma_{m+1})$ satisfy assumptions of the Remark 5.10. This shows that the set

$$\bigcup_{l=0}^{\max\{j_{m+1},k_{m+1}\}}\sigma(T_U^l(\Gamma_{m+1}))$$

is a cone generated by e_2 , e_3 , ρ_{m+1} which concludes the proof.

REMARK. The above theorem can be restated in a form of an algorithm computing the fan of the Hilb^{*G*} \mathbb{C}^3 for fixed *a* and *r* (recall that the Hilb^{*G*} \mathbb{C}^3 is normal, cf. Corollary 3.14).

REMARK. The two-stage construction of the Hilb^G \mathbb{C}^3 for abelian subgroups in SL(3, \mathbb{C}) by Craw and Reid in [3] appears to provide a coarse subdivision of the fan of the Hilb^G \mathbb{C}^3 for the subgroup G in GL(3, \mathbb{C}) of type $\frac{1}{r}(1, a, r - a)$. The coarse subdivision (i.e. with all interior lines of all triangles of transformations removed) is provided by the continued fraction expansions.

LEMMA 6.3. Let p_l , q_l be the data of the Euclidean algorithm for the non-negative integer numbers p_1 , p_2 with GCD $(p_1, p_2) = p_{n+1}$, that is,

$$p_i = q_i p_{i+1} + p_{i+2}, \quad 0 < p_{i+2} < p_{i+1},$$

where $p_{n+1} \neq 0$ and $p_{n+2} = 0$. Then

$$\sum_{l=1}^{n} q_l p_{l+1} = p_1 + p_2 - p_{n+1},$$
$$\sum_{l=1}^{n} q_l p_{l+1}^2 = p_1 p_2.$$

THEOREM 6.4. Fix some coprime numbers r and a. Let N denote the number of different G-sets for the action of type $\frac{1}{r}(1, a, r - a)$. Then

$$N = \frac{1}{2}(3r + b(r - b) - 1).$$

Proof. Denote $\Gamma_l = \operatorname{span}(x^{i_l}, x^{i_{y,l}}y^{j_l}, x^{i_{z,l}}z^{k_l})$. The triangle of transformations of Γ_l consist of $\binom{\min\{j_l+1,k_l+1\}+1}{2}$ cones (see Lemma 5.4). Therefore

$$N = r + \max\{j_{m+1} + 1, k_{m+1} + 1\} + \sum_{l=1}^{m} \binom{\min\{j_l + 1, k_l + 1\} + 1}{2},$$

where the first two terms come from the *G*-sets Γ_l^{yz} and the consecutive upper transformations of Γ_{m+1} .

Suppose that b < r - b. Let the p_l and q_l be the data of the Euclidean algorithm for the coprime numbers $p_1 = k_1 + 1 = r - b$, $p_2 = j_1 + 1 = b$ as in Lemma 6.3. Set $q_0 = 1$. In this notation, by the formulas from Corollary 5.7,

$$\min\{j_C + 1, k_C + 1\} = p_D$$

for $q_0 + \dots + q_D \le C < q_0 + \dots + q_{D+1}$.

Note that $p_{n+1} = 1$ and $q_n = \max\{j_{m+1} + 1, k_{m+1} + 1\}$, thus $N = r + q_n p_{n+1} + \frac{1}{2} \sum_{l=1}^{n-1} (q_l p_{l+1}^2 + q_l p_{l+1})$. This, by simple computation, implies the assertion.

Figure 1. The fan of *G*-Hilb \mathbb{C}^3 scheme for r = 14, a = 5 intersected with hyperplane $e_2^* + e_3^* = 14$.

7. Example. By Theorem 6.2, for a = 5, r = 14 every *G*-set, different from Γ_i^{yz} , belongs to a triangle of transformation of the primitive *G*-sets

$$\Gamma_{1} = \operatorname{span}(x, y^{2}, z^{10}),$$

$$\Gamma_{2} = \operatorname{span}(x^{2}, xy^{2}, z^{7}),$$

$$\Gamma_{3} = \operatorname{span}(x^{3}, x^{2}y^{2}, z^{4}),$$

$$\Gamma_{4} = \operatorname{span}(x^{4}, x^{3}y^{2}, z),$$

or is an upper transformation of

$$T_U(\Gamma_5) = \Gamma^{\mathrm{x}}.$$

There are 37 different *G*-sets. Figure 1 shows the fan of *G*-Hilb \mathbb{C}^3 , where e_1 the ray generated by e_1 is drawn at 'infinity'. The ratios along lines denote rays of the corresponding cones $\sigma^{\vee}(\Gamma)$ (up to an inverse in the multiplicative notation). Triangles of transformations are marked with thick line.

ACKNOWLEDGEMENT. This research was supported by a grant of Polish MNiSzW (N N201 2653 33).

REFERENCES

1. A. Craw, D. Maclagan and R. R. Thomas, Moduli of McKay quiver representations. I. The coherent component, *Proc. Lond. Math. Soc. (3)* **95**(1) (2007), 179–198.

2. A. Craw, D. Maclagan and R. R. Thomas, Moduli of McKay quiver representations. II. Gröbner basis techniques, *J. Algebra* **316**(2) (2007), 514–535.

3. A. Craw and M. Reid, How to calculate A-Hilb \mathbb{C}^3 , in *Geometry of toric varieties*, vol. 6, Séminaires et Congres (Laurent Bonavero, Editor) (Society for Mathematics France, Paris, 2002), pp. 129–154.

4. O. Kędzierski, Cohomology of the *G*-Hilbert scheme for $\frac{1}{r}(1, 1, r - 1)$, Serdica Math. J. **30**(2–3) (2004), 293–302.

5. R. Kidoh, Hilbert schemes and cyclic quotient surface singularities, *Hokkaido Math. J.* **30**(1) (2001), 91–103.

6. D. R. Morrison and G. Stevens, Terminal quotient singularities in dimensions three and four, *Proc. Amer. Math. Soc.* **90**(1) (1984), 15–20.

7. I. Nakamura, Hilbert schemes of abelian group orbits, *J. Algebraic Geom.* **10**(4) (2001), 757–779.

8. M. Sebestean, Smooth toric G-Hilbert schemes via G-graphs, C. R. Math. Acad. Sci. Paris 344(2) (2007), 115–119.