THE G-HILBERT SCHEME FOR $\frac{1}{r}(1, a, r-a)$

OSKAR KEDZIERSKI
Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland e-mail: oskar@mimuw.edu.pl

(Received 7 April 2010; revised 15 June 2010; accepted 25 June 2010; first published online 25 August 2010)

Abstract

Following Craw, Maclagan, Thomas and Nakamura's works [2, 7] on Hilbert schemes for abelian groups, we give an explicit description of the Hilb ${ }^{G} \mathbb{C}^{3}$ scheme for $G=\left\langle\operatorname{diag}\left(\varepsilon, \varepsilon^{a}, \varepsilon^{r-a}\right)\right\rangle$ by a classification of all G-sets. We describe how the combinatorial properties of the fan of $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ relates to the Euclidean algorithm.

2010 Mathematics Subject Classification. Primary 14E16; Secondary 14C05,14B05.

1. Introduction. For any finite, abelian subgroup G of $\operatorname{GL}(n, \mathbb{C})$ of order r, Nakamura defines the G-Hilbert scheme $\operatorname{Hilb}^{G} \mathbb{C}^{n}$ as the irreducible component of the G-fixed set of the scheme $\operatorname{Hilb}^{r} \mathbb{C}^{n}$ which contains free orbits.

For such groups, the normalisation of $\operatorname{Hilb}^{G} \mathbb{C}^{n}$ is a toric variety. The scheme $\operatorname{Hilb}^{G} \mathbb{C}^{n}$ is described in [7] in terms of G-sets. In fact, the description is carried by a classification of G-sets.

There are several known cases when $\operatorname{Hilb}^{G} \mathbb{C}^{n}$ itself is a toric variety (i.e. it is normal): for $n=2$ and $G \subset \operatorname{GL}(2, \mathbb{C})$ by Kidoh [5], for $n=3$ and $G \subset \operatorname{SL}(3, \mathbb{C})$ by Craw and Reid [3], for any $n \geq 2$ and $G=\left\langle\operatorname{diag}\left(\varepsilon, \varepsilon^{2}, \varepsilon^{4}, \ldots, \varepsilon^{2^{n}}\right)\right\rangle$ by Sebestean [8]. In all these cases, if $n \geq 3$ the quotient \mathbb{C}^{n} / G has canonical, non-terminal singularities.

Craw, Maclagan and Thomas in [2] describe $\operatorname{Hilb}^{G} \mathbb{C}^{n}$ for any finite, abelian group $G \subset \mathrm{GL}(n, \mathbb{C})$ in terms of initial ideals of some fixed monomial ideal by varying weight order. This gives a numerical method for finding the fan of $\operatorname{Hilb}^{G} \mathbb{C}^{n}$.

In this paper, we use $[\mathbf{2}, 7]$ to give a conceptual description of $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ scheme for any cyclic subgroup $G \subset G L(3, \mathbb{C})$ for which the quotient \mathbb{C}^{3} / G is a terminal singularity (see Theorem 6.2). By Morrison and Stevens [6], any such group is conjugated to a group generated by a diagonal matrix $\operatorname{diag}\left(\varepsilon, \varepsilon^{a}, \varepsilon^{r-a}\right)$, where a and r are any coprime natural numbers and ε is an r th primitive root of unity.

The description is carried out by classification of all possible G-sets in families, called triangles of transformations. These families correspond to steps in the Euclidean algorithm for b and $r-b$, where b is an inverse of a modulo r (see Main Theorem 6.2). We prove that there are $\frac{1}{2}(3 r+b(r-b)-1)$ different G-sets (see Theorem 6.4).

We show that for $a, r-a>1$ the $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ scheme is a normal variety with quadratic singularities. Note that $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ for $a=1$ or $r-a=1$ is isomorphic to the Danilov resolution of \mathbb{C}^{3} / G singularity by [4].

The paper is organised as follows. Section 2 recalls basic definitions from [7]. Section 3 contains classification of the G-sets by the number of valleys. It is used to show that the Hilb^{G} is normal. Section 4 contains definition of a primitive G-set. Every such G-set gives rise to a family of G-sets. The union of toric cones corresponding to G-sets in such family is called a triangle of transformations. In Section 5, we show how to obtain
a new primitive G-set from another one. In Sections 6, the combinatoric properties of primitive G-sets and the triangles of transformations are related to the Euclidean algorithm. We show that all subcones of cones in all triangles of transformations form the fan of Hilb^{G} scheme. The formula counting the number of G-sets is given at the end of Section 6. Section 7 contains a concrete example of Hilb ${ }^{G}$ scheme for $G \cong \mathbb{Z}_{14}$.

I would like to thank Professor Miles Reid for introducing me to this subject.
2. Basic definitions. Let us fix two coprime integers $r, a \geq 2$. Without loss of generality we may assume that $a<r-a<r$. Denote by G the cyclic group \mathbb{Z}_{r}, considered as a subgroup of $\operatorname{GL}(3, \mathbb{C})$, generated by matrix $\operatorname{diag}\left(\varepsilon, \varepsilon^{a}, \varepsilon^{r-a}\right)$, where $\varepsilon=e^{\frac{2 \pi i}{r}}$. The group G has r characters, which may be identified with $1, \varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{r-1}$.

We follow the notation of [7]. Let $N_{0}=\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2} \oplus \mathbb{Z} e_{3}$ denote a free \mathbb{Z}-module with \mathbb{Z}-basis e_{i}. The lattice dual to N_{0} will be denoted $M_{0}=\operatorname{Hom}_{\mathbb{Z}}\left(N_{0}, \mathbb{Z}\right)=\mathbb{Z} e_{1}^{*} \oplus$ $\mathbb{Z} e_{2}^{*} \oplus \mathbb{Z} e_{3}^{*}$, where $e_{i}^{*}\left(e_{j}\right)=\delta_{i j}$. In this paper, the variables x, y, z will be identified with $e_{1}^{*}, e_{2}^{*}, e_{3}^{*}$ and a multiplicative notation will be used in the lattice M_{0}. For example, vector $2 e_{1}^{*}-e_{3}^{*}$ will be identified with the Laurent monomial $x^{2} z^{-1}$.

Let M_{0}^{0} be the positive octant in M_{0}, identified with monomials in the ring $\mathbb{C}[x, y, z]$. Set $N=N_{0}+\mathbb{Z} \frac{1}{r}\left(e_{1}+a e_{2}+(r-a) e_{3}\right)$ and let $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ be a dual lattice. Lattice M will be identified with a sublattice of M_{0} consisting of G-invariant Laurent monomials. When no confusion arise, vector $a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$ will be denoted $\left(a_{1}, a_{2}, a_{3}\right)$. For example, $\frac{1}{5}(1,2,3)$ stands for $\frac{1}{5} e_{1}+\frac{2}{5} e_{2}+\frac{3}{5} e_{3}$.

Let G^{\vee} denote the character group of G. The group G acts on the left on regular functions on \mathbb{C}^{3} by setting $(g \cdot f)(p)=f\left(g^{-1} p\right)$, where $g \in G, p \in \mathbb{C}^{3}$ and f is a regular function on \mathbb{C}^{3}. This action can be extended to the lattice M_{0} (by identifying M_{0} with the lattice of exponents of Laurent monomials in x, y, z). Thus, we have the natural grading:

$$
M_{0}=\bigoplus_{\chi \in G^{\vee}} M_{0}^{\chi} .
$$

Definition 2.1. Let wt : $M_{0} \longrightarrow G^{\vee}$ denote group homomorphism sending an element of the lattice M_{0} to its grade.

We will denote by $m \bmod n$ an integer $k \in 0, \ldots, n-1$ such that $n \mid(m-k)$.
Definition 2.2 (Nakamura). A subset Γ of monomials in $\mathbb{C}[x, y, z]$ is called a G-set if
(1) it contains the constant monomial 1 ,
(2) if $v w \in \Gamma$ then $v \in \Gamma$ and $w \in \Gamma$,
(3) the restriction of the function wt to Γ is a bijection.

Remark. Since $\operatorname{wt}(1)=\operatorname{wt}(y z)$, it follows that $y z \notin \Gamma$ for any G-set Γ. Hence the monomials in Γ are of the form $x^{*} y^{*}$ and $x^{*} z^{*}$, where $*$ stands for any non-negative integer.

Definition 2.3. For any G-set Γ define $i(\Gamma), j(\Gamma), k(\Gamma)$ to be the unique nonnegative integers such that

$$
\begin{array}{rlrl}
x^{i(\Gamma)} \in \Gamma, & & x^{i(\Gamma)+1} \notin \Gamma, \\
y^{j(\Gamma)} \in \Gamma, & y^{j(\Gamma)+1} \notin \Gamma, \\
z^{k(\Gamma)} \in \Gamma, & z^{k(\Gamma)+1} \notin \Gamma .
\end{array}
$$

When no confusion arise we write for short:

$$
\begin{aligned}
i & =i(\Gamma) \\
j & =j(\Gamma) \\
k & =k(\Gamma)
\end{aligned}
$$

Definition 2.4 (Nakamura). A monomial $x^{m} y^{n}$ (resp. $x^{m} z^{n}$) for $m, n \geq 0$ is called a y-valley (resp. z-valley) for Γ, if

$$
\begin{aligned}
& x^{m} y^{n}, x^{m+1} y^{n}, x^{m} y^{n+1} \in \Gamma \quad \text { but } \quad x^{m+1} y^{n+1} \notin \Gamma \\
& \text { (resp. } x^{m} z^{n}, x^{m+1} z^{n}, x^{m} z^{n+1} \in \Gamma \text { but } x^{m+1} z^{n+1} \notin \Gamma \text {). }
\end{aligned}
$$

We call a y-valley or z-valley a valley for brevity.
Definition 2.5. For any $v \in M_{0}^{0}$ let $\mathrm{wt}_{\Gamma}(v)$ denote the unique $w \in \Gamma$ such that $\mathrm{wt}(v)=\mathrm{wt}(w)$.
3. Classification of G-sets. In this section, we show that any G-set has at most one y-valley and at most one z-valley. Following Nakamura, for every G-set we construct a semigroup $\mathrm{S}(\Gamma)$ in the lattice M and prove that it is saturated. It turns out that the G-sets correspond to the cones of maximal dimension in the fan of Hilb ${ }^{G} \mathbb{C}^{3}$.

Remark 3.1. The following statements are immediate from the definitions:
(1) if $\mathrm{wt}_{\Gamma}(v)=w, v \notin \Gamma$ and $u \cdot w \in \Gamma$, then $u \cdot v \notin \Gamma$,
(2) if $\mathrm{wt}_{\Gamma}(v)=w$, then $\mathrm{wt}_{\Gamma}(u \cdot v)=u \cdot w$ for any $u \in M_{0}$ such that $u \cdot w \in \Gamma$,
(3) if $\mathrm{wt}_{\Gamma}(v)=w, u \in M$ then $\mathrm{wt}_{\Gamma}(u \cdot v)=w$.

Corollary 3.2. Let Γ be $a G$-set and $v \in M_{0}^{0}-\Gamma$. If $x^{-1} \cdot v \in \Gamma$ (resp. $y^{-1} \cdot v \in$ $\Gamma, z^{-1} \cdot v \in \Gamma$) then $\mathrm{wt}_{\Gamma}(v)=w$, where $w \in \Gamma$ but $x^{-1} \cdot w \notin \Gamma$ (resp. $z \cdot w \notin \Gamma, y \cdot w \notin$ $\Gamma)$.

Proof. Use observation (1) and (3) from Remark 3.1.
Lemma 3.3. A G-set can only have 0,1 or 2 valleys.
Proof. Suppose that $x^{m} y^{n}$ is a y-valley for Γ. Then $v=x^{m+1} y^{n+1}$ satisfies assumptions of Corollary (3.2). Hence, $x^{-1} \cdot \mathrm{wt}_{\Gamma}(v) \notin \Gamma$ and $z \cdot \mathrm{wt}_{\Gamma}(v) \notin \Gamma$, so $\mathrm{wt}_{\Gamma}(v)=z^{k(\Gamma)}$. Therefore, G-set Γ has at most one y-valley, and, analogously at most one z-valley.

Corollary 3.4. Suppose that G-set Γ has y-valley w and z-valley v. Then

$$
\begin{aligned}
\mathrm{wt}_{\Gamma}\left(y^{j(\Gamma)+1}\right) & =x \cdot w, \\
\mathrm{wt}_{\Gamma}\left(z^{k(\Gamma)+1}\right) & =x \cdot v .
\end{aligned}
$$

Proof. Use observation (2) from Remark 3.1.
Notation 3.5. From now on we will usually denote by i_{y}, j_{y} the exponents of the y-valley $x^{i_{y}} y^{j_{y}}$ and by i_{z}, k_{z} the exponents of the z-valley $x^{i_{z}} z^{k_{z}}$ of some fixed G-set Γ.

Lemma 3.6. The only possible G-sets with no valleys are

$$
\begin{aligned}
\Gamma^{\mathrm{x}} & =\left\{1, x, \ldots, x^{r-1}\right\} \\
\Gamma_{l}^{\mathrm{yz}} & =\left\{y^{r-l-1}, \ldots, y, 1, z, \ldots, z^{l}\right\} \text { for } l=0, \ldots r-1 .
\end{aligned}
$$

Proof. Let i, j, k be integers like in Definition 2.3. Corollary 3.2 shows that $\mathrm{wt}_{\Gamma}\left(y^{j+1}\right)=x^{i^{\prime}} z^{k}$, for some $i^{\prime} \geq 0$. If $i^{\prime}=0$, then $\mathrm{wt}\left(z^{k+1}\right)=\mathrm{wt}\left(y^{j}\right)$ and since a, r are coprime, it follows that $j=r-k-1$, hence $i=0$. Consider the case $i^{\prime}>0$. Then $\mathrm{wt}_{\Gamma}\left(x^{i^{\prime}-1} z^{k+1}\right)=x^{i^{\prime \prime}} y^{j}$ by Corollary 3.2. It follows immediately that $i^{\prime \prime}=i=r-1$ and so $j=k=0$.

Lemma 3.7. Let Γ be a G-set with exactly one valley. If Γ has y-valley equal to $x^{i_{z}} z^{k_{z}}$, then

$$
\begin{aligned}
\mathrm{wt}_{\Gamma}\left(x^{i+1}\right) & =z^{k-k_{z}}, \\
\mathrm{wt}_{\Gamma}\left(z^{k+1}\right) & =x^{i-i_{2}} y^{j} .
\end{aligned}
$$

If G-set Γz-valley equal to $x^{i_{y}} y^{j_{y}}$, then

$$
\begin{aligned}
\mathrm{wt}_{\Gamma}\left(x^{i+1}\right) & =y^{j-j_{y}}, \\
\mathrm{wt}_{\Gamma}\left(y^{j+1}\right) & =x^{i-i_{y}} z^{k} .
\end{aligned}
$$

Proof. We prove the lemma in the case of z-valley $w=x^{i_{z}} z^{k_{z}}$. The monomial $\mathrm{wt}_{\Gamma}\left(z^{k+1}\right)$ is of the form $x^{l} y^{j}$, where $0 \leq l \leq i$. Noting that $\mathrm{wt}_{\Gamma}(x z \cdot w)=y^{j}$ we get $l=i-i_{z}$. It follows that the monomials $x^{i-i_{z}} y^{j}$ and z^{k+1} are of the same weight, therefore $\mathrm{wt}_{\Gamma}\left(z^{k+1}\right)=x^{i-i_{z}} y^{j}$.

Lemma 3.8. Let Γ be a G-set with two valleys v, w, where

$$
\begin{aligned}
v & =x^{i_{y}} y^{j_{y}} \\
w & =x^{i_{z}} z^{k_{z}} .
\end{aligned}
$$

Then $i_{y}+i_{z}+1=i$, and

$$
\mathrm{wt}_{\Gamma}\left(x^{i+1}\right)= \begin{cases}y^{\left(j-j_{y}\right)-\left(k-k_{z}\right)} & \text { if }\left(j-j_{y}\right)-\left(k-k_{z}\right) \geq 0, \\ z^{\left(k-k_{z}\right)-\left(j-j_{y}\right)} & \text { otherwise } .\end{cases}
$$

Proof. Let u be a monomial such that $u \notin \Gamma$ and $x^{-1} u \in \Gamma$. Then $\mathrm{wt}_{\Gamma}(u)=z^{l}$ for some $0 \leq l \leq k$ or $\mathrm{wt}_{\Gamma}(u)=y^{l}$ for $0 \leq l \leq j$. We know already that $\mathrm{wt}_{\Gamma}(x z \cdot w)=y^{j}$ and $\mathrm{wt}_{\Gamma}(x y \cdot v)=z^{k}$, which implies that $\mathrm{wt}_{\Gamma}\left(x^{i+1}\right)=y^{\left(j-j_{y}\right)-\left(k-k_{z}\right)}$ if $\left(j-j_{y}\right)-\left(k-k_{z}\right) \geq 0$ and $\mathrm{wt}_{\Gamma}\left(x^{i+1}\right)=z^{\left(k-k_{z}\right)-\left(j-j_{y}\right)}$ otherwise. The monomial $x^{i_{y}+i_{z}+1}$ has the same weight as x^{i+1} hence they are equal.

Definition 3.9 (Nakamura). For any $v \in M_{0}$ and a G-set Γ define (using a multiplicative notation in the lattice M_{0})

$$
s_{\Gamma}(v)=v \mathrm{wt}_{\Gamma}^{-1}(v)
$$

We will write it simply $s(v)$ when no confusion can arise. Define the cones

$$
\begin{aligned}
\sigma(\Gamma) & =\left\{\alpha \in N_{0} \otimes_{\mathbb{Z}} \mathbb{R} \mid\left\langle\alpha, s_{\Gamma}(v)\right\rangle \geq 0, \quad \forall v \in M_{0}^{0}\right\}, \\
\sigma^{\vee}(\Gamma) & =\left\{v \in M_{0} \otimes_{\mathbb{Z}} \mathbb{R} \mid\langle\alpha, v\rangle \geq 0, \quad \forall \alpha \in \sigma(\Gamma)\right\},
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ denotes the pairing between N_{0} and M_{0}.
Let $\mathrm{S}(\Gamma)$ be a sub-semigroup of the lattice M, generated by the set $\left\{s_{\Gamma}(v) \in M \mid v \in\right.$ $\left.M_{0}^{0}\right\}$ as a semigroup. Set

$$
\mathrm{V}(\Gamma)=\operatorname{Spec} \mathbb{C}[S(\Gamma)]
$$

Note that

$$
\mathbb{C}[S(\Gamma)] \subset \mathbb{C}\left[\sigma^{\vee}(\Gamma) \cap M\right]
$$

Moreover, the cones $\sigma(\Gamma), \sigma^{\vee}(\Gamma)$ are dual to each other and the cone $\sigma^{\vee}(\Gamma) \cap M$ is the saturation of the semigroup $\mathrm{S}(\Gamma)$ in the lattice M. It will follow from Lemma (3.11) that $S(\Gamma)$ is finitely generated as a semigroup.

Theorem 3.10 (Nakamura). Let G be a finite abelian subgroup of $\mathrm{GL}(3, \mathbb{C})$. When Γ varies through all G-sets the set of all faces of all three-dimensional cones $\sigma(\Gamma)$ forms a fan in lattice $N \otimes \mathbb{R}$ supported on the positive octant. Toric variety defined by this fan is isomorphic to the normalisation of the $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ scheme (see [7, Theorem 2.11] and [1, Section 5]). Moreover, the affine varieties $\mathrm{V}(\Gamma)$ form an open covering of the Hilb ${ }^{G} \mathbb{C}^{3}$ scheme when Γ varies through all G-sets.

Lemma 3.11 (Nakamura). Let $A \subset M_{0}^{0}-\Gamma$ be a finite set such that $M_{0}^{0}-\Gamma=$ $A \cdot M_{0}^{0}$. If $\sigma(\Gamma)$ is a three-dimensional cone then $\mathrm{S}(\Gamma)$ is generated by the finite set $\left\{s_{\Gamma}(v) \mid v \in A\right\}$ as a semigroup (see [7, Lemma 1.8]).

Remark 3.12. Note that Theorem 3.10 and Lemma 3.11 are stated in [7] without the assumption on dimension of $\sigma(\Gamma)$ in which case they are false. A counter-example and a correction can be found in [2, Example 4.12 and Theorem 5.2].

Lemma 3.13. Suppose that Γ is $a G$-set in the case of $\frac{1}{r}(1, a, r-a)$ action. Then the cone $\sigma(\Gamma)$ is three-dimensional. Moreover, if Γ has 0 or 1 valley then $\mathrm{S}(\Gamma) \cong \mathbb{C}[x, y, z]$. If Γ has 2 valleys then $\mathrm{S}(\Gamma) \cong \mathbb{C}[x, y, z, w] /(x y-z w)$.

Proof. The lemma will be proven only in the case of a G-set with 2 valleys as the method carries over to the other cases.

Suppose that Γ is a G-set with 2 valleys, $v=x^{i_{y}} y^{j_{y}}, w=x^{i_{z}} z^{k_{z}}$ and set

$$
\begin{aligned}
\alpha & =x^{i+1}, \\
\beta & =y^{j+1}, \\
\gamma & =z^{k+1}, \\
\delta_{y} & =x y \cdot v, \\
\delta_{z} & =x z \cdot w,
\end{aligned}
$$

where i, j, k are the largest exponents such that x^{i}, y^{j}, z^{k} belong to Γ. We will start by showing that $s(\beta), s(\gamma), s\left(\delta_{y}\right)$ and $s\left(\delta_{z}\right)$ generate semigroup $\mathrm{S}(\Gamma)$. Assume that $u \in$ $M_{0}^{0}, t=x, y$ or z and note that

$$
s(t \cdot u)=s(u) s\left(t \cdot \mathrm{wt}_{\Gamma}(u)\right)
$$

By the above formula it suffices to show that for any $u \in \Gamma$ such that $t \cdot u \notin \Gamma$ the Laurent monomial $s(t \cdot u)$ can be expressed as a product of $s(\beta), s(\gamma), s\left(\delta_{y}\right)$ and $s\left(\delta_{z}\right)$ with non-negative exponents. By Lemma 3.8,

$$
\begin{aligned}
& s(\alpha)= \begin{cases}x^{i+1} y^{-\left(j-j_{y}\right)+\left(k-k_{z}\right)} & \text { if }\left(j-j_{y}\right) \geq\left(k-k_{z}\right), \\
x^{i+1} z^{\left(j-j_{y}\right)-\left(k-k_{z}\right)} & \text { otherwise },\end{cases} \\
& s(\beta)=x y^{-(j+1)} \cdot w, \\
& s(\gamma)=x z^{-(k+1)} \cdot v, \\
& s\left(\delta_{y}\right)=x y z^{-k} \cdot v, \\
& s\left(\delta_{z}\right)=x y^{-j} z \cdot w,
\end{aligned}
$$

hence

$$
\begin{aligned}
s(\beta) s\left(\delta_{z}\right) & =s(\gamma) s\left(\delta_{y}\right)=s(y z), \\
s(\alpha) & = \begin{cases}s\left(\delta_{y}\right) s\left(\delta_{z}\right)(y z)^{j-j_{y}-1} & \text { if }\left(j-j_{y}\right) \geq\left(k-k_{z}\right), \\
s\left(\delta_{y}\right) s\left(\delta_{z}\right)(y z)^{k-k_{z}-1} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Let $u \in \Gamma$ and $y \cdot u \notin \Gamma$. If $u=x^{l} y^{j}$, where $l=0, \ldots, i_{y}$ then $s(y \cdot u)=s(\beta)$. If $u=x^{l} y_{y}^{j}$, where $l=i_{y}+1, \ldots, i$ then $s(y \cdot u)=s\left(\delta_{y}\right)$. Analogously $s(z \cdot u)$ is equal to $s(\gamma)$ or to $s\left(\delta_{y}\right)$ for any $u \in \Gamma, z \cdot u \notin \Gamma$.

It remains to consider $u \in \Gamma$ such that $x \cdot u \notin \Gamma$. Observe that $\mathrm{wt}_{\Gamma}(x \cdot u)$ is of the form y^{l} or z^{l} for some positive $l\left(l=0\right.$ can happen only if $\left.\Gamma=\Gamma^{\mathrm{x}}\right)$. If $u^{\prime}=y^{-1} u \in \Gamma$ then $x \cdot u^{\prime} \notin \Gamma$ and

$$
s(x \cdot u)=s\left(y \cdot x u^{\prime}\right)=s\left(x u^{\prime}\right) s\left(y \mathrm{wt}_{\Gamma}\left(x \cdot u^{\prime}\right)\right)=s\left(x u^{\prime}\right)(y z)^{n}, \text { where } n=0,1 .
$$

By induction for any such $u \in \Gamma$ the monomial $s(x \cdot u)$ is equal to $p \cdot(x y)^{m}$, where $m>0$ and $p=s(\alpha), s\left(\delta_{y}\right)$ or $s\left(\delta_{z}\right)$.

This shows that $\mathrm{S}(\Gamma)$ is generated by $s(\beta), s(\gamma), s\left(\delta_{y}\right)$ and $s\left(\delta_{z}\right)$. To conclude it is enough to show that some (in fact any) 3 out of 4 generators form a \mathbb{Z}-basis of the lattice M. This is implied by computing the following determinant, using equality from

Lemma 3.8:

$$
\left|\begin{array}{rcc}
-i_{z}-1 & j+1 & -k_{z} \\
i_{y}+1 & j_{y}+1 & -k \\
-i_{y}-1 & -j_{y} & k+1
\end{array}\right|=r
$$

Corollary 3.14. The semigroup $\mathrm{S}(\Gamma)$ coincides with the semigroup algebra $\mathbb{C}\left[\sigma^{\vee}\left(\Gamma^{\prime}\right) \cap M\right]$ for any G-set. In particular, $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ is normal.
4. G-igsaw transformations. To get an effective description of the fan of the Hilb G scheme, we introduce Nakamura's G-igsaw transformation, which will allow to organise G-sets in families and to explain how these are related to each other.
G-igsaw transformation is a method of constructing a new G-set from the other. In fact, two G-sets Γ and Γ^{\prime} are related by a G-igsaw transformation if and only if the cones $\sigma(\Gamma)$ and $\sigma\left(\Gamma^{\prime}\right)$ share a two-dimensional face.

When reading Sections 4-6, it may be useful for a reader to consult an example provided in Section 7.

Lemma 4.1 (Nakamura). Let Γ be a G-set for the action of type $\frac{1}{r}(1, a, r-a)$ and let τ be a two-dimensional face of $\sigma(\Gamma)$. There exist two monomials $u \in M_{0}^{0}$ and $v \in \Gamma$ such that
(1) $v=\mathrm{wt}_{\Gamma}(u)$,
(2) u, v do not have common factors in M_{0}^{0},
(3) $u v^{-1}$ is a primitive monomial,
(4) $\tau=\sigma(\Gamma) \cap\left(u v^{-1}\right)^{\perp}$,

Proof. This is a particular case of [7, Lemma 2.5]
Definition 4.2 (Nakamura). Let Γ be a G-set and let τ be a two-dimensional face of $\sigma(\Gamma)$. Suppose that monomials u, v given by Lemma 4.1 are not equal to 1 and set $c(w)=\max \left\{c \in \mathbb{Z} \mid w v^{-c} \in M_{0}^{0}\right\}$ for any $w \in \Gamma$. We define the G-igsaw transformation of Γ in the direction of τ to be the set

$$
\Gamma^{\prime}=\left\{w \cdot u^{c(w)} v^{-c(w)} \mid w \in \Gamma\right\} .
$$

Lemma 4.3 (Nakamura). The G-igsaw transformation of $a G$-set is a G-set.
Proof. See [7, Lemma 2.8]
Lemma 4.4. Suppose that Γ is $a G$-set for the action $\frac{1}{r}(1, a, r-a)$. Let $\alpha=x^{i+1}, \beta=$ $y^{j+1}, \gamma=z^{k+1}$, where i, j, k are the maximal exponents such that $x^{i}, y^{j}, z^{k} \in \Gamma$. Let τ be a two-dimensional face of $\sigma(\Gamma)$ and let u be the monomial given by Lemma 4.1. If Γ has 0 or 1 valley then $u=\alpha, \beta$ or γ. If Γ has 2 valleys then $u=\beta, \gamma, \delta_{y}$ or δ_{z}, where δ_{y} is equal to the y-valley of Γ multiplied by $x y$ and δ_{z} is equal to the z-valley of Γ multiplied by $x z$.

Proof. Suppose that Γ has one valley and τ is a face of $\sigma(\Gamma)$ dual to the ray of $\sigma^{\vee}(\Gamma)$ spanned by $s(\alpha)$. The one-dimensional lattice $M \cap \tau^{\perp}$ has 2 generators. Therefore $u v^{-1}$ is equal either to $s(\alpha)$ or $s(\alpha)^{-1}$. Clearly, the only choice is $u=\alpha, v=\mathrm{wt}_{\Gamma}(\alpha)$. Suppose
that $d \in M_{0}^{0}$ is a common factor of u and v. Then both $u d^{-1}, v d^{-1}$ belong to Γ and they are of the same weight. Hence $d=1$.

Definition 4.5. Let Γ be a G-set with 0 or 1 valley and let τ be the two-dimensional face of $\sigma(\Gamma)$. The G-igsaw transformation of Γ in the direction of τ is called upper (resp. right, left) transformation if $u=\alpha$ (resp. $u=\beta, u=\gamma$.), where the monomial u is as in Lemma 4.1. The upper, left and right transformations of Γ will be denoted by $T_{U}(\Gamma), T_{R}(\Gamma)$ and $T_{L}(\Gamma)$, respectively.

By slight abuse of notation, the G-igsaw transformation of G-set Γ with 2 valleys is called left (resp. upper left, right, left) transformation if the corresponding monomial u is equal to β (resp. $\gamma, \delta_{y}, \delta_{z}$). The right, left, upper right and upper left G-igsaw transformations of Γ will be denoted by $T_{U R}(\Gamma), T_{U L}(\Gamma), T_{R}(\Gamma), T_{L}(\Gamma)$, respectively.

Definition 4.6. We say that a G-set Γ is spanned by monomials u_{1}, \ldots, u_{n} if Γ consists of all monomials dividing u_{1}, \ldots, u_{n}. If G-set Γ is spanned by monomials u_{1}, \ldots, u_{n} we write

$$
\Gamma=\operatorname{span}\left(u_{1}, \ldots, u_{n}\right)
$$

Lemma 4.7. Let $\Gamma=\operatorname{span}\left(x^{i} y^{j}, x^{i} z^{k}\right)$, where $i_{y}<i\left(\right.$ resp. let $\Gamma=\operatorname{span}\left(x^{i} y^{j}, x^{i_{k}} z^{k}\right)$, where $i_{z}<i$) be a G-set with one y-valley equal to $x^{i_{y}}$ (resp. one z-valley equal to $x^{i_{z}}$).

Then

$$
\begin{aligned}
T_{U}(\Gamma) & =\operatorname{span}\left(x^{i+i_{y}+1}, x^{i_{y}} y^{j-1}, x^{i} z^{k}\right) \\
\left(\operatorname{resp} . T_{U}(\Gamma)\right. & \left.=\operatorname{span}\left(x^{i+i_{z}+1}, x^{i} y^{j}, x^{i_{k}} z^{k-1}\right)\right)
\end{aligned}
$$

In particular, the upper transformation of Γ has

- no valleys if and only if $j=1, k=0 \quad$ (resp. $j=0, k=1$). In fact, in this case $T_{U}(\Gamma)=\Gamma^{\mathrm{x}}$.
- one z-valley (resp. one y-valley) if and only if $j=1, k>0$ (resp. $j>0, k=1$). In both cases the valley is equal to x^{i}.
- two valleys: the y-valley equal to $x^{i_{y}}$ and the z-valley equal to x^{i} (resp. the y-valley equal to x^{i} and the z-valley equal to $x^{i_{z}}$) in the remaining cases.

Proof. The upper transformation is obtained by replacing each monomial $w \in \Gamma$, divisible by y^{j} (resp. by z^{k}) by the monomial $x^{n(i+1)} y^{-n j} \cdot w$ for some $n \geq 1$. The proof is straightforward.

Lemma 4.8. Let Γ be a G-set with 2 valleys: y-valley equal to $v=x^{i_{y}} y^{j_{y}}$ and z-valley equal to $w=x^{i_{z}} z^{k_{z}}$. Assume that Γ is spanned by $x^{i} y^{j_{y}}, x^{i} z^{k_{z}}, x^{i_{y}} y^{j}, x^{i_{z}} z^{k}$. Let T stand for right, left, upper right or upper left transformation.

Then $T(\Gamma)$ is spanned by

$$
\begin{array}{llllll}
x^{i} y^{j_{y}}, & x^{i} z^{k_{z}-1}, & x^{i_{y}} y^{j+1}, & x^{i_{z}} z^{k} & T=T_{R}, k_{z} \geq 1, \\
x^{i} y^{j_{y}-1}, & x^{i} z^{k_{z}}, & x^{y_{y}}, y^{j}, & x^{i_{z}} z^{k+1} & T=T_{L}, j_{y} \geq 1, \\
x^{i} y_{y}^{j_{y}+1}, & x^{i} z_{z}, & x^{i_{y}}, & x^{i_{z}} z^{k-1} & \text { if } & T=T_{U R}, \\
x^{i} y^{j_{y}}, & x^{i} z^{k_{z}+1}, & x^{i_{y}} y^{j-1}, & x^{i_{z}} z^{k} & T=T_{U L} .
\end{array}
$$

Proof. The proof is a matter of straightforward computation. It follows directly by considering each case separately cf. Lemma 4.4).

Note that the G-igsaw transformation of a G-set with two valleys may have only one valley.

Corollary 4.9. Let Γ be a G-set spanned by $x^{i} y^{j_{y}}, x^{i} z^{k_{z}}, x^{i_{y}} y^{j}, x^{i_{z}} z^{k}$ with 2 valleys: y-valley equal to $v=x^{i_{y}} y^{j_{y}}$ and z-valley equal to $w=x^{i_{z}} z^{k_{z}}$. If $j_{y}, k_{z} \geq 1$ then

$$
\begin{aligned}
& T_{R}\left(T_{U L}(\Gamma)\right)=\Gamma, T_{U L}\left(T_{R}(\Gamma)\right)=\Gamma \\
& T_{L}\left(T_{U R}(\Gamma)\right)=\Gamma, T_{U R}\left(T_{L}(\Gamma)\right)=\Gamma
\end{aligned}
$$

that is right and upper left (resp. left and upper right) transformations are inverse operations. Moreover, if $j, k, j-j_{y}, k-k_{z} \geq 2$ then

$$
T_{U L}\left(T_{U R}(\Gamma)\right)=T_{U R}\left(T_{U L}(\Gamma)\right),
$$

that is, upper left and upper right transformations commute.
Corollary 4.10. Let Γ be a G-set spanned by $x^{i} y^{j_{y}}$, $x^{i} z^{k_{z}}$, $x^{i_{y}} y^{j}$, $x^{i_{z}} z^{k}$, with 2 valleys: y-valley equal to $v=x^{i_{y}} y^{j_{y}}$ and z-valley equal to $w=x^{i_{z}} z^{k_{z}}$. Let $\Gamma^{\prime}=T_{U R}^{m}\left(T_{U L}^{n}(\Gamma)\right)$, where $m+n \leq \min \left\{j, k, j-j_{y}, k-k_{z},\right\}$. Then Γ^{\prime} is spanned by $x^{i} y^{j_{y}+m}, x^{i} z^{k_{z}+n}, x^{i,} y^{j-n}, x^{i_{z}} z^{k-m}$. If $m+n<\min \left\{j, k, j-j_{y}, k-k_{z}\right\}$ then Γ^{\prime} has two valleys. If $m+n=\min \left\{j, k, j-j_{y}, k-k_{z}\right\}$ then Γ^{\prime} has one valley (one of the monomials $x^{i} y^{j_{y}+m}, x^{i} z^{k_{z}+n}, x^{i_{y}} y^{j-n}, x^{i_{z}} z^{k-m}$ spanning Γ^{\prime} is redundant).
5. Triangles of transformations and primitive G-sets. In this section, we introduce primitive G-sets, which have a particular shape. Every primitive G-set such gives rise to a family of G-sets, called here a triangle of transformations. It will turn out that most G-sets belong to some triangle of transformations. We define a sequence of primitive G-sets containing every primitive G-set for fixed integers r and a.

Definition 5.1. Let Γ be a G-set with two valleys, spanned by $x^{i} y^{j_{y}}, x^{i} z^{k_{z}}, x^{i_{y}} y^{j}$, $x^{i_{z}} z^{k}$. The set

$$
\Theta(\Gamma)=\left\{T_{U R}^{m}\left(T_{U L}^{n}(\Gamma)\right) \mid m+n \leq \min \left\{j, k, j-j_{y}, k-k_{z}\right\}\right\}
$$

will be called triangle of transformations of Γ.
The union of the supports of G-sets belonging to the set $\Theta(\Gamma)$ is a simplicial cone (see Corollary 5.13), hence we call $\Theta(\Gamma)$ a triangle of transformations.

Definition 5.2. A G-set Γ is called primitive if it has a y-valley equal to $x^{i_{y}}$ and a z-valley equal to $x^{i_{z}}$ for some non-negative i_{y}, i_{z}.

The name primitive is justified by the fact that every G-set with two valleys belong to a triangle of transformations of some primitive G-set. This fact will follow from the Main Theorem.

Definition 5.3. For fixed coprime integers r, a define let Γ_{1} be a G-set spanned by x, y^{b-1}, z^{r-b-1}, where $b \in\{1, \ldots, r-1\}$ is as an inverse of a modulo r.

The G-set Γ_{1} is primitive and the monomial x is simultaneously its y-valley and z-valley.

Lemma 5.4. Let Γ be a primitive G-set spanned by $x^{i}, x^{i_{y}} y^{j}, x^{i_{z}} z^{k}$. Then $\Theta(\Gamma)$ consists of $\left(\min _{2}^{\operatorname{Lj}, k\}+2}\right) G$-sets.

Proof. It is clear from definition of $\Theta(\Gamma)$.
Lemma 5.5. Let Γ be a primitive G-set spanned by $x^{i}, x^{i} y^{j}, x^{i_{z}} z^{k}$. Suppose that $j<k$ (resp. $k<j$). The G-set $T_{U}\left(T_{U R}^{j}(\Gamma)\right)$ (resp. $T_{U}\left(T_{U L}^{k}(\Gamma)\right)$) is spanned by $x^{i+i_{z}+1}, x^{i} y^{j}$, $x^{i_{z}} z^{k-(j+1)}\left(\right.$ resp. $\left.x^{i+i_{y}+1}, x^{i} y^{j-(k+1)}, x^{i} z^{k}\right)$. Moreover, if $j<k-1$ (resp. $k<j-1$) it is primitive.

Proof. Assume that $j<k$. The G-set $T_{U R}^{j}(\Gamma)$ is spanned by $x^{i} y^{j}, x^{i_{z}} z^{k-j}$ and it has one z-valley equal to $x^{i_{z}}$ by Lemma 4.8. To finish the proof apply Lemma 4.7 to the G-set $T_{U R}^{j}(\Gamma)$.

The preceding lemma allows us to define a sequence of primitive G-sets.
Definition 5.6. If Γ_{n} is a primitive G-set we set:

$$
\Gamma_{n+1}=\left\{\begin{array}{lll}
T_{U}\left(T_{U R}^{j_{n}}\left(\Gamma_{n}\right)\right) & \text { if } & j_{n}<k_{n}, \\
T_{U}\left(T_{U L}^{k_{n}}\left(\Gamma_{n}\right)\right) & \text { if } & j_{n}>k_{n},
\end{array}\right.
$$

where j_{n}, k_{n} denote the non-negative numbers such that Γ_{n} is spanned by the monomials $x^{i_{n}}, x^{i_{y, n}} y^{j_{n}}, x^{i_{, n}} z^{k_{n}}$ for some $i_{n}, i_{y, n}, i_{z, n} \geq 0$.

Observe that if $j_{n}-k_{n}= \pm 1$ for some n then Γ_{n+1} is not primitive and the recursion stops.

Corollary 5.7. The numbers j_{n}, k_{n} satisfy the following formulas:

$$
\begin{aligned}
j_{1}+1 & =b, \\
k_{1}+1 & =r-b, \\
j_{n+1}+1 & = \begin{cases}j_{n}+1 & \text { if } j_{n}<k_{n}, \\
j_{n}+1-\left(k_{n}+1\right) & \text { if } j_{n}>k_{n},\end{cases} \\
k_{n+1}+1 & = \begin{cases}k_{n}+1-\left(j_{n}+1\right) & \text { if } j_{n}<k_{n}, \\
k_{n}+1 & \text { if } j_{n}>k_{n} .\end{cases}
\end{aligned}
$$

Clearly, there is a direct link between the numbers $j_{n}+1, k_{n}+1$ and the numbers appearing in the Euclidean algorithm for b and $r-b$. This relationship will be exploited later.

Definition 5.8. Let $\Theta(\Gamma)$ be a triangle of transformations of a G-set Γ. We define

$$
\widetilde{\Theta}(\Gamma)=\bigcup_{\Gamma^{\prime} \in \Theta(\Gamma)} \sigma\left(\Gamma^{\prime}\right)
$$

to be the union of supports of the cones $\sigma\left(\Gamma^{\prime}\right)$, where Γ^{\prime} runs through the G-sets in $\Theta(\Gamma)$.

To study the location of various cones in the fan $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ it is convenient to give names to their rays.

Definition 5.9. Let $\Gamma_{\widetilde{n}}$ be the primitive G-set as defined in (5.6). Denote by ρ_{n} the common ray of the cones $\widetilde{\Theta}\left(\Gamma_{n}\right)$ and $\sigma\left(\Gamma_{n}\right)$.

Let Γ be any G-set. A ray of $\sigma^{\vee}(\Gamma)$ will be called upper, (upper) left or right ray if it dual to the wall of $\sigma(\Gamma)$ corresponding to the upper, (upper) left or right transformation, respectively.

Remark 5.10. Let Γ, Γ^{\prime} be any two G-sets. Suppose that the cones $\sigma(\Gamma)$ and $\sigma\left(\Gamma^{\prime}\right)$ intersect either in a two-dimensional face or in a ray. If the cones $\sigma^{\vee}(\Gamma), \sigma^{\vee}\left(\Gamma^{\prime}\right)$ have a common ray ρ then there exists a two-dimensional linear subspace of $N \otimes \mathbb{R}$ containing a two-dimensional face of $\sigma(\Gamma)$ and of $\sigma\left(\Gamma^{\prime}\right)$, both of these dual to the ray ρ.

Lemma 5.11. For any G-set Γ with two valleys the set $\widetilde{\Theta}(\Gamma)$ is a rational simplicial cone.

Proof. Assume that G-set is spanned by the monomials $x^{i} y^{j_{y}}, x^{i_{z} z_{z}}, x^{i_{y}} y^{j}, x^{i_{z}} z^{k}$ and let $l=\min j, k, j-j_{y}, k-k_{z}$. Because the upper right and upper left transformation commute (see Corollary 4.9), by Remark 5.10 it is enough to establish the three following facts:

- the right rays of the cones $\sigma^{\vee}\left(T_{U R}^{n}(\Gamma)\right)$ for $n=0, \ldots, l$ are the same,
- the left rays of the cones $\sigma^{\vee}\left(T_{U L}^{n}(\Gamma)\right)$ for $n=0, \ldots, l$ are the same,
- the upper rays of the cones $\sigma^{\vee}\left(T_{U R}^{m}\left(T_{U L}^{n}(\Gamma)\right)\right)$ for $m+n=l$ are the same.

These follow from Corollary 4.10.
Lemma 5.12. Let Γ be a primitive G-set spanned by $x^{i}, x^{i_{y}} y^{j}, x^{i_{i}} z^{k}$. If $j<k$ (resp. $k<j$) then $\mathbb{R}_{+} e_{2}$ (resp. $\mathbb{R}_{+} e_{3}$) is a ray of $\widetilde{\Theta}(\Gamma)$.

Proof. Suppose that $j<k$. The G-set $\Gamma^{\prime}=T_{U L}^{j}(\Gamma)$ is spanned by the monomials $x^{i} z^{k_{z}+j}, x^{i_{z}} z^{k}$ and it has one valley (see Corollary 4.10). The upper and left ray of $\sigma\left(\Gamma^{\prime}\right)$ are equal to $x^{i+1} z^{-k+k_{z}}$ and $x^{-i+i_{z}} z^{k+1}$, respectively. Evidently, the ray of $\sigma \vee\left(\Gamma^{\prime}\right)$, dual to the two-dimensional face of $\sigma^{\vee}(\Gamma)$ spanned by the upper and left ray, is equal to $\mathbb{R}_{+} e_{2}$.

Note that the cone $\widetilde{\Theta}\left(\Gamma_{i}\right)$ has, besides the ray common with $\sigma\left(\Gamma_{i}\right)$, two other rays: one equal to either e_{2} or e_{3} and the second which belongs to $\sigma\left(\Gamma_{i+1}\right)$. We will investigate how the cones $\widetilde{\Theta}\left(\Gamma_{i}\right), \widetilde{\Theta}\left(\Gamma_{i+1}\right)$ fit together depending on the sign of $\left(j_{i}-k_{i}\right)\left(j_{i+1}-k_{i+1}\right)$.

Corollary 5.13. Let Γ_{n} and Γ_{n+1} be two primitive G-sets. If $\left(j_{n}-k_{n}\right)\left(j_{n+1}-k_{n+1}\right)>$ 0 then the union of the supports of the cones $\widetilde{\Theta}\left(\Gamma_{n}\right), \widetilde{\Theta}\left(\Gamma_{n+1}\right)$ is a rational simplicial cone.

LEMMA 5.14. Let Γ_{n} and Γ_{n+1} be two primitive G-sets. Then $\widetilde{\Theta}\left(\Gamma_{n}\right) \cup \widetilde{\Theta}\left(\Gamma_{n+1}\right)$ is equal to the cone spanned by ρ_{n}, e_{2}, e_{3} minus (set-theoretical) the cone spanned by ρ_{n+1}, e_{2}, e_{3}.

Proof. If $\left(j_{n}-k_{n}\right)\left(j_{n+1}-k_{n+1}\right)>0$ this follows from Corollary 5.13. Otherwise, the cones $\widetilde{\Theta}\left(\Gamma_{n}\right), \widetilde{\Theta}\left(\Gamma_{n+1}\right)$ have a common ray and a two-dimensional face of $\widetilde{\Theta}\left(\Gamma_{n+1}\right)$ is contained in a two-dimensional face of $\widetilde{\Theta}\left(\Gamma_{n}\right)$. To finish, note that e_{2} and e_{3} generate rays of $\widetilde{\Theta}\left(\Gamma_{n}\right)$ and $\widetilde{\Theta}\left(\Gamma_{n+1}\right)$ (up to the order).

Recall that $\Gamma_{l}^{\mathrm{yz}}=\operatorname{span}\left(y^{l}, z^{r-l-1}\right)$. We will prove that the cones $\sigma\left(\Gamma_{l}^{\mathrm{yz}}\right)$ fit nicely together with the cones $\widetilde{\Theta}\left(\Gamma_{j}\right)$ into the fan of $\operatorname{Hilb}^{G} \mathbb{C}^{3}$.

Lemma 5.15. The upper transformations of $\Gamma_{b-1}^{\mathrm{yz}}$ and Γ_{b}^{yz} coincide, where $b \in$ $\{1, \ldots, r-1\}$ is an inverse of a modulo r. In fact, they are equal to Γ_{1}.

Proof. By definition, the upper transformation of $\Gamma_{b-1}^{\mathrm{yz}}$ and Γ_{b}^{yz} replaces the monomial z^{r-b} and y^{b} with the monomial x, respectively.

Lemma 5.16. The upper rays of the cones $\sigma^{\vee}\left(\Gamma_{0}^{\mathrm{yz}}\right), \ldots \sigma^{\vee}\left(\Gamma_{b-1}^{\mathrm{yz}}\right)$ (resp. $\left.\sigma^{\vee}\left(\Gamma_{b}^{\mathrm{yz}}\right), \ldots \sigma^{\vee}\left(\Gamma_{r-1}^{\mathrm{yz}}\right)\right)$ are equal. The one-dimensional cone $\mathbb{R}_{\geq 0} e_{1}$ is a ray of each the cones $\sigma\left(\Gamma_{i}^{\mathrm{yz}}\right)$, for $i=0, \ldots, r-1$.

Proof. The upper ray of the cones $\sigma^{\vee}\left(\Gamma_{0}^{\mathrm{yz}}\right), \ldots \sigma^{\vee}\left(\Gamma_{b-1}^{\mathrm{yz}}\right)$ is spanned by $x z^{-r+b}$ and the upper ray of $\sigma^{\vee}\left(\Gamma_{b}^{\mathrm{yz}}\right), \ldots \sigma^{\vee}\left(\Gamma_{r-1}^{\mathrm{yz}}\right)$ is spanned by $x y^{b}$. The right and left rays of $\sigma^{\vee}\left(\Gamma_{l}^{\mathrm{yZ}}\right)$ are equal to $y^{-l} z^{r-l}, y^{l+1} z^{r-l-1}$, therefore $\mathbb{R}_{+} e_{1}$ is a ray of $\sigma\left(\Gamma_{l}^{\mathrm{yZ}}\right)$.

Corollary 5.17. The sets

$$
\bigcup_{l=0}^{b-1} \sigma\left(\Gamma_{l}^{\mathrm{yz}}\right), \quad \bigcup_{l=b}^{r-1} \sigma\left(\Gamma_{l}^{\mathrm{yz}}\right)
$$

are rational cones in $N \otimes \mathbb{R}$ spanned by e_{1}, e_{2}, ρ_{1} and e_{1}, e_{3}, ρ_{1}, respectively.
Proof. This follows from Remark 5.10 and Lemma 5.16.
6. Main theorem and the Euclidean algorithm. By Theorem 3.10, when Γ varies through all G-sets, the cones $\sigma(\Gamma)$ form a fan supported on the cone spanned by e_{1}, e_{2}, e_{3}. Therefore, it is enough to find G-sets different from the G-set Γ_{l}^{yz} which does not belong to any triangle of transformation. By looking at the supports of triangle transformations, it will turn out that those missing G-sets are exactly the upper transformations of the last G-set Γ_{n} defined in (5.6). With the help of the Euclidean algorithm we will be able to give a formula for a total number of G-set for fixed r and a.

Definition 6.1. Let m be an integer such that Γ_{m+1} is not primitive (i.e. Γ_{m} is the last primitive G-set in the sequence defined in (5.6)).

Theorem 6.2 (Main Theorem). Let r, a be coprime natural numbers and let b be an inverse of a modulo r. Let G be a cyclic group of order r, acting on \mathbb{C}^{3} with weights $1, a, r-a$.

If $\Gamma_{1}, \ldots, \Gamma_{m+1}$ is the sequence from Definition 5.6 (that is, Γ_{n} is a primitive G-set unless $n=m+1)$ and if $\Gamma_{l}^{\mathrm{yz}}=\operatorname{span}\left(y^{r-l-1}, z^{l}\right)$ then every G-set either

- belongs to a triangle of transformation of some Γ_{n} for $n \leq m$, or
- is equal to a G-set Γ_{l}^{yz} for some $l=1, \ldots, n$, or
- is equal to an iterated upper transformation of the G-set Γ_{m+1}.

Proof. The proof uses Nakamura's Theorem 3.10, which asserts that the union of the supports of the cones $\sigma(\Gamma)$ is equal to the positive octant in $N \otimes \mathbb{R}$. Lemma 5.14 and Corollary 5.17 combined imply that if a G-set Γ neither belongs to some triangle of transformation nor is equal to Γ_{l}^{yz} for some l then the cone $\sigma(\Gamma)$ is supported in the cone spanned by e_{2}, e_{3}, ρ_{m+1}. On the other hand, the G-set Γ_{m+1} is equal either to $\operatorname{span}\left(x^{i_{m+1}}, x^{i_{m+1}} y^{j_{m+1}}\right)$ or to $\operatorname{span}\left(x^{i_{m+1}}, x^{i_{, m+1}} z^{k_{m+1}}\right)$, cf. Lemma 5.5. Therefore the j_{m+1} th or k_{m+1} th iterated upper transformation of Γ_{m+1} is equal to $\Gamma^{x}=\operatorname{span}\left(x^{r-1}\right)$. Moreover, the G-sets $T_{U}^{l}\left(\Gamma_{m+1}\right)$ and $T_{U}^{l+1}\left(\Gamma_{m+1}\right)$ satisfy assumptions of the Remark 5.10. This shows that the set

$$
\bigcup_{l=0}^{\max \left\{j_{m+1}, k_{m+1}\right\}} \sigma\left(T_{U}^{l}\left(\Gamma_{m+1}\right)\right)
$$

is a cone generated by e_{2}, e_{3}, ρ_{m+1} which concludes the proof.

Remark. The above theorem can be restated in a form of an algorithm computing the fan of the $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ for fixed a and r (recall that the $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ is normal, cf. Corollary 3.14).

Remark. The two-stage construction of the $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ for abelian subgroups in $\operatorname{SL}(3, \mathbb{C})$ by Craw and Reid in [3] appears to provide a coarse subdivision of the fan of the $\operatorname{Hilb}^{G} \mathbb{C}^{3}$ for the subgroup G in $\operatorname{GL}(3, \mathbb{C})$ of type $\frac{1}{r}(1, a, r-a)$. The coarse subdivision (i.e. with all interior lines of all triangles of transformations removed) is provided by the continued fraction expansions.

Lemma 6.3. Let p_{l}, q_{l} be the data of the Euclidean algorithm for the non-negative integer numbers p_{1}, p_{2} with $\operatorname{GCD}\left(p_{1}, p_{2}\right)=p_{n+1}$, that is,

$$
p_{i}=q_{i} p_{i+1}+p_{i+2}, \quad 0<p_{i+2}<p_{i+1},
$$

where $p_{n+1} \neq 0$ and $p_{n+2}=0$.
Then

$$
\begin{aligned}
& \sum_{l=1}^{n} q_{l} p_{l+1}=p_{1}+p_{2}-p_{n+1} \\
& \sum_{l=1}^{n} q_{l} p_{l+1}^{2}=p_{1} p_{2} .
\end{aligned}
$$

Theorem 6.4. Fix some coprime numbers r and a. Let N denote the number of different G-sets for the action of type $\frac{1}{r}(1, a, r-a)$. Then

$$
N=\frac{1}{2}(3 r+b(r-b)-1)
$$

Proof. Denote $\Gamma_{l}=\operatorname{span}\left(x^{i_{l}}, x^{i_{y, l}} y^{j_{l}}, x^{i_{z, l}} z^{k_{l}}\right)$. The triangle of transformations of Γ_{l} consist of $\binom{\min \left\{j / 1, k_{l}+1\right\}+1}{2}$ cones (see Lemma 5.4). Therefore

$$
N=r+\max \left\{j_{m+1}+1, k_{m+1}+1\right\}+\sum_{l=1}^{m}\binom{\min \left\{j_{l}+1, k_{l}+1\right\}+1}{2}
$$

where the first two terms come from the G-sets Γ_{l}^{yz} and the consecutive upper transformations of Γ_{m+1}.

Suppose that $b<r-b$. Let the p_{l} and q_{l} be the data of the Euclidean algorithm for the coprime numbers $p_{1}=k_{1}+1=r-b, p_{2}=j_{1}+1=b$ as in Lemma 6.3. Set $q_{0}=1$. In this notation, by the formulas from Corollary 5.7,

$$
\begin{gathered}
\\
\\
\text { for } \quad \\
\left.q_{0}+\ldots j_{D}+1, k_{C} \leq 1\right\}=p_{D} \\
q_{0}+\ldots q_{D+1} .
\end{gathered}
$$

Note that $p_{n+1}=1$ and $q_{n}=\max \left\{j_{m+1}+1, k_{m+1}+1\right\}$, thus $N=r+q_{n} p_{n+1}+$ $\frac{1}{2} \sum_{l=1}^{n-1}\left(q_{l} p_{l+1}^{2}+q_{l} p_{l+1}\right)$. This, by simple computation, implies the assertion.

Figure 1. The fan of G - $\operatorname{Hilb} \mathbb{C}^{3}$ scheme for $r=14, a=5$ intersected with hyperplane

$$
e_{2}^{*}+e_{3}^{*}=14
$$

7. Example. By Theorem 6.2, for $a=5, r=14$ every G-set, different from Γ_{i}^{yz}, belongs to a triangle of transformation of the primitive G-sets

$$
\begin{aligned}
& \Gamma_{1}=\operatorname{span}\left(x, y^{2}, z^{10}\right), \\
& \Gamma_{2}=\operatorname{span}\left(x^{2}, x y^{2}, z^{7}\right), \\
& \Gamma_{3}=\operatorname{span}\left(x^{3}, x^{2} y^{2}, z^{4}\right), \\
& \Gamma_{4}=\operatorname{span}\left(x^{4}, x^{3} y^{2}, z\right),
\end{aligned}
$$

or is an upper transformation of

$$
T_{U}\left(\Gamma_{5}\right)=\Gamma^{\mathrm{x}}
$$

There are 37 different G-sets. Figure 1 shows the fan of G - $\operatorname{Hilb} \mathbb{C}^{3}$, where e_{1} the ray generated by e_{1} is drawn at 'infinity'. The ratios along lines denote rays of the corresponding cones $\sigma^{\vee}(\Gamma)$ (up to an inverse in the multiplicative notation). Triangles of transformations are marked with thick line.

Acknowledgement. This research was supported by a grant of Polish MNiSzW (N N201 2653 33).

REFERENCES

1. A. Craw, D. Maclagan and R. R. Thomas, Moduli of McKay quiver representations. I. The coherent component, Proc. Lond. Math. Soc. (3) 95(1) (2007), 179-198.
2. A. Craw, D. Maclagan and R. R. Thomas, Moduli of McKay quiver representations. II. Gröbner basis techniques, J. Algebra 316(2) (2007), 514-535.
3. A. Craw and M. Reid, How to calculate A-Hilb \mathbb{C}^{3}, in Geometry of toric varieties, vol. 6, Séminaires et Congres (Laurent Bonavero, Editor) (Society for Mathematics France, Paris, 2002), pp. 129-154.
4. O. Keedzierski, Cohomology of the G-Hilbert scheme for $\frac{1}{r}(1,1, r-1)$, Serdica Math. J. 30(2-3) (2004), 293-302.
5. R. Kidoh, Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30(1) (2001), 91-103.
6. D. R. Morrison and G. Stevens, Terminal quotient singularities in dimensions three and four, Proc. Amer. Math. Soc. 90(1) (1984), 15-20.
7. I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10(4) (2001), 757-779.
8. M. Sebestean, Smooth toric G-Hilbert schemes via G-graphs, C. R. Math. Acad. Sci. Paris 344(2) (2007), 115-119.
