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Abstract. Following Craw, Maclagan, Thomas and Nakamura’s works [2, 7] on
Hilbert schemes for abelian groups, we give an explicit description of the HilbG �3

scheme for G = 〈diag(ε, εa, εr−a)〉 by a classification of all G-sets. We describe how the
combinatorial properties of the fan of HilbG �3 relates to the Euclidean algorithm.
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1. Introduction. For any finite, abelian subgroup G of GL(n, �) of order r,
Nakamura defines the G-Hilbert scheme HilbG�n as the irreducible component of
the G-fixed set of the scheme Hilbr �n which contains free orbits.

For such groups, the normalisation of HilbG �n is a toric variety. The scheme
HilbG �n is described in [7] in terms of G-sets. In fact, the description is carried by a
classification of G-sets.

There are several known cases when HilbG �n itself is a toric variety (i.e. it is
normal): for n = 2 and G ⊂ GL(2, �) by Kidoh [5], for n = 3 and G ⊂ SL(3, �)
by Craw and Reid [3], for any n ≥ 2 and G = 〈diag(ε, ε2, ε4, . . . , ε2n

)〉 by Sebestean
[8]. In all these cases, if n ≥ 3 the quotient �n/G has canonical, non-terminal
singularities.

Craw, Maclagan and Thomas in [2] describe HilbG �n for any finite, abelian group
G ⊂ GL(n, �) in terms of initial ideals of some fixed monomial ideal by varying weight
order. This gives a numerical method for finding the fan of HilbG �n.

In this paper, we use [2, 7] to give a conceptual description of HilbG �3 scheme for
any cyclic subgroup G ⊂ GL(3, �) for which the quotient �3/G is a terminal singularity
(see Theorem 6.2). By Morrison and Stevens [6], any such group is conjugated to a
group generated by a diagonal matrix diag(ε, εa, εr−a), where a and r are any coprime
natural numbers and ε is an rth primitive root of unity.

The description is carried out by classification of all possible G-sets in families,
called triangles of transformations. These families correspond to steps in the Euclidean
algorithm for b and r − b, where b is an inverse of a modulo r (see Main Theorem 6.2).
We prove that there are 1

2 (3r + b(r − b) − 1) different G-sets (see Theorem 6.4).
We show that for a, r − a > 1 the HilbG �3 scheme is a normal variety with

quadratic singularities. Note that HilbG �3 for a = 1 or r − a = 1 is isomorphic to
the Danilov resolution of �3/G singularity by [4].

The paper is organised as follows. Section 2 recalls basic definitions from [7].
Section 3 contains classification of the G-sets by the number of valleys. It is used to show
that the HilbG is normal. Section 4 contains definition of a primitive G-set. Every such
G-set gives rise to a family of G-sets. The union of toric cones corresponding to G-sets in
such family is called a triangle of transformations. In Section 5, we show how to obtain
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a new primitive G-set from another one. In Sections 6, the combinatoric properties
of primitive G-sets and the triangles of transformations are related to the Euclidean
algorithm. We show that all subcones of cones in all triangles of transformations
form the fan of HilbG scheme. The formula counting the number of G-sets is given
at the end of Section 6. Section 7 contains a concrete example of HilbG scheme for
G ∼= �14.

I would like to thank Professor Miles Reid for introducing me to this subject.

2. Basic definitions. Let us fix two coprime integers r, a ≥ 2. Without loss of
generality we may assume that a < r − a < r. Denote by G the cyclic group �r,

considered as a subgroup of GL(3, �), generated by matrix diag(ε, εa, εr−a), where
ε = e

2π i
r . The group G has r characters, which may be identified with 1, ε, ε2, . . . , εr−1.

We follow the notation of [7]. Let N0 = �e1 ⊕ �e2 ⊕ �e3 denote a free �-module
with �-basis ei. The lattice dual to N0 will be denoted M0 = Hom�(N0, �) = �e∗

1 ⊕
�e∗

2 ⊕ �e∗
3, where e∗

i (ej) = δij. In this paper, the variables x, y, z will be identified with
e∗

1, e∗
2, e∗

3 and a multiplicative notation will be used in the lattice M0. For example,
vector 2e∗

1 − e∗
3 will be identified with the Laurent monomial x2z−1.

Let M0
0 be the positive octant in M0, identified with monomials in the ring

�[x, y, z]. Set N = N0 + � 1
r (e1 + ae2 + (r − a)e3) and let M = Hom�(N, �) be a dual

lattice. Lattice M will be identified with a sublattice of M0 consisting of G-invariant
Laurent monomials. When no confusion arise, vector a1e1 + a2e2 + a3e3 will be
denoted (a1, a2, a3). For example, 1

5 (1, 2, 3) stands for 1
5 e1 + 2

5 e2 + 3
5 e3.

Let G∨ denote the character group of G. The group G acts on the left on regular
functions on �3 by setting (g · f )(p) = f (g−1p), where g ∈ G, p ∈ �3 and f is a regular
function on �3. This action can be extended to the lattice M0 (by identifying M0 with
the lattice of exponents of Laurent monomials in x, y, z). Thus, we have the natural
grading:

M0 =
⊕
χ∈G∨

Mχ

0 .

DEFINITION 2.1. Let wt : M0 −→ G∨ denote group homomorphism sending an
element of the lattice M0 to its grade.

We will denote by m mod n an integer k ∈ 0, . . . , n − 1 such that n|(m − k).

DEFINITION 2.2 (Nakamura). A subset � of monomials in �[x, y, z] is called a
G-set if

(1) it contains the constant monomial 1,

(2) if vw ∈ � then v ∈ � and w ∈ �,

(3) the restriction of the function wt to � is a bijection.

REMARK. Since wt(1) = wt(yz), it follows that yz /∈ � for any G-set �. Hence the
monomials in � are of the form x∗y∗ and x∗z∗, where ∗ stands for any non-negative
integer.
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DEFINITION 2.3. For any G-set � define i(�), j(�), k(�) to be the unique non-
negative integers such that

xi(�) ∈ �, xi(�)+1 /∈ �,

y j(�) ∈ �, y j(�)+1 /∈ �,

zk(�) ∈ �, zk(�)+1 /∈ �.

When no confusion arise we write for short:

i = i(�),

j = j(�),

k = k(�).

DEFINITION 2.4 (Nakamura). A monomial xmyn (resp. xmzn) for m, n ≥ 0 is called
a y-valley (resp. z-valley) for �, if

xmyn, xm+1yn, xmyn+1 ∈ � but xm+1yn+1 /∈ �

(resp. xmzn, xm+1zn, xmzn+1 ∈ � but xm+1zn+1 /∈ �).

We call a y-valley or z-valley a valley for brevity.

DEFINITION 2.5. For any v ∈ M0
0 let wt�(v) denote the unique w ∈ � such that

wt(v) = wt(w).

3. Classification of G-sets. In this section, we show that any G-set has at most one
y-valley and at most one z-valley. Following Nakamura, for every G-set we construct
a semigroup S(�) in the lattice M and prove that it is saturated. It turns out that the
G-sets correspond to the cones of maximal dimension in the fan of HilbG �3.

REMARK 3.1. The following statements are immediate from the definitions:
(1) if wt�(v) = w, v /∈ � and u · w ∈ �, then u · v /∈ �,

(2) if wt�(v) = w, then wt�(u · v) = u · w for any u ∈ M0 such that u · w ∈ �,

(3) if wt�(v) = w, u ∈ M then wt�(u · v) = w.

COROLLARY 3.2. Let � be a G-set and v ∈ M0
0 − �. If x−1 · v ∈ � (resp. y−1 · v ∈

�, z−1 · v ∈ �) then wt�(v) = w, where w ∈ � but x−1 · w /∈ � (resp. z · w /∈ �, y · w /∈
�).

Proof. Use observation (1) and (3) from Remark 3.1. �
LEMMA 3.3. A G-set can only have 0, 1 or 2 valleys.

Proof. Suppose that xmyn is a y−valley for �. Then v = xm+1yn+1 satisfies
assumptions of Corollary (3.2). Hence, x−1 · wt�(v) /∈ � and z · wt�(v) /∈ �, so
wt�(v) = zk(�). Therefore, G-set � has at most one y-valley, and, analogously at most
one z-valley. �

COROLLARY 3.4. Suppose that G-set � has y-valley w and z-valley v. Then

wt�(yj(�)+1) = x · w,

wt�(zk(�)+1) = x · v.
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Proof. Use observation (2) from Remark 3.1. �

NOTATION 3.5. From now on we will usually denote by iy, jy the exponents of the
y-valley xiy yjy and by iz, kz the exponents of the z-valley xiz zkz of some fixed G-set �.

LEMMA 3.6. The only possible G-sets with no valleys are

�x = {1, x, . . . , xr−1},
�

yz
l = {yr−l−1, . . . , y, 1, z, . . . , zl} for l = 0, . . . r − 1.

Proof. Let i, j, k be integers like in Definition 2.3. Corollary 3.2 shows that
wt�(yj+1) = xi′zk, for some i′ ≥ 0. If i′ = 0, then wt(zk+1) = wt(yj) and since a, r are
coprime, it follows that j = r − k − 1, hence i = 0. Consider the case i′ > 0. Then
wt�(xi′−1zk+1) = xi′′yj by Corollary 3.2. It follows immediately that i′′ = i = r − 1 and
so j = k = 0. �

LEMMA 3.7. Let � be a G-set with exactly one valley. If � has y-valley equal to xiz zkz ,

then

wt�(xi+1) = zk−kz ,

wt�(zk+1) = xi−iz yj.

If G-set � z-valley equal to xiy yjy , then

wt�(xi+1) = yj−jy ,

wt�(yj+1) = xi−iy zk.

Proof. We prove the lemma in the case of z-valley w = xiz zkz . The monomial
wt�(zk+1) is of the form xlyj, where 0 ≤ l ≤ i. Noting that wt�(xz · w) = yj we get
l = i − iz. It follows that the monomials xi−iz yj and zk+1 are of the same weight,
therefore wt�(zk+1) = xi−iz yj. �

LEMMA 3.8. Let � be a G-set with two valleys v,w, where

v = xiy yjy ,

w = xiz zkz .

Then iy + iz + 1 = i, and

wt�(xi+1) =
{

y(j−jy)−(k−kz) if (j − jy) − (k − kz) ≥ 0,

z(k−kz)−(j−jy) otherwise.

Proof. Let u be a monomial such that u /∈ � and x−1u ∈ �. Then wt�(u) = zl for
some 0 ≤ l ≤ k or wt�(u) = yl for 0 ≤ l ≤ j. We know already that wt�(xz · w) = yj and
wt�(xy · v) = zk, which implies that wt�(xi+1) = y(j−jy)−(k−kz) if (j − jy) − (k − kz) ≥ 0
and wt�(xi+1) = z(k−kz)−(j−jy) otherwise. The monomial xiy+iz+1 has the same weight as
xi+1 hence they are equal. �
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DEFINITION 3.9 (Nakamura). For any v ∈ M0 and a G-set � define (using a
multiplicative notation in the lattice M0)

s�(v) = v wt−1
� (v).

We will write it simply s(v) when no confusion can arise. Define the cones

σ (�) = {α ∈ N0 ⊗� �|〈α, s�(v)〉 ≥ 0, ∀v ∈ M0
0},

σ∨(�) = {v ∈ M0 ⊗� �|〈α, v〉 ≥ 0, ∀α ∈ σ (�)},

where 〈·, ·〉 denotes the pairing between N0 and M0.

Let S(�) be a sub-semigroup of the lattice M, generated by the set {s�(v) ∈ M | v ∈
M0

0} as a semigroup. Set

V(�) = Spec �[S(�)].

Note that

�[S(�)] ⊂ �[σ∨(�) ∩ M].

Moreover, the cones σ (�), σ∨(�) are dual to each other and the cone σ∨(�) ∩ M is the
saturation of the semigroup S(�) in the lattice M. It will follow from Lemma (3.11)
that S(�) is finitely generated as a semigroup.

THEOREM 3.10 (Nakamura). Let G be a finite abelian subgroup of GL(3, �). When
� varies through all G-sets the set of all faces of all three-dimensional cones σ (�) forms a
fan in lattice N ⊗ � supported on the positive octant. Toric variety defined by this fan is
isomorphic to the normalisation of the HilbG �3 scheme (see [7, Theorem 2.11] and [1,
Section 5]). Moreover, the affine varieties V(�) form an open covering of the HilbG �3

scheme when � varies through all G-sets.

LEMMA 3.11 (Nakamura). Let A ⊂ M0
0 − � be a finite set such that M0

0 − � =
A · M0

0 . If σ (�) is a three-dimensional cone then S(�) is generated by the finite set
{ s�(v) | v ∈ A } as a semigroup (see [7, Lemma 1.8]).

REMARK 3.12. Note that Theorem 3.10 and Lemma 3.11 are stated in [7] without
the assumption on dimension of σ (�) in which case they are false. A counter-example
and a correction can be found in [2, Example 4.12 and Theorem 5.2].

LEMMA 3.13. Suppose that � is a G-set in the case of 1
r (1, a, r − a) action. Then the

cone σ (�) is three-dimensional. Moreover, if � has 0 or 1 valley then S(�) ∼= �[x, y, z].
If � has 2 valleys then S(�) ∼= �[x, y, z, w]/(xy − zw).

Proof. The lemma will be proven only in the case of a G-set with 2 valleys as the
method carries over to the other cases.
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Suppose that � is a G-set with 2 valleys, v = xiy yjy , w = xiz zkz and set

α = xi+1,

β = yj+1,

γ = zk+1,

δy = xy · v,

δz = xz · w,

where i, j, k are the largest exponents such that xi, yj, zk belong to �. We will start
by showing that s(β), s(γ ), s(δy) and s(δz) generate semigroup S(�). Assume that u ∈
M0

0 , t = x, y or z and note that

s(t · u) = s(u)s(t · wt�(u)).

By the above formula it suffices to show that for any u ∈ � such that t · u /∈ � the
Laurent monomial s(t · u) can be expressed as a product of s(β), s(γ ), s(δy) and s(δz)
with non-negative exponents. By Lemma 3.8,

s(α) =
{

xi+1y−(j−jy)+(k−kz) if (j − jy) ≥ (k − kz),

xi+1z(j−jy)−(k−kz) otherwise,

s(β) = xy−(j+1) · w,

s(γ ) = xz−(k+1) · v,

s(δy) = xyz−k · v,

s(δz) = xy−jz · w,

hence

s(β)s(δz) = s(γ )s(δy) = s(yz),

s(α) =
{

s(δy)s(δz)(yz)j−jy−1 if (j − jy) ≥ (k − kz),

s(δy)s(δz)(yz)k−kz−1 otherwise.

Let u ∈ � and y · u /∈ �. If u = xlyj, where l = 0, . . . , iy then s(y · u) = s(β). If
u = xlyj

y, where l = iy + 1, . . . , i then s(y · u) = s(δy). Analogously s(z · u) is equal to
s(γ ) or to s(δy) for any u ∈ �, z · u /∈ �.

It remains to consider u ∈ � such that x · u /∈ �. Observe that wt�(x · u) is of the
form yl or zl for some positive l (l = 0 can happen only if � = �x). If u′ = y−1u ∈ �

then x · u′ /∈ � and

s(x · u) = s(y · xu′) = s(xu′)s(y wt�(x · u′)) = s(xu′)(yz)n, where n = 0, 1.

By induction for any such u ∈ � the monomial s(x · u) is equal to p · (xy)m, where
m > 0 and p = s(α), s(δy) or s(δz).

This shows that S(�) is generated by s(β), s(γ ), s(δy) and s(δz). To conclude it is
enough to show that some (in fact any) 3 out of 4 generators form a �-basis of the
lattice M. This is implied by computing the following determinant, using equality from
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Lemma 3.8: ∣∣∣∣∣∣∣
−iz − 1 j + 1 −kz

iy + 1 jy + 1 −k

−iy − 1 −jy k + 1

∣∣∣∣∣∣∣ = r.

�
COROLLARY 3.14. The semigroup S(�) coincides with the semigroup algebra

�[σ∨(�′) ∩ M] for any G-set. In particular, HilbG �3 is normal.

4. G-igsaw transformations. To get an effective description of the fan of the
HilbG scheme, we introduce Nakamura’s G-igsaw transformation, which will allow to
organise G-sets in families and to explain how these are related to each other.

G-igsaw transformation is a method of constructing a new G-set from the other.
In fact, two G-sets � and �′ are related by a G-igsaw transformation if and only if the
cones σ (�) and σ (�′) share a two-dimensional face.

When reading Sections 4–6, it may be useful for a reader to consult an example
provided in Section 7.

LEMMA 4.1 (Nakamura). Let � be a G-set for the action of type 1
r (1, a, r − a) and

let τ be a two-dimensional face of σ (�). There exist two monomials u ∈ M0
0 and v ∈ �

such that
(1) v = wt�(u),
(2) u, v do not have common factors in M0

0 ,

(3) uv−1 is a primitive monomial,
(4) τ = σ (�) ∩ (uv−1)⊥,

Proof. This is a particular case of [7, Lemma 2.5] �
DEFINITION 4.2 (Nakamura). Let � be a G-set and let τ be a two-dimensional face

of σ (�). Suppose that monomials u, v given by Lemma 4.1 are not equal to 1 and set
c(w) = max{c ∈ � | wv−c ∈ M0

0} for any w ∈ �. We define the G-igsaw transformation
of � in the direction of τ to be the set

�′ = {w · uc(w)v−c(w) | w ∈ �}.

LEMMA 4.3 (Nakamura). The G-igsaw transformation of a G-set is a G-set.

Proof. See [7, Lemma 2.8] �
LEMMA 4.4. Suppose that � is a G-set for the action 1

r (1, a, r − a). Let α = xi+1, β =
yj+1, γ = zk+1, where i, j, k are the maximal exponents such that xi, yj, zk ∈ �. Let τ be
a two-dimensional face of σ (�) and let u be the monomial given by Lemma 4.1. If � has 0
or 1 valley then u = α, β or γ. If � has 2 valleys then u = β, γ, δy or δz, where δy is equal
to the y-valley of � multiplied by xy and δz is equal to the z-valley of � multiplied by xz.

Proof. Suppose that � has one valley and τ is a face of σ (�) dual to the ray of σ∨(�)
spanned by s(α). The one-dimensional lattice M ∩ τ⊥ has 2 generators. Therefore uv−1

is equal either to s(α) or s(α)−1. Clearly, the only choice is u = α, v = wt�(α). Suppose
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that d ∈ M0
0 is a common factor of u and v. Then both ud−1, vd−1 belong to � and

they are of the same weight. Hence d = 1. �
DEFINITION 4.5. Let � be a G-set with 0 or 1 valley and let τ be the two-dimensional

face of σ (�). The G-igsaw transformation of � in the direction of τ is called upper (resp.
right, left) transformation if u = α (resp. u = β, u = γ.), where the monomial u is as
in Lemma 4.1. The upper, left and right transformations of � will be denoted by
TU (�), TR(�) and TL(�), respectively.

By slight abuse of notation, the G-igsaw transformation of G-set � with 2 valleys
is called left (resp. upper left, right, left) transformation if the corresponding monomial
u is equal to β (resp. γ, δy, δz). The right, left, upper right and upper left G-igsaw
transformations of � will be denoted by TUR(�), TUL(�), TR(�), TL(�), respectively.

DEFINITION 4.6. We say that a G-set � is spanned by monomials u1, . . . , un if �

consists of all monomials dividing u1, . . . , un. If G-set � is spanned by monomials
u1, . . . , un we write

� = span(u1, . . . , un).

LEMMA 4.7. Let � = span(xiy yj, xizk), where iy < i (resp. let � = span(xiyj, xik zk),
where iz < i) be a G-set with one y-valley equal to xiy (resp. one z-valley equal to xiz ).

Then

TU (�) = span(xi+iy+1, xiy yj−1, xizk),

(resp.TU (�) = span(xi+iz+1, xiyj, xik zk−1)).

In particular, the upper transformation of � has
� no valleys if and only if j = 1, k = 0 (resp. j = 0, k = 1). In fact, in this case

TU (�) = �x.
� one z-valley (resp. one y-valley) if and only if j = 1, k > 0 (resp. j > 0, k = 1). In

both cases the valley is equal to xi.
� two valleys: the y-valley equal to xiy and the z-valley equal to xi (resp. the y-valley

equal to xi and the z-valley equal to xiz ) in the remaining cases.

Proof. The upper transformation is obtained by replacing each monomial w ∈ �,

divisible by yj (resp. by zk) by the monomial xn(i+1)y−nj · w for some n ≥ 1. The proof
is straightforward. �

LEMMA 4.8. Let � be a G-set with 2 valleys: y-valley equal to v = xiy yjy and z-valley
equal to w = xiz zkz . Assume that � is spanned by xiyjy , xizkz , xiy yj, xiz zk. Let T stand for
right, left, upper right or upper left transformation.

Then T(�) is spanned by

xiyjy , xizkz−1, xiy yj+1, xiz zk T = TR, kz ≥ 1,

xiyjy−1, xizkz , xiy yj, xiz zk+1 T = TL, jy ≥ 1,

xiyjy+1, xizkz , xiy yj, xiz zk−1 if T = TUR,

xiyjy , xizkz+1, xiy yj−1, xiz zk T = TUL.

Proof. The proof is a matter of straightforward computation. It follows directly by
considering each case separately cf. Lemma 4.4). �
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Note that the G-igsaw transformation of a G-set with two valleys may have only
one valley.

COROLLARY 4.9. Let � be a G-set spanned by xiyjy , xizkz , xiy yj, xiz zk with 2 valleys:
y-valley equal to v = xiy yjy and z-valley equal to w = xiz zkz . If jy, kz ≥ 1 then

TR(TUL(�)) = �, TUL(TR(�)) = �,

TL(TUR(�)) = �, TUR(TL(�)) = �,

that is right and upper left (resp. left and upper right) transformations are inverse
operations. Moreover, if j, k, j − jy, k − kz ≥ 2 then

TUL(TUR(�)) = TUR(TUL(�)),

that is, upper left and upper right transformations commute.

COROLLARY 4.10. Let � be a G-set spanned by xiyjy , xizkz , xiy yj, xiz zk,

with 2 valleys: y-valley equal to v = xiy yjy and z-valley equal to w = xiz zkz . Let
�′ = Tm

UR(Tn
UL(�)), where m + n ≤ min{j, k, j − jy, k − kz, }. Then �′ is spanned by

xiyjy+m, xizkz+n, xiy yj−n, xiz zk−m. If m + n < min{j, k, j − jy, k − kz} then �′ has two
valleys. If m + n = min{j, k, j − jy, k − kz} then �′ has one valley (one of the monomials
xiyjy+m, xizkz+n, xiy yj−n, xiz zk−m spanning �′ is redundant).

5. Triangles of transformations and primitive G-sets. In this section, we introduce
primitive G-sets, which have a particular shape. Every primitive G-set such gives rise to
a family of G-sets, called here a triangle of transformations. It will turn out that most
G-sets belong to some triangle of transformations. We define a sequence of primitive
G-sets containing every primitive G-set for fixed integers r and a.

DEFINITION 5.1. Let � be a G-set with two valleys, spanned by xiyjy , xizkz , xiy yj,

xiz zk. The set

�(�) = {Tm
UR(Tn

UL(�)) | m + n ≤ min{j, k, j − jy, k − kz}}
will be called triangle of transformations of �.

The union of the supports of G-sets belonging to the set �(�) is a simplicial cone
(see Corollary 5.13), hence we call �(�) a triangle of transformations.

DEFINITION 5.2. A G-set � is called primitive if it has a y-valley equal to xiy and a
z-valley equal to xiz for some non-negative iy, iz.

The name primitive is justified by the fact that every G-set with two valleys belong
to a triangle of transformations of some primitive G-set. This fact will follow from the
Main Theorem.

DEFINITION 5.3. For fixed coprime integers r, a define let �1 be a G-set spanned by
x, yb−1, zr−b−1, where b ∈ {1, . . . , r − 1} is as an inverse of a modulo r.

The G-set �1 is primitive and the monomial x is simultaneously its y-valley and
z-valley.

LEMMA 5.4. Let � be a primitive G-set spanned by xi, xiy yj, xiz zk. Then �(�) consists
of ( min{j,k}+2

2 ) G-sets.
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Proof. It is clear from definition of �(�). �
LEMMA 5.5. Let � be a primitive G-set spanned by xi, xiy yj, xiz zk. Suppose that j < k

(resp. k < j). The G-set TU (Tj
UR(�)) (resp. TU (Tk

UL(�))) is spanned by xi+iz+1, xiyj,

xiz zk−(j+1) (resp. xi+iy+1, xiyj−(k+1), xizk). Moreover, if j < k − 1 (resp. k < j − 1) it is
primitive.

Proof. Assume that j < k. The G-set Tj
UR(�) is spanned by xiyj, xiz zk−j and it has

one z-valley equal to xiz by Lemma 4.8. To finish the proof apply Lemma 4.7 to the
G-set Tj

UR(�). �
The preceding lemma allows us to define a sequence of primitive G-sets.

DEFINITION 5.6. If �n is a primitive G-set we set:

�n+1 =
{

TU (Tjn
UR(�n)) if jn < kn,

TU (Tkn
UL(�n)) if jn > kn,

where jn, kn denote the non-negative numbers such that �n is spanned by the monomials
xin , xiy,n yjn , xiz,n zkn for some in, iy,n, iz,n ≥ 0.

Observe that if jn − kn = ±1 for some n then �n+1 is not primitive and the recursion
stops.

COROLLARY 5.7. The numbers jn, kn satisfy the following formulas:

j1 + 1 = b,

k1 + 1 = r − b,

jn+1 + 1 =
{

jn + 1 if jn < kn,

jn + 1 − (kn + 1) if jn > kn,

kn+1 + 1 =
{

kn + 1 − (jn + 1) if jn < kn,

kn + 1 if jn > kn.

Clearly, there is a direct link between the numbers jn + 1, kn + 1 and the numbers
appearing in the Euclidean algorithm for b and r − b. This relationship will be exploited
later.

DEFINITION 5.8. Let �(�) be a triangle of transformations of a G-set �. We define

�̃(�) =
⋃

�′∈�(�)

σ (�′)

to be the union of supports of the cones σ (�′), where �′ runs through the G-sets in
�(�).

To study the location of various cones in the fan HilbG �3 it is convenient to give
names to their rays.

DEFINITION 5.9. Let �n be the primitive G-set as defined in (5.6). Denote by ρn the
common ray of the cones �̃(�n) and σ (�n).

Let � be any G-set. A ray of σ∨(�) will be called upper,(upper) left or right ray if it
dual to the wall of σ (�) corresponding to the upper,(upper) left or right transformation,
respectively.
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REMARK 5.10. Let �,�′ be any two G-sets. Suppose that the cones σ (�) and σ (�′)
intersect either in a two-dimensional face or in a ray. If the cones σ∨(�), σ∨(�′) have a
common ray ρ then there exists a two-dimensional linear subspace of N ⊗ � containing
a two-dimensional face of σ (�) and of σ (�′), both of these dual to the ray ρ.

LEMMA 5.11. For any G-set � with two valleys the set �̃(�) is a rational simplicial
cone.

Proof. Assume that G-set is spanned by the monomials xiyjy , xizkz , xiy yj, xiz zk and
let l = min j, k, j − jy, k − kz. Because the upper right and upper left transformation
commute (see Corollary 4.9), by Remark 5.10 it is enough to establish the three
following facts:
� the right rays of the cones σ∨(Tn

UR(�)) for n = 0, . . . , l are the same,
� the left rays of the cones σ∨(Tn

UL(�)) for n = 0, . . . , l are the same,
� the upper rays of the cones σ∨(Tm

UR(Tn
UL(�))) for m + n = l are the same.

These follow from Corollary 4.10. �
LEMMA 5.12. Let � be a primitive G-set spanned by xi, xiy yj, xiz zk. If j < k (resp.

k < j) then �+e2 (resp. �+e3) is a ray of �̃(�).

Proof. Suppose that j < k. The G-set �′ = Tj
UL(�) is spanned by the monomials

xizkz+j, xiz zk and it has one valley (see Corollary 4.10). The upper and left ray of σ (�′)
are equal to xi+1z−k+kz and x−i+iz zk+1, respectively. Evidently, the ray of σ∨(�′), dual
to the two-dimensional face of σ∨(�) spanned by the upper and left ray, is equal to
�+e2. �

Note that the cone �̃(�i) has, besides the ray common with σ (�i), two other rays:
one equal to either e2 or e3 and the second which belongs to σ (�i+1). We will investigate
how the cones �̃(�i), �̃(�i+1) fit together depending on the sign of (ji − ki)(ji+1 − ki+1).

COROLLARY 5.13. Let �n and �n+1 be two primitive G-sets. If (jn − kn)(jn+1 − kn+1) >

0 then the union of the supports of the cones �̃(�n), �̃(�n+1) is a rational simplicial cone.

LEMMA 5.14. Let �n and �n+1 be two primitive G-sets. Then �̃(�n) ∪ �̃(�n+1) is equal
to the cone spanned by ρn, e2, e3 minus (set-theoretical) the cone spanned by ρn+1, e2, e3.

Proof. If (jn − kn)(jn+1 − kn+1) > 0 this follows from Corollary 5.13. Otherwise,
the cones �̃(�n), �̃(�n+1) have a common ray and a two-dimensional face of �̃(�n+1)
is contained in a two-dimensional face of �̃(�n). To finish, note that e2 and e3 generate
rays of �̃(�n) and �̃(�n+1) (up to the order). �

Recall that �
yz
l = span(yl, zr−l−1). We will prove that the cones σ (�yz

l ) fit nicely
together with the cones �̃(�j) into the fan of HilbG �3.

LEMMA 5.15. The upper transformations of �
yz
b−1 and �

yz
b coincide, where b ∈

{1, . . . , r − 1} is an inverse of a modulo r. In fact, they are equal to �1.

Proof. By definition, the upper transformation of �
yz
b−1 and �

yz
b replaces the

monomial zr−b and yb with the monomial x, respectively. �
LEMMA 5.16. The upper rays of the cones σ∨(�yz

0 ), . . . σ∨(�yz
b−1) (resp.

σ∨(�yz
b ), . . . σ∨(�yz

r−1)) are equal. The one-dimensional cone �≥0e1 is a ray of each the
cones σ (�yz

i ), for i = 0, . . . , r − 1.
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Proof. The upper ray of the cones σ∨(�yz
0 ), . . . σ∨(�yz

b−1) is spanned by xz−r+b and
the upper ray of σ∨(�yz

b ), . . . σ∨(�yz
r−1) is spanned by xyb. The right and left rays of

σ∨(�yz
l ) are equal to y−lzr−l, yl+1zr−l−1, therefore �+e1 is a ray of σ (�yz

l ). �

COROLLARY 5.17. The sets

b−1⋃
l=0

σ (�yz
l ),

r−1⋃
l=b

σ (�yz
l )

are rational cones in N ⊗ � spanned by e1, e2, ρ1 and e1, e3, ρ1, respectively.

Proof. This follows from Remark 5.10 and Lemma 5.16. �

6. Main theorem and the Euclidean algorithm. By Theorem 3.10, when � varies
through all G-sets, the cones σ (�) form a fan supported on the cone spanned by
e1, e2, e3. Therefore, it is enough to find G-sets different from the G-set �

yz
l which

does not belong to any triangle of transformation. By looking at the supports of
triangle transformations, it will turn out that those missing G-sets are exactly the upper
transformations of the last G-set �n defined in (5.6). With the help of the Euclidean
algorithm we will be able to give a formula for a total number of G-set for fixed r
and a.

DEFINITION 6.1. Let m be an integer such that �m+1 is not primitive (i.e. �m is the
last primitive G-set in the sequence defined in (5.6)).

THEOREM 6.2 (Main Theorem). Let r, a be coprime natural numbers and let b be
an inverse of a modulo r. Let G be a cyclic group of order r, acting on �3 with weights
1, a, r − a.

If �1, . . . , �m+1 is the sequence from Definition 5.6 (that is, �n is a primitive G-set
unless n = m + 1) and if �

yz
l = span(yr−l−1, zl) then every G-set either

� belongs to a triangle of transformation of some �n for n ≤ m, or
� is equal to a G-set �

yz
l for some l = 1, . . . , n, or

� is equal to an iterated upper transformation of the G-set �m+1.

Proof. The proof uses Nakamura’s Theorem 3.10, which asserts that the union of
the supports of the cones σ (�) is equal to the positive octant in N ⊗ �. Lemma 5.14
and Corollary 5.17 combined imply that if a G-set � neither belongs to some triangle
of transformation nor is equal to �

yz
l for some l then the cone σ (�) is supported in

the cone spanned by e2, e3, ρm+1. On the other hand, the G-set �m+1 is equal either
to span(xim+1, xiym+1 yjm+1 ) or to span(xim+1, xiz,m+1 zkm+1 ), cf. Lemma 5.5. Therefore the
jm+1th or km+1th iterated upper transformation of �m+1 is equal to �x = span(xr−1).
Moreover, the G-sets Tl

U (�m+1) and Tl+1
U (�m+1) satisfy assumptions of the Remark 5.10.

This shows that the set

max{jm+1,km+1}⋃
l=0

σ (Tl
U (�m+1))

is a cone generated by e2, e3, ρm+1 which concludes the proof. �
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REMARK. The above theorem can be restated in a form of an algorithm computing
the fan of the HilbG �3 for fixed a and r (recall that the HilbG �3 is normal, cf.
Corollary 3.14).

REMARK. The two-stage construction of the HilbG �3 for abelian subgroups in SL(3, �)
by Craw and Reid in [3] appears to provide a coarse subdivision of the fan of the
HilbG �3 for the subgroup G in GL(3, �) of type 1

r (1, a, r − a). The coarse subdivision
(i.e. with all interior lines of all triangles of transformations removed) is provided by
the continued fraction expansions.

LEMMA 6.3. Let pl, ql be the data of the Euclidean algorithm for the non-negative
integer numbers p1, p2 with GCD(p1, p2) = pn+1, that is,

pi = qipi+1 + pi+2, 0 < pi+2 < pi+1,

where pn+1 �= 0 and pn+2 = 0.

Then

n∑
l=1

qlpl+1 = p1 + p2 − pn+1,

n∑
l=1

qlp2
l+1 = p1p2.

THEOREM 6.4. Fix some coprime numbers r and a. Let N denote the number of
different G-sets for the action of type 1

r (1, a, r − a). Then

N = 1
2

(3r + b(r − b) − 1).

Proof. Denote �l = span(xil , xiy,l yjl , xiz,l zkl ). The triangle of transformations of �l

consist of
(min{jl+1,kl+1}+1

2

)
cones (see Lemma 5.4). Therefore

N = r + max{jm+1 + 1, km+1 + 1} +
m∑

l=1

(
min{jl + 1, kl + 1} + 1

2

)
,

where the first two terms come from the G-sets �
yz
l and the consecutive upper

transformations of �m+1.

Suppose that b < r − b. Let the pl and ql be the data of the Euclidean algorithm
for the coprime numbers p1 = k1 + 1 = r − b, p2 = j1 + 1 = b as in Lemma 6.3. Set
q0 = 1. In this notation, by the formulas from Corollary 5.7,

min{jC + 1, kC + 1} = pD

for q0 + . . . qD ≤ C < q0 + . . . qD+1.

Note that pn+1 = 1 and qn = max{jm+1 + 1, km+1 + 1}, thus N = r + qnpn+1 +
1
2

∑n−1
l=1 (qlp2

l+1 + qlpl+1). This, by simple computation, implies the assertion. �
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Figure 1. The fan of G- Hilb �3 scheme for r = 14, a = 5 intersected with hyperplane
e∗

2 + e∗
3 = 14.
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7. Example. By Theorem 6.2, for a = 5, r = 14 every G-set, different from �
yz
i ,

belongs to a triangle of transformation of the primitive G-sets

�1 = span(x, y2, z10),

�2 = span(x2, xy2, z7),

�3 = span(x3, x2y2, z4),

�4 = span(x4, x3y2, z),

or is an upper transformation of

TU (�5) = �x.

There are 37 different G-sets. Figure 1 shows the fan of G- Hilb �3, where e1 the
ray generated by e1 is drawn at ‘infinity’. The ratios along lines denote rays of the
corresponding cones σ∨(�) (up to an inverse in the multiplicative notation). Triangles
of transformations are marked with thick line.

ACKNOWLEDGEMENT. This research was supported by a grant of Polish MNiSzW
(N N201 2653 33).

REFERENCES

1. A. Craw, D. Maclagan and R. R. Thomas, Moduli of McKay quiver representations. I.
The coherent component, Proc. Lond. Math. Soc. (3) 95(1) (2007), 179–198.

2. A. Craw, D. Maclagan and R. R. Thomas, Moduli of McKay quiver representations.
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