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ON COHOMOLOGICAL DEFORMATIONS OF
BICROSSED PRODUCT HOPF ALGEBRAS

JEONG HEE HONG AND WOJCIECH SZYMANSKI

We construct and describe two classes of examples of twisted bicrossed product
Hopf algebras corresponding to matched pairs of finite groups.

INTRODUCTION

In this article we describe in detail two methods of producing finite dimensional
Hopf algebras by deforming bicrossed products corresponding to matched pairs of finite
groups. Our motivation to study these constructions has two sources. Firstly, the
classification of finite dimensional Hopf algebras is not yet in sight and their theory
is still in the stage of finding new ways of building the objects in question. Secondly,
there is an interesting interplay between the theory of Hopf * -algebras (or Kac algebras)
and the Jones index theory of subfactors. Namely, subfactors of depth 2 correspond to
crossed products of Kac algebras. Furthermore, it has been shown recently [3, 4] that
a depth 2 inclusion of the type P K C P x H , with K, H finite groups acting outerly on
a factor von Neumann algebra P, corresponds to a cohomologically deformed bicrossed
product Kac algebra related to a matched pair of groups G — KH [6].

We briefly outline such a deformation. If G = KH is a matched pair of groups and
A; is a field then there is a natural way to define a Hopf algebra structure in the crossed
product algebra k(K) x H [6]. The multiplication and comultiplication of the resulting
bicrossed product Hopf algebra KcoH may be deformed by means of suitably matched
2-cocycles /x:HxHxK->-fc* and i / i K x K x H - t i ' . This construction goes back
to Kac [5] and is essentially equivalent to the problem of finding all fc-Hopf algebra
extensions of k(K) by H. Even though this problem was solved in principle by Kac in
terms of cohomology of his double complex associated to the matched pair, concrete
non-trivial examples are difficult to handle due to excessively hard calculations [7, 8].
The crux of the problem lies in solving the key equation (2) of the present article. We
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366 J.H. Hong and W. Szymariski [2]

believe that Proposition 1 singles out the easiest obtainable non-trivial solutions. This
we demonstrate in Examples 3 and 4, which deal with matched pairs S4 = D4Z3 and
PSL(2, F7) = (Z7 » Z 3 )D 4 , respectively. The latter example involves a matched pair
decomposition of a simple group.

Recently much progress has been made in finding deformations of finite dimensional
Hopf algebras by means of pseudococycles [1, 9, 10, 11]. In brief this method works
as follows. If A is a Hopf algebra then one tries to find an invertible fieA®A such
that A with the old multiplication and a new comultiplication AQ(X) = J7A(a;)O~1 is
a Hopf algebra. Technical difficulties in constructing non-trivial pseudococycles Cl are
formidable. In Theorem 7 of the present article we construct a class of pseudococycles
for bicrossed product Hopf algebras built on semi-direct product groups G = K x H
with H Abelian.

One of the most natural invariants used in distinguishing non-isomorphic Hopf alge-
bras is the intrinsic group of group-like elements. An x 7̂  0 is group-like if A(x) = x®x.
Group-like elements are also important in the investigations of towers of subfactors [2].
For both constructions discussed in this paper we describe group-like elements of the
resulting Hopf algebras (see Proposition 2 and Theorem 9). The result of Proposition
2 is not actually new. It was originally proved in [3, Proposition 2.2]. We feel that the
present argument is much cleaner, more illuminating and, in addition, similar to the
one used in the proof of Theorem 9.

In closing let us mention three open problems which naturally arise from the present
article. Firstly, the precise relationship between the two deformations from Proposition
1 and Theorem 7 is not clear to us at the moment. Secondly, we feel that removal
of some simplifying assumptions of Theorem 7 (H Abelian, G a semi-direct product)
should be possible. Thirdly, it would be interesting to find a subfactor realisation of
the construction from Theorem 7. This would perhaps be analogous to the composi-
tion of subfactors relevant to the 2-cocycle deformations of bicrossed products as in
Proposition 1.

2-COCYCLE DEFORMED BICROSSED PRODUCTS

Let G be a finite group and H , K its subgroups such that G = K H , K n H = (e),
that is, each element g of G has a unique decomposition g — th for some t £ K , ft 6 H .
H acts on K (as on a set) by {h-t} — K n H t / 1 " 1 and, likewise, K acts on H by {th} =
H n Kht'1. For any ft € H , t e K we have (ft • t)h = (t • h)t, (t • ft)"1 = (ft • t) • ft"1,
(h-t)'1 = (t-h) • t-1, h e = e, t • e = e, and (t • h) • st'1 = (h • s)(h • i ) " 1 . From

these identities it follows, in particular, that bo th HK = { / i 6 H | t - / i = / i V i e K }

and KH = {t e K | ft • t = ( V/i e H } are subgroups of H and K , respectively.

We now describe what is essentially a special case of the Kac double complex (see
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[5] or [8] for a more recent exposition). Let A; be a field such that both |H| and |K|

are non-zero in k and let k* be the multiplicative group of non-zero elements of k,

viewed as a trivial H and K module. For n ,m = 0 , 1 , . . . we consider CnCm =

i(j> : ( F I H ) x ( F I K ) - • k*}- E a c h CnCm is an Abelian group with pointwise

multiplication. Throughout this article all groups will be written multiplicatively, no
matter if they are Abelian or not. We define coboundary maps d^m : CnCm —>

,... ,hn+i,tu... ,tm) = (j>(h2,... ,ftn+i.ftj"1 • (ti,... ,tm))
n

,ti,... ,tm)

i,... ,hn,ti,... ,tmy~1' ,

d^m(p(hi,... ,hn,ti,... , tm+i) = (^(tj"1 • (^1. • • • . hn), t2, • • • , tm+i)

Y[ Hhl, • • • ,hn,ti,... , ti_l,<»t»+l,*i+2, • • • i tm+l)
t= l

with the actions H x f] K -> f] K a n d K x I I H ~* 1 1 H defined as
m

h • (tU ...,tm)=[(h- t j - 1 )"1 , . . . , (h • (tj . . . ^ - i ) - 1 ) (h • (tX . ..tn)-1)

t • (/H, . . . , hn) = (( t • fcrT1. - . - , ( * • (/»1 . . . ftn-l)"1) (*•(/»!..• ^n)"1)

In particular, the above action of H on K is induced from the action of G on its
homogeneous space G / H = K . Likewise for the action of K on H . We denote orbits
and stabilisers for these actions by On(t), H t , On{h), and Kh, respectively. We shall
usually write d%m = dH and d%m = dK • We have dHdH = 1, dKdK = 1, and
SH^K = QK^H- The complex {C*C m ,d#} is obviously isomorphic to the standard
complex of inhomogeneous cochains of the group H with values in the H-module
C°Cm = <<f> : Y\K -> k*\. We shall denote groups of coboundaries, cocycles, and

*• m '

cohomologies of this complex by B*Cm, Z*Cm, and H*Cm, respectively. Likewise, the

complex {CnC*, da} is isomorphic to the standard complex of inhomogeneous cochains

of the group K with values in the K-module CnC° = icj> : f [H -» fc'j. We denote

groups of coboundaries, cocycles, and cohomologies of this complex by CnB*, CnZ*,
and CnH*, respectively. We shall also use the notation BnZm = BnCm D CnZm,
ZnZm = ZnCm n CnZm, and so on.
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Let fc(K) denote the algebra of A;-valued functions on K with pointwise multi-
plication. Let 7 : H -¥ Aut(A;(K)) be the action induced by the action of H on K
and let fj. € C2Cl be a normalised 2-cocycle for 7. That is, /z(/i, f,g~x • t)fi(g, hf,t) =
fj.(g,h,t)fi(gh, f,t) and n(g,h,t) = 1 whenever g = e or h = e. We denote by H2

the subgroup of C2Cl consisting of all such functions. We consider the twisted crossed
product algebra k(K) xJifl H . This algebra has a basis {ptVh \ t € K, h € H} such
that

PtVhPsVg = Styh.an(h,g,t)ptvhg

with S the Kronecker symbol. Similarly, let v € CXC2 be a normalised 2-cocycle for
the action a : K —> Aut(&(H)), induced by the action of K on H. Again this means
that u[s~1 • g,t,r}v(g, s,tr) = v(g, s,t)i/(g,st,r) and i/(h, s,t) = 1 whenever s = e or
t = e. We denote by H% the subgroup of CXC2 consisting of all such functions. The
twisted crossed product algebra fc(H) xOtV K has a basis {qhZt I h 6 H, t € K} such
that

= 5gtS.hv(g,s,t)qgzat.

Algebras fc(K) x7 i / i H and fc(H) ~Aa<u K are dual to one another through the bilinear
form

(PtVh,<lgZs) - &t,h-s&g,s-h

This duality determines a coassociative comultiplication

A : fc(K) x7iM H -> (k(K) xi7,^ H) ® (fc(K) xi7iAl H)

such that
<A(a),61®62) - (a,6i62>

for any a G &(K) x-y,/i H , 61,62 € fc(H) xffil, K . On the basis this yields

A preserves the multiplication if and only if

^ • f t , « t - 1 , t ) ^ ( ( « - g - 1 ) ~ 1 , ( g - 1 - s ) ( g

i, g, h • s)

n{t • h, (t • g-1) 1,(h-s)(h-t) 1)fi(h,g,h-t)

for any / i ,5 € H , s,t € K. If (1) holds then we say tha t the pair (fj.,v) is matched.

This implies tha t fi(h,g,t) = v(h,t,s) = 1 whenever h — e, g = e, s = e , o r £ = e.
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If (fj,, v) are matched then we define a counit e : fc(K) x7i / J H —¥ k and an antipode
S : Jfc(K) a7lM H -> jfc(K) x 7 J i H by

S(Ptvh) = [/x((t • ft-1)"1,i • A " 1 , t " 1 ) ! / ^ , (JT1 • t)~\ h~l • tj\ ' ' p

to obtain a Hopf algebra structure on k(K) x7 i / J H . We shall denote this Hopf algebra
by K t x i ^ H . Clearly H >3V:li K = (K MMIV H)° , the dual Hopf algebra.

In order to describe some classes of solutions to (1) we now define two involutive

maps: C2Cl -» C2Cl, <j> .-> $(h,g,t) = ^ ( f t . f f . r 1 ) " 1 , and CXC2 -> C1*?2, ^ •-)•

^(ft, i, s) = tp(h~l,t, s). Note that <̂> € J?7 if and only if <j> is a normalised element of

Z2CX, and ip e H% if and only if ^ is a normalised element of ClZ2. We define an

automorphism $ : C 1 ^ 2 ->• CXC2 by

~\ (r1, t, s) - ^((ts)-1 • h

It is easy to verify that $(ClZ2) = CXZ2, <$>(ClB2) - ClB2, $(ZXC2) = ZlC2, and
= BlC2. We can now rewrite identity (1) as

(2) dH$v = dKJL.

From (2) one immediately gets the following.

PROPOSITION 1 . If G = K H is a matched pair of finite groups, \i e H2,

v € H2, Jl € Z2Zy, and v € ZXZ2, then the cocycles (/x, v) are matched.

In order to distinguish non-isomorphic Hopf algebras one may often calculate their
intrinsic groups of group-like elements. For twisted bicrossed products this can be done
with the help of the following Proposition 2. If h € H and t-h = h for any t € K then
h acts on K by automorphisms and u{h, •, •) is an inhomogeneous 2-cocycle of K with
values in the trivial K-module k*. We denote

H o = {h e H | t • h = h, Vt 6 K and v{h, •, •) is a coboundry},

Ko = {t S K | h • t = t, V/i € H and fi(-, -,t) is a coboundry}.

Both H o and K o are subgroups of H and K, respectively. We denote G(K txi^^ H) —
{a € K cx)^,, H | A(a) = a®a, a ^ 0} , the intrinsic group of group-like elements. The
following proposition was originally proved in [3, Proposition 2.2]. The proof below
is different and we believe much more transparent. It is also similar to the proof of
Theorem 9, below.
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PROPOSITION 2 . There exist exact sequences

1 -> Horn (K, k") -> G(K IXIM,,, H) -»• H o -> 1,

1 -> Horn (H, F ) -> G(H tx^>M K) -> K o -> 1.

P R O O F : Let 0 ^ a = £) At.hPti'h 6 ( K
 ^M,* H ) f°r s o m e ^t,h £ &• Then A (a) =

a <8> a if and only if

(3) Xs,h J2 Xts-\9vg = Kh"((t • h-1)-1, (h-1 • t)(h~l • s)-\h-1 •

for any t, s S K, h € H . Since {vg} are linearly independent this equality can only

be satisfied if there exists exactly one ft S H such that A ^ ^ 0. For this h we have

\t
d= \ t h ^ 0 for any t e K . Hence, every element a € G(K txiMî  H) is of the form

a = fixed element of H , Xt^O. We write a = ax,/»• Now (3) yields

(4) u(h, x, y) = Xh.xXhyX^x]{h.y)

for any x,y € K, and s • h = ft for any s G K. Thus h e H o . Since a
ax" hg f° r a n v ft> 5 € H-o the map a^,/, •->• ft gives a surjective homomorphism n :
G(K ixi^^ H) -¥ H o . If ft = e then v(h,x,y) = 1 by (1), and (4) implies that
A e Hom(K,fc*). Hence ker(n) = Horn (K, k*), which gives the first exact sequence.
The second one is constructed analogously. D

We now describe two examples taking k = C, the complex numbers. We de-
note by S n , A n , Z n , and D n the symmetric, alternating, cyclic, and dihedral group,
respectively.

EXAMPLE 3. There is a decomposition S4 = D 4 Z 3 , K = D 4 = ((1 2 3 4), (1 4)(2 3))
and H = Z3 = ((1 2 3)). Since K ( 1 2 3) = <(1 3), (2 4)) there is a normalised w 6
Z 2 ( K ( i 2 3),C*) (bicharacter) such that [w] has order 2 in # 2 ( K ( 1 2 3),C*). Then
there is a ?o € C^Z2 such that E/0((l 2 3),t, s) = Lj(t,s) for t,s € K ( : 2 3) and
i?o(ft, t, s) = 1 if ft = e, t = e, or s = e. Since K H = ((1 3)) the restriction of
u0 to KH is a coboundary and there exists a (f> e C1G1 such that ^(ft, e) = </>(e, t) = 1
and V = ?O(9K-0) is 1 when restricted to KH. If x € K x K and Kx 7̂  (e) then
x S K H x KH. Consequently, for any x € K x K and ft € H our T> is constant on
(Hz ft, x ) . This implies that v € B 1 C 2 and, hence, ? is in ZXZ2 and [?] is non-trivial in
CXE2. Since Ho = 1 and Ko = KH, by Proposition 2 we have G(K txî  H) = Z2 x Z2

and G((K >av H)°) is an extension of Z3 by Z 2 . Since G((K ixî  H)°) is generated
2

by z(1 3 ) and £ ^ g ( 1 2 3)», ^3 = 1, it follows that in fact G((K txi,, H)°) S D 3 .
t=0
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EXAMPLE 4. We consider PSL(2 ,F 7 ) = K H , where

H =

/
(t =
\
i

\ 9 =

\

1

0
2

1

1

1
1

1

We are looking for a normalised Jl € Z2Z1. However, since the orders of H and K are
relatively prime it sufficies to find Jl € Z2Bl. The action of K on H \ {e} is transitive
and if b, f are distinct elements of H \ {e} then K& n K/ = (e). Since K(6c) =
K6 n K(,c, K((,c) ^ (e) implies b — e, c = e, or c = b~l. Thus, if Ji(b,b~1,K) — 1
then Jl € C2Bl. However, up to a factor in B2Cl any element of Z2CX satisfies this
requirement. Thus, any Jl € Z2Cl such that jl(b,c,r) = 1 whenever b = e, c = e,
r = e, or c = 6"1 yields a deformation of the bicrossed product in question. The action
of H on K\{e} has 5 orbits: OH(s), OH(t), OH(t2), OH(st3), and OH(st5), with
point stabilisers H s = (e), H t = (gh), Ht2 = (g2h), Hgt3 = (g2,h), and Ha t 5 =
(<72iff^)- This implies that matched cocycles are generated by suitably normalised Jli
and /X2 such that the restriction of Ji\ to Hst3 is non-trivial and its restriction to Hsts is
trivial in H2(Z2 x Z2, C*), while the restrictions of /x2 to both Hgt3 and Hs (s are non-
trivial. One can verify that JI1JI2 yields a Hopf algebra isomorphic to the one resulting
from Jli. Thus, in the present case there are two non-isomorphic deformations. Since
Ko = H o = 1, Proposition 2 gives G(K o«M H) ^ Z3 and G((K MM H)°) ^ Z2 x Z2

for any fi.

PSEUDOCOCYCLE DEFORMED BICROSSED PRODUCTS

The comultiplication in K 1x1 H can be also twisted with the help of a pseudo-
cocycle. The following Definition 5 and Proposition 6 are borrowed from [1]. For
convenience we denote A = K M H .

DEFINITION 5: An invertible element Q 6 A®A is a pseudococycle if the following
conditions hold:

commutes with (A ® id) A (A),
2. (£:<g>id)(ft), ( id®e) (n) , m(5®id)(f i ) , and m{id®S)(n) are in the

centre of A.

PROPOSITION 6 . IfQ is a pseudococycle then A with a new comultiplication
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(and old multiplication, counit, and antipode) is a Hopf algebra.

The Hopf algebra A with the new comultiplication as in Proposition 6 is denoted by
A n . In general finding all possible pseudococycles is an exceedingly difficult problem.
In order to be able to construct concrete new examples of deformed bicrossed products
we consider below a special class of pseudococycles of the form

(5) ft= ^2 u(t,s)ptva{3)®psvm
t,a€K

with a,P : K -» H , w : K x K ->• k*. If a(t) = f3(t) = e for any t € K then the
resulting Hopf algebra A^ is isomorphic to K c<v H for a suitable cocycle v. We
restrict our considerations to the case when both a and /? are H-invariant, that is,

(6) a(h • t) = a(t) and /3(/i • t) = p{t)

for any h € H and t S K . Condition (6) implies that an Q as in (5) is invertible with

fi"1 = ^2 w-1(a{s)-t,P{t)-s)ptva-i(s)®psvp-i{t).
t,sgK

We only deal with a more managable case when the group G is a semi-direct product
K x H and H is Abelian. We further require that K acts on itself through (t, s) >-» a(t) -s
and (t, s) i-» (3(t) • s. For these two maps to be true actions we must have

(7a) a(t)a{s)a-\ts)-r = r,

(7b) 1

for any r, s, t € K. If a and (3 are as above then we say that they are matched if

(8) a(t)P(t) -t = t

for any t 6 K .

Assuming tha t a and (3 satisfy (6) and (7) we now define a cochain complex

{F*,d}, with d = d^</3, as follows. We set Fn = \u> : ]JK -+ k*\ and consider each

Fn a left H-module with the action h • w(ii, . . . , < „ ) = ui(h • * i , . . . ,h-tn)- We define

the coboundary maps by

dnw{h, . . . ,tn+i) ={a(tn+l) • w)(tl, • • • , tn) (~1 ) n

t = l
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We denote the corresponding groups of cocycles, coboundaries, and cohomologies by
Z*, B*, and H*, respectively. We also define a bijection F2 -» F2, w >->• w, by

w(t,s)=w(a(s)-t,P(t)-3).

It turns out (see Theorem 7 below) that for ft as in (5) to be a pseudococycle it is
necessary that w is a 2-cocycle, that is, w € Z2. For u> € F2 we say that w is H-
normalised if the following three functions (of t e K) : uj(e,t), u/(t,e), and u)(t,t~l),
are H-invariant.

THEOREM 7 . Let G = K x H be a finite group with H Abelian. Let a, (3 :
K - > H be such that (6), (7), and (8) hold, and let w e F 2 be H-normalised and such
that Z) € Z2. Then the corresponding ft as in (5) is a pseudococycle in the sense of
Definition 5.

PROOF: Suppose that a and 0 satisfy (6) and the corresponding ft is as in (5).
Let U = (id<2> A) (ft"1) ( / ® ft"1) (ft ® /)(A ® id)(ft). To simplify the notation for any
x,y,z &K. we denote D = D(x, y, z) = (a~l(yz~l)a(y) • x) (a(z) • yz~x). We have

where

ri(x, y, z) = u(D, Piyz-^Pix) • z)u>{a{y) • x, a(z)p(x) • yz'1)

w-l{a(z)P{x) • yz-\P{yz-1)P{x) • z jw'^ad,) • x,0{x) • y).

If t € K then U commutes with (A <g> id)A(pt) = Yl Pts-1 ®P«r-* ®Pr if and only
r,s€K

if

zy-1(a-1(z)a-1(yz-l)a(y)-x-l)xy

= p-l{(a-l(z)a-1(yz-1)a(y) • x)yz-l)p(yz-1)0(x) • z

for any x,y,z GK.. Condition (7) implies that the above identity holds.

If h € H then U commutes with (A ® id) A(vh) = Vh ® Vh <£> Vh if and only if the
function rj is /i-invariant, that is, h • t] = t). This is the case if rj(x, y, z) — 1 for any
x,y,z € K . If a and (3 satisfy (7) then TJ = 1 if and only if du> — 1. Thus, we have
shown that the ft satisfies condition 1 of Definition 5. On the other hand if a and 0
are matched and w is H-normalised then it easily follows that condition 2 of Definition
5 holds true as well. U
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Under the hypothesis of Theorem 7 we have

^ s ) ^ - 1 ^ - 1 •W,h-1-s)pwvh®pavh,

with W = {a{s) • t)((3-l(t) • s-1), for any t € K, h 6 H.

PROPOSITION 8 . Let G = K » H be a finite group with H Abelian. Let a,/3 :
K -¥ H be such that (6), (7), and (8) hold, and let wi,w2 6 F2 be H-normalised and
such that uJ{, aJJ e Z2. Let fij, i = 1,2, be the pseudococycles as in (5) corresponding
to u>i and u>2, respectively. If \UJ{] = [L3£\ in H2 then the Hopf algebras Afi l and An2

are isomorphic.

PROOF: Let A O l = span{ptvh | h 6 H, t 6 K} and Afi2 = span{PtV/, | h e
H, t G K } . Let 0 : Afi l ->• Afi2 be the map defined by (p(ptvh) = A(t)A-1(/i~1 -^PtV},.
Then <j> is an algebra isomorphism such that (c/>® </>)An1 = An20 and, thus, ^ is a
Hopf algebra isomorphism. D

As before in order to distinguish non-isomorphic Hopf algebras An arising from
the construction in Theorem 7 we determine below the intrinsic group of group-like
elements G(AQ) = {x e An \ {0} | An(x) = x ® x } . To this end with the hypothesis
of Theorem 7 in place we define

Ho = { / i € H | [h-u] = [u\ inH2},

a subgroup of H. Somewhat analogously to Proposition 2 we have the following.

THEOREM 9. Under the hypothesis of Theorem 7 there exists a short exact se-

quence

1 -> Z1 -> G(An) -> H o -> 1.

P R O O F : Let A(i , /) € f c , i € K , / e H , a n d O ^ z = Y,HtJ)PtVf be such that

QA(x) = (x<8>x)Jl. By expanding Cl and a; and simplifying we see that this equality
holds if and only if

(9) Hs,f

for any t, s 6 K, / € H . For (9) to be satisfied it is necessary that there is a unique
h € H such that X(t,g) = 0 if g ^ h. Thus, writing \{t) = \{t, h), we have x =
£3 A(t)pt«fc and (9) is equivalent to

1 J u>(t,s)
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for any t,s € K. Substituting in (10) x for a'^is) • t, y for (5~l{t) • s, and using (6)

we see that (10) is equivalent to

(11) h-u = {dX)u.

Thus h € Ho and TT : x i-+ h gives a surjective homomorphism n : G(AQ) -¥ H o . If

TT(X) = e then dX = 1 and hence ker ?r = Z 1 . D
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