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Probing dissipation in spreading drops with
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In this paper, we study the spreading of droplets of density-matched granular suspensions
on the surface of a solid. Bidispersity of the particle size distribution enriches the
conclusions drawn from monodisperse experiments by highlighting key elements of the
wetting dynamics. In all cases, the relation between the dynamic contact angle and the
velocity of the contact line is similar to that for a simple fluid, despite the complexity
introduced by the presence of particles. We extract from this relation an apparent wetting
viscosity of the suspensions that differs from that measured in the bulk. Dimensional
analysis supported by experimental measurements yields an estimate of the size of the
region inside the droplet where the value of the dynamic contact angle depends on a
balance of viscous dissipation and capillary stresses. How particle size compares with
this viscous cut-off length seems crucial in determining the value of the apparent wetting
viscosity. With bimodal blends, the particle size ratio can be used to show the effects of
the local structure and volume fraction at the contact line, both impacting the value of the
corresponding wetting viscosity.
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1. Introduction

A liquid wetting the surface of a solid is a common observation in daily experiences.
A classical example is that of raindrops hitting a glass window and falling along its
surface, leaving trails of water. The physics underlying this supposedly simple situation is
in fact quite rich as the properties of all the involved media matter, including those of the
surrounding atmosphere. Moreover, length scales from the molecular up to the millimetre
range must be considered, leading to a high level of theoretical complexity. A drop of
simple fluid spreading onto a solid substrate is subjected to three competing physical
mechanisms, namely gravity, capillarity and viscosity (see e.g. Bonn et al. 2009). The
shape and dynamics of the droplet depend on the length scale at which they are analysed
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with respect to the capillary length �c = (γ /ρg)1/2, with γ the surface tension of the
solid, ρ its density, and g the acceleration due to gravity. If we consider droplets with
radius R � �c, then the balance between gravity and capillarity controls the shape and
dynamics at length scales comparable to R. At microscopic scales near the triple-phase
contact line, the balance involves instead viscosity and capillarity. As the height diminishes
at the approach of the contact line, viscous stresses diverge when using the classical no-slip
boundary condition on the substrate. A variety of models have been proposed to regularise
this non-integrable singularity. A common way to circumvent this divergence issue has
been to replace the no-slip boundary condition by a Navier slip condition, i.e. to introduce
a microscopic cut-off length scale λ in the continuum modelling (Huh & Scriven 1971;
Dussan V. & Davis 1974). For the intermediate scales, gravity and viscosity as well as
capillarity participate into the dynamics of the drop.

The above picture becomes more involved when the spreading fluid is complex, such as
a polymer solution (Lee & Müller-Plathe 2022), a polymeric melt (Seemann et al. 2005) or
a viscoplastic material (Spaid & Homsy 1996). Such fluids can have intrinsic time scales
(e.g. relaxation, agitation) or characteristic length scales (e.g. particle size, persistence
length) that need to be accounted for in the spreading dynamics. The present work focuses
on the spreading of dense granular suspensions of large spherical particles that do not
experience Brownian motion. These particulate systems are characterised by an additional
length scale, the particle size, that must be addressed in the multiscale description of an
advancing contact line. The interplay of the vanishing height of the flow and the finite
size of the particles should control the distance at which the particles can approach the
contact line. This view has been confirmed in our previous study of the motion of the
triple-phase contact line surrounding a droplet of monomodal granular suspension (Zhao
et al. 2020). Interestingly, the relation between the dynamic contact angle – i.e. the angle
between the liquid–gas interface and the solid–liquid interface measured in the droplet –
and the speed of the contact line happens to be similar to that found for a simple liquid,
known as the Cox–Voinov law (Voinov 1976; Cox 1986). In dimensionless form, this speed
was reported in terms of the capillary number Ca = ηU/γ , measuring the relative effect
of viscous to surface tension forces, where η is the viscosity of the liquid, and U is the
velocity of the contact line. We found that the viscosity involved in this capillary number
differed from the widely studied bulk viscosity of suspensions as it depended on particle
diameter d in addition to particle volume fraction φ. This observation resulted from the
aforementioned ability of the particles to approach the contact line closely enough to affect
dissipation. In particular, we showed that the apparent viscosity reduced to the viscosity
of the suspending fluid when the particle size became larger than approximately 100 μm.
This study suggests that a granular suspension may be an interesting system for the study
of wetting as the discrete nature of this complex fluid can be used to probe the size of the
domain in which the Cox–Voinov relation is a valid description of the relation between the
dynamic contact angle and the velocity of the contact line.

Another feature specific to the spreading of a granular suspension is that there is a
self-organisation of the advancing front rows of particles near the rim of the drop (Zhao
et al. 2020). To give a full picture, the close vicinity of the contact line is a region devoid
of particles. Behind this particle-depleted region, a few layers of crystallised beads are
observed. As the height increases further, the particles switch from a crystal-like to a
disordered structure. This ordering is seen particularly for dense suspensions, e.g. for
packing fractions φ of 40 % or above. Confinement by the free interface seems to be
responsible for this observed organisation. However, the role of this ordered particle phase
in energy dissipation and its effects on the dynamics of spreading are still open problems
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Spreading drops of granular suspensions

that require scrutiny. A simple model that matches the shape of the droplet in the depleted
region to that of a particle-rich region with no constraint on the ordering of particles fails
to describe the relation between contact angle and velocity (Zhao et al. 2020).

Particles near a receding contact line have been studied experimentally when a plate
is withdrawn from a bath of non-Brownian suspension. In this configuration, named
dip-coating, the key result is that the plate can be coated by particles when the entrained
film is thicker than the particle diameter. More precisely, increasing the withdrawal
speed leads to different regimes of coating, going from a film devoid of particles to a
heterogeneous monolayer of particles, and finally to a thick film of suspension entrained
by the plate (Gans et al. 2019; Palma & Lhuissier 2019). When the suspension contains
two sizes of particles, the small particles are first entrained on the plate to form a
heterogeneous monolayer, and the large particles begin to be entrained only with a further
increase in withdrawal speed (Jeong et al. 2022). In the heterogeneous regime, confined
particles gather in clusters without clear ordering, in contrast to the highly structured phase
observed near the advancing contact line during the spreading of suspension drops on a
solid substrate (Zhao et al. 2020).

In this work, we examine the advancing contact line of a dense granular suspension, with
the aim of clarifying the origin of the difference between bulk viscosity and its counterpart
extracted from wetting experiments. In § 2, we discuss the range of interface heights for
which we should expect the viscous–capillary balance at play in the Cox–Voinov relation
to be valid. The materials and methods used in the experiments are described in § 3. In
§ 4, we test experimentally the predictions of § 2 with simple fluids. Then we resort to the
discrete nature of the particles in a suspension to probe dissipation in the vicinity of the
contact line. These experiments are another test of the outcomes of § 2. Results obtained
for monodisperse and bidisperse suspensions consisting of different particle combinations
are presented in § 5. While bidisperse suspensions seem to be a more complicated system,
they offer the possibility to use two different sizes for scrutinising dissipation. We discuss
our findings and provide concluding remarks in § 6.

2. Elements of the wetting theory

2.1. General framework
The classical situation of a fluid droplet of radius R and central height h0 that spreads onto
the surface of a rigid substrate is depicted in figure 1. The fluid has dynamic viscosity η,
density ρ, and surface tension γ . In most situations, inertia is negligible, i.e. the Reynolds
number is small, Re = ρUh0/η � 1, where U is the characteristic spreading velocity.
Since h0 � R, the lubrication approximation can be applied. As the flow is axisymmetric,
we use cylindrical coordinates with the z-axis being the axis of symmetry. Under these
assumptions, the height of the air–liquid interface, h(r), is a solution of the free-surface
thin-film equation

3η

γ
∂th + 1

r
∂r

[
h2(h + 3λ)r ∂r

(
∂rrh + 1

r
∂rh − ρg

γ
h
)]

= 0, (2.1)

where g is the gravitational acceleration (Hocking 1981, 1983; Savva & Kalliadasis 2012).
A particular feature of (2.1) is that a characteristic length scale, λ, has been introduced
to relax the no-slip boundary condition at the line of contact between the droplet, the
substrate and the surrounding gas (Huh & Scriven 1971; Dussan V. & Davis 1974). In the
context of the present work, we grant λ its usual role of a slip length, and we take it to be
of the order of the size of a few nanometres, comparable to that of a molecule of the liquid.
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Figure 1. Sketch of a fluid droplet spreading on a rigid substrate.

The resolution of (2.1) requires appropriate boundary conditions to be specified as

h(r → R) = 0, ∂rh(r → R) = θm and
∫ R

r=0
h(r) 2πr dr = V0, (2.2a–c)

where V0 is the volume of the droplet, and θm is the microscopic contact angle.
Rather than providing detailed derivations of the solutions of (2.1) with these boundary

conditions (2.2a–c) (see e.g. Hocking 1983; Cox 1986; Savva & Kalliadasis 2009; Sibley,
Nold & Kalliadasis 2015), we give some insight into the different length scales involved
in the problem described by (2.1) with (2.2a–c). Besides the slip length λ, we also identify
the capillary length �c = (γ /ρg)1/2, for which gravitational forces balance capillary
forces, and the radius of a sphere having the same volume V0 as that of the droplet,
R0 = (3V0/4π)1/3. In experiments, it usually happens that �c � λ and R0 � λ by several
orders of magnitude. There is thus a region in the close vicinity of the contact line
in which the force balance involves only viscous and capillary forces, with slip being
dominant, and gravity negligible. This viscous–capillary region will be introduced in § 2.2.
On the opposite range, the large scales are governed by the balance between gravity and
capillarity. This capillary–gravity region will be presented in § 2.3. In between, the three
contributions of the competing viscous, capillary and gravity forces must be retained as
developed in § 2.4.

2.2. Viscous–capillary region
This region corresponds to the very close vicinity of the contact line, i.e. at length scales
much smaller than �c. As mentioned earlier, in § 2.1, the introduction of a Navier slip is an
important ingredient as viscous dissipation would diverge as h → 0 otherwise. Resolution
of the reduced equation (2.1) where the gravity term has been dropped, with the additional
assumption that spreading is quasi-steady, leads to a relation often referred to as the
Cox–Voinov law (Voinov 1976; Cox 1986; Snoeijer 2006; Bonn et al. 2009) between the
velocity U of the contact line and the dynamic contact angle θapp(x), measured at distance
x = R − r from the moving rim of the droplet:

θ3
app(x) = θ3

m + 9 Ca log
( x
λ

)
, (2.3)

where Ca = ηU/γ is the capillary number. In the case of viscous liquids, the microscopic
contact angle θm is close to the static value (Bonn et al. 2009). For (nearly) perfectly
wetting liquids, it is found that θm � 1 is therefore negligible in (2.3). Equation (2.3)
indicates that θapp(x) is an increasing function of the distance x to the contact line at a
given capillary number Ca. The interface in this viscous–capillary region must then have
a positive curvature when measured in the frame defined in figure 1.
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Spreading drops of granular suspensions

2.3. Capillary–gravity region
The opposite limit corresponds to the region where r → 0, i.e. x ∼ R ∼ R0. Moreover, we
are interested in the limit where R0 � �c. At these scales, viscous forces are insignificant
and the time-derivative term in (2.1) can be dropped. In addition, in this macroscopic
region, λ can be neglected in front of h, which is of the order of h0. Hence we are left with
a capillary–gravity balance, and (2.1) reduces to

∂r

[
h3r ∂r

(
∂rrh + 1

r
∂rh − ρg

γ
h
)]

= 0. (2.4)

This equation can be integrated once. Using the boundary condition h(r = R) = 0, the
integration constant is seen to be zero. At that stage of the calculation, it is convenient
to normalise the r and h scales as r = R0r̃ and h = h0h̃, where R0 and h0 are the radius
of the spherical drop and the characteristic interface height in this region, respectively.
Performing another integration leads to

∂r̃r̃ h̃ + 1
r̃

∂r̃ h̃ − Bo h̃ = C, (2.5)

where C is a constant, and Bo = ρgR2
0/γ = (R0/�c)

2 is the Bond number of the droplet.
The exact solution of (2.5) with the boundary conditions (2.2a–c) is

h̃(r̃) ∝
I0

(
Bo1/2 R

R0

)
− I0

(
Bo1/2 r̃

)

I2

(
Bo1/2 R

R0

) , (2.6)

where In(x) is the nth modified Bessel function of the first kind (Hocking 1983). With
dimensional coordinates, the solution (2.6) reads

h(r) = V0

πR2

I0

(
R
�c

)
− I0

(
r
�c

)

I2

(
R
�c

) . (2.7)

Droplets are spherical caps when Bo � 1, whereas their top surface flattens and they look
like puddles in the limit Bo � 1. In the frame of reference defined in figure 1, the shape
of the interface in the macroscopic region has a negative curvature.

2.4. Viscous–capillary–gravity region
We finally turn to the examination of the region for which all the contributions
of the viscous, capillary and gravity forces must be kept in (2.1). In this
viscous–capillary–gravity region, the length scale is comparable to neither λ nor R0,
and the sole remaining length scale is the capillary length. Since x, h � λ, the reduced
equation reads

3 Ca ∂rh + 1
r

∂rr

[
h3x ∂r

(
∂rrh + 1

r
∂rh − h

�2
c

)]
= 0, (2.8)

where we consider quasi-static spreading and use ∂th = U ∂rh. This assumption means that
at any time, the velocity of the contact line sets the drop shape with no transient involved.
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This constraint is enforced by the hypothesis that Re � 1 (Gratton et al. 1996). The
capillary number Ca = ηU/γ then appears as a natural way to build a dimensionless
velocity.

As mentioned above, the capillary length �c is the only length available. It is the scale
for the variation along the horizontal direction, r = �cr̂. However, no obvious length scale
emerges in the vertical direction. We thus define h = h	ĥ, where h	 is the (still unknown)
relevant scale for the drop height. Using these renormalisations in (2.8) yields

3 Ca ∂r̂ ĥ +
(

h	

�c

)3 1
r̂

∂r̂

[
ĥ3r̂ ∂r̂

(
∂r̂r̂ ĥ + 1

r̂
∂r̂ ĥ − ĥ

)]
= 0. (2.9)

For the two terms to be of the same order in (2.9), one must take the height scale to be

h	 ≡ �c Ca1/3. (2.10)

This scale represents the typical height separating the viscous–capillary region governed
by the Cox–Voinov law from the viscous–capillary–gravity region where gravity comes
into play in the force balance. In other words, this transition scale corresponds to the upper
bound of the region of the drop where the Cox–Voinov relation (2.3) is still valid. Another
interesting interpretation of h	 is that it may delineate the change in surface curvature and
thus can be understood as the inflection point of the drop interface.

Some orders of magnitude can be provided for the present experimental conditions. The
range of h	 is 20 ≤ h	 ≤ 800 μm for typically �c 	 2 mm and 10−6 ≤ Ca ≤ 10−2. As a
consequence, liquids with sub-millimetre characteristic length scales, such as suspensions
of non-Brownian particles, may show non-trivial θapp–Ca relations. Indeed, adding
density-matched particles should not modify the drop behaviour in the gravity-driven
region, while it should enhance dissipation provided that the particles can access the region
where viscosity matters, namely the dissipation region for h � h	.

3. Experimental methods

3.1. Particles and fluid
The suspending fluid is a Newtonian PEG copolymer, poly(ethylene glycol-ran-propylene
glycol) monobutyl ether (average Mn 	 3900, Sigma-Aldrich reference 438189), with a
density close to that of polystyrene, ρ = 1056 kg m−3, at temperature 25 ◦C. Its dynamic
viscosity ηf = 2.4 ± 0.1 Pa s is constant over a large range of shear rate (0.01–10 s−1) at
25 ◦C. Particles are spherical polystyrene beads (Dynoseeds TS, Microbeads, Norway)
that are sieved when necessary to remove small dust particles or to narrow the size
distribution below a tenth of particle diameter. The mean particle diameters d used in
the experiment are 10, 20, 40, 80, 140 and 250 μm. Density-matching between the liquid
and the particles is sufficient to prevent buoyancy effects over hours at temperature 25 ◦C
in the air-conditioned room. To prepare the suspension mixture, the suspending fluid
is weighted and poured into a test tube. A desired mass of particles is then added to
reach the target volume fraction φ. Good mixing while avoiding entrapping of air is
achieved by hand mixing followed by slow mixing on a rolling device overnight. In
the following experiments, the solid volume fraction is φ = 0.4 as we aim to study the
strongest effects expected at large volume fractions (Zhao et al. 2020). The particle surface
is completely wet by the suspending fluid, i.e. particles remain suspended in the fluids and
do not aggregate. We measured the surface tension of the suspension using pendant drop
experiments. We find that the suspension surface tension is equal to the surface tension of
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Spreading drops of granular suspensions

the suspending fluid, γ = γf 	 35 mN m−1, a similar result to that reported in Couturier
et al. (2011).

3.2. Bulk suspension rheology
A thorough discussion of our results requires a comparison of the bulk viscosity of
the granular suspensions with their apparent viscosity extracted from drop spreading
experiments; see § 5. Rheological measurements have been performed using an ARES
G2 rheometer (TA Instruments) with a 25 mm-wide plate–plate geometry for solid blends
of moderate-size particles with diameters 10, 20, 40 and 80 μm. The thickness of the
gap between the plates is typically 1.5 mm, i.e. at least 20 particle diameters, to prevent
confinement effects (Peyla & Verdier 2011). As wall-slip effects depend on the gap
thickness, the fact that no viscosity variation is measured while changing the gap thickness
from 1 to 2 mm indicates that sliding is negligible for these small particles (Yoshimura &
Prud’homme 1988; Jana, Kapoor & Acrivos 1995).

Confinement and slip become important when performing rheological measurements
with suspensions of particles with diameters of 140 or 250 μm. Slip is avoided
using a 25 mm-wide plate–plate cross-hatched geometry with typical roughness 1 mm.
Confinement is a trickier issue since increasing the gap thickness leads to a larger meniscus
and thus to a significant error in viscosity measurements (Cardinaels, Reddy & Clasen
2019). We circumvent this issue by using a wide reservoir (a 5 cm-wide cup) mounted
on the lower plate and filled with a 5 mm-thick layer of suspension (�20dp) on which
the upper tool is lowered to touch the free interface (Château et al. 2018; Château &
Lhuissier 2019). The additional torque exerted by the exceeding fluid in the reservoir can
be computed analytically if the reservoir width and the suspension thickness are known
(Vrentas, Venerus & Vrentas 1991). We have implemented this correction numerically,
and we have been able to reproduce both published data and experimental results with and
without the reservoir for Newtonian fluids and dense suspensions of 80 μm particles.

The relative bulk viscosity of monomodal granular suspensions, ηs, is defined as the
viscosity of the whole suspension relative to that of the viscosity of the suspending fluid. It
is independent of the particle size and shear rate, and is solely an increasing function of the
particle volume fraction φ that diverges at a maximum value φc for which the suspension
ceases to flow as shown in figure 2(a). Note that the value φc 	 0.53 inferred from curve
fitting is provided for the plot, but a more exhaustive study of the viscosity in the dense
regime would be required to confirm this value. The value of φc depends on the frictional
contacts between particles (see e.g. Tapia, Pouliquen & Guazzelli 2019). It is important to
note for the following discussion that φc also depends on the particle-size distribution for
polydisperse suspensions.

For bimodal suspensions, the viscosity depends not only on φ but also on the particle
sizes d1 and d2 (d1 < d2) of the two species, and on the fraction of small particles in
the solid phase, ζsmall; see figure 2(b). Experimental studies of dense bimodal systems in
the literature indicate that their viscosity is also controlled by the value of the maximum
packing fraction φc, which is found to be higher than that of monomodal suspensions
(Chong, Christiansen & Baer 1971; Chang & Powell 1994). This increase in φc results from
the ability of small particles to fill the holes between the large ones (Macosko 1994). For
bimodal suspensions with a given size ratio d2/d1, the relative bulk viscosity ηs is equal
to that obtained in the sole presence of the large particles, when ζsmall = 0 %. Increasing
ζsmall leads to a decrease of ηs, down to a minimum located between ζsmall = 25 % and
ζsmall = 50 %, and then to an increase up to the value obtained for a suspension of small
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Figure 2. Relative viscosity (i.e. shear viscosity of the suspension relative to that of the suspending fluid) ηs
of (a) monomodal and (b) bimodal suspensions averaged for shear rates between 0.1 and 1 s−1 corresponding
to the range of shear rates of the spreading experiments. (a) Relative viscosity of monomodal suspensions
as a function of particle volume fraction φ for particles with diameters 10, 20, 40, 80, 140, 250 μm and
comparison with experimental data for particles with diameters 10 and 140 μm from the experiments of
Château, Guazzelli & Lhuissier (2018) and Palma & Lhuissier (2019), respectively. The vertical dotted line
is an estimate of the maximum volume fraction φc 	 0.53 used to compare data with the empirical correlations
of Krieger & Dougherty (1959), ηs = (1 − φ/φc)

−[η]φc , and Eilers (1941), ηs = (1 + [η]/2φ/(1 − φ/φc))
2

(where [η] = 2.5 is the intrinsic viscosity of the suspension). (b) Relative viscosity of bimodal suspensions at
a fixed total solid volume fraction φ = 0.4 as a function of the fraction of the small particles in the solid phase,
ζsmall, for two-size blends (see legend).

particles, ζsmall = 100 %. The minimum in viscosity is more pronounced with increasing
d2/d1; see figure 2(b).

3.3. Experimental apparatus
We create droplets of suspension having volume V0 = 300 μl (spherical radius
R0 = 4.15 mm) with a syringe pump (flow rate 10 ml min−1), as shown in figure 3. The
droplets spread over a silicon wafer (Si-Mat) cleaned with ethanol and distilled water,
and dried with clean-room wipes (plasma cleaning did not change the results or the
quality of the data and was therefore considered an unnecessary precaution). Acquisition
is made from side and top views with two synchronised monochrome cameras (Basler
acA2440-35um, 2000 × 2448 pixels) on which 1 : 1 macro objectives are mounted (I2S
visions, MC series). High spatial resolution is required to capture the dynamics of the
contact line. These optics give resolution 3.45 μm px−1. Frame rates from 5 to 10 f.p.s. are
required for the side view, especially at the beginning as the drop spreads quickly. Frame
rates of 0.5 f.p.s. are sufficient for the top view as most of the interesting data are extracted
at long times when spreading is slow and the slope of the drop interface is not too steep.
A typical set of experiments for a single suspension batch is made of 10 different runs of
spreading drops. These runs are acquired after 10 unused runs (corresponding to a total
amount ∼3 ml) to avoid effects coming from the front of the advancing suspension in the
tubing and in the needle. After performing these blank runs, the experiments are seen to
be very reproducible at the desired volume fraction φ = 0.4. Care is also taken to account
for temperature and humidity variations. These two factors impact mainly the suspending
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Figure 3. Sketch of the experimental apparatus.

fluid viscosity ηf . To this end, systematic viscosity measurements are performed during
the experiments using a capillary viscometer.

3.4. Side-view analysis
We characterise the dynamics of spreading by measuring the dynamic contact angle θapp
as a function of the dimensionless contact line velocity U. Angle measurement from
the side views has been improved from the previous work of Zhao et al. (2020) owing
to better optical resolution and the possibility of performing an automated local angle
measurement. We tailor the background lighting of our system with masks so that the
drops captured by the side camera appear bright on a dark background, as seen on the
top part of figure 4(a). Drop-shape detection is performed with the Sobel filter of the
scikit-image package in Python, shown in figure 4(b), and further thresholded to extract
the contact line coordinates and the drop profile h(x), with x = 0 being the position of
the contact line; see figure 4(c). The position of the contact line is defined as the leftmost
bright pixel after image processing, as presented in figures 4(b,c). The drop profile is then
smoothed with a cubic spline, as shown in figures 4(c,d). The contact line velocity U is
obtained by locating the triple contact line, while the apparent dynamic contact angle θapp
is inferred from the derivation of this spline. A spline is a piecewise polynomial function
defined by the number of points, or knots, that it passes through. Spline functions are
regular at zero, first and second order of derivation, as demonstrated in figure 4(d). To
optimise spline adjustment to the data at all slopes, a small knot-to-knot distance is chosen
at early times and then increased as the drop flattens. This process prevents meaningless
oscillations at small slopes (large distance between knots). For all pictures, improper fits
due to loss of focus or dust are discarded. The results are found to be similar to those
obtained by adjusting manually a straight line to the air/liquid interface near the contact
line in the range 30◦ � θapp � 85◦. The fitted profile can then be derived once or twice
at any point of the interface. The possibility of changing the measurement height h of the
contact angle is one of the major benefits of this automated numerical procedure compared
to previous manual measurements; see figure 4(d).
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Figure 4. Data extraction from a picture of a spreading drop. Reflection on the wafer helps to detect the
advancing contact line: (a) raw picture, and (b) Sobel filtering. The red rectangle in (a) corresponds to the
blown-up region in (c), showing the fitted spline of the drop profile (green curve), the position of the contact
line (yellow dot), and the drop height h = 50 μm (dash-dotted blue line). (d) Results extracted from the fit:
drop height h as a function of the distance to the contact line x (green), and contact angle computed from the
spline derivation according to θapp(x) = tan−1(dh/dx) (orange).

3.5. Top-view analysis
Top views are used to visualise the structure of the particle network near the contact
line, and also to measure the distance between the particles and the contact line L.
Measurements using the ImageJ FiJi software package (Schindelin et al. 2012) are
performed over roughly 30 particles at the front. The precision of these measurements
is set by the resolution of the pictures (3.45 μm px−1).

4. Identifying the region of validity of the Cox–Voinov law

4.1. Simple fluids
In § 2.4, we have identified the length scale h	 that characterises the height of the interface
at the transition between the viscous–capillary regime governed by the Cox–Voinov
relation (2.3) and the viscous–capillary–gravity regime where gravity starts to prevail and
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Spreading drops of granular suspensions

where an inflection point should exist. We start our experimental characterisation of h	 by
investigating the shape of the interface in the case of simple fluids.

Inspired by the form of the Cox–Voinov law (2.3), we measure, for capillary numbers in
the range 0.0025 ≤ Ca ≤ 0.0125, how the cube of the angle between the interface and
the horizontal, θ3

app, depends on the interface height h and on the horizontal distance
to the contact line x; see figures 5(a,b), respectively. The data come from the average
over 7 experimental runs. We identify two regions. Starting from the contact line, for
any capillary number, θ3

app is first independent of the height at which it is measured; see
figure 5(a). A plateau can thus be defined for h ranging from 10 to almost 100 μm. Note
that this plateau is better seen in semi-log scale in figure 5(a). Discussion of these results in
the light of the Cox–Voinov law would lead us to expect that θ3

app is an increasing function
of h. However, two experimental facts may prevent us from seeing this increase. First, an
inflection point can be seen for some experiments (see, for instance, figure 4d), but the
process of averaging over several runs likely smears out the change of curvature. Second,
the length scales that we can probe are at least three orders of magnitude larger than the
nanometric cut-off scale λ. We thus expect the logarithmic term to increase slowly with
distance, leading to difficulties in distinguishing the shape of the interface from a straight
line. Similar conclusions regarding the local slope near the contact line have been reached
by Rio (2005). It is worth mentioning that the plateau value increases with the capillary
number as expected from the Cox–Voinov law (2.3). Away from the contact line, the angle
decreases, suggesting a growing contribution of gravity to the force balance. In figure 5(b),
the experimental contact angle is plotted, and the theoretical prediction obtained from
the balance between gravity and capillarity is superimposed at largest distances from
the contact line. We find that the agreement of the static solution (2.7) with the data is
satisfactory and improves with decreasing Ca, provided that we leave the radius of the
droplet as a fitting parameter since it cannot be inferred in our experiments. Indeed, the
imaging field does not cover the whole drop as the focus is on the contact line region,
which requires a significant magnification.

Comparison of the datasets is made easier if we normalise θ3
app(h) by its asymptotic

value θ3
app(h → 0), and h by the capillary length �c; see figure 5(c). From these plots, we

define the experimental transition height h	 as the height at which θ3
app(h) departs from

θ3
app(h → 0) by 10 %. Figure 5(d) shows the inferred h	 as a function of Ca for different

simple fluids. The normalised transition height h	/�c increases as Ca1/3 in agreement with
the prediction (2.10) of the dimensional analysis in § 2.4. We also report in this graph the
measurements of the inflection point of the interface obtained by Tanner (1986), although
the present interpretation as an upper limit of dissipation was not mentioned in this work.
These data agree well with the present estimates of h	 as well as with the Ca1/3 scaling.
Note that this scaling still holds when varying the threshold between 1 % and 15 %. The
threshold of 10 % provides the best match with the measurements of Tanner (1986). If
we grant h	 the interpretation of a viscous–capillary cut-off length and refer to figure 5(d),
then we can conclude that measuring contact angles at heights well below 100 μm warrants
probing the region of the droplet where the apparent dynamic contact angle is set by a
balance between viscous dissipation and capillarity only.

4.2. Granular suspensions
We now test the relevance of h	 to the spreading of drops of granular suspensions. Because
they are density-matched to the suspending fluid and do not modify surface tension, the
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Figure 5. Cube of the contact angle θ3
app versus (a) the measurement height h, and (b) the horizontal distance

to the contact line x, averaged over 7 experimental runs for 5 capillary numbers Ca, namely 0.0025 (♦), 0.005
(◦), 0.0075 (�), 0.01 (�), 0.0125 (�), using a Newtonian fluid (PEG copolymer). Red dashed lines indicate
static shape (2.7) for R = 8.5, 8.7, 8.9, 9.3, 10 mm (estimated so as to provide the best fit with the experimental
data) and �c = 1.82 mm. (c) Normalised cube of the contact angle θ3

app/θ
3
app(h → 0) versus normalised

height h/�c. Black dotted line indicates the threshold for the plateau length at θ3(h	)/θ3(h → 0) = 0.9. (d)
Normalised transition height h	/�c versus Ca for three different Newtonian fluids: PEG (black ♦), silicone
oil V1000 (maroon �; ρ = 970 kg m−3, γ = 21 mN m−1, η = 1.0 Pa s, �c = 1.46 mm), and glycerol (red �;
ρ = 1260 kg m−3, γ = 63 mN m−1, η = 1.3 Pa s, �c = 2.23 mm), as well as the inflection-point measurements
(gold ◦) of Tanner (1986) with highly viscous silicone oil. Black solid line indicates h	/�c = 0.3 Ca1/3.

particles are expected to modify only viscous dissipation and to leave gravitational and
capillary effects unchanged.

Figure 6(a) presents the variation of θ3
app with the measurement height h for monomodal

granular suspensions of 10 μm particles and bimodal suspensions of 10–80 μm particles
with ζ10 = 50 %, at a constant capillary number Ca0 = ηf U/γf , where subscript 0 on the
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Figure 6. (a) Cube of the contact angle θ3
app versus the measurement height h for different fluids: pure

suspending fluid (grey �), 10 μm monomodal suspension (red �), and 10–80 μm bimodal suspension at
ζ10 = 50 % (orange ◦), resulting from the analysis of 7, 8 and 10 drop-spreading runs, respectively, and
at the same fluid capillary number Ca0 = ηf U/γf = 0.0025. Inset: normalised cube of the contact angle
θ3

app/θ
3
app(h → 0) versus normalised height h/�c. Blue dash-dotted line indicates selected measurement height

h = 50 μm. (b) Variation of θ3
app/9 as a function of Ca0 performed at height h = 50 μm for the different runs

for spreading drops made of pure suspending fluid (grey dots), 10 μm monomodal suspension (red dots), and
10–80 μm bimodal suspensions at ζ10 = 50 % (orange dots). The different colour shades represent different
experiments. The dashed lines correspond to the average of the linear fits of data coming from each run and are
used to infer the relative apparent viscosity ηw.

capillary number emphasises that it is computed using properties of the suspending fluid.
Reference data for the pure suspending fluid at Ca0 are also provided for comparison
in figure 6(a). The behaviour of θ3

app(h) for the suspensions is similar to that seen for
the reference fluid; see also figures 5(a,c). A plateau region is again observed close to
the contact line, for 10 � h � 100 μm, while there is a decay at larger distances. The
addition of the particles leads to an increase in the plateau value of θ3

app, which depends
on the particle mixture components. Provided that measurements are undertaken within
the plateau region at constant height across all experiments, we can obtain an unequivocal
apparent contact angle, at a given capillary number. The dependence between these two
quantities is then a priori interpretable in terms of the Cox–Voinov relation. In the
following, the measurement height is set at h = 50 μm. This chosen height seems a good
compromise between smaller heights having large measurement noise and larger heights
that might fall outside of the region where viscosity matters. Note that taking h in the
range 20 to 100 μm yields similar results for the apparent wetting viscosity that will be
introduced below.

Figure 6(b) displays typical variations of θ3
app/9 as a function of the capillary number

of the suspending fluid, Ca0. Data from different experimental runs are plotted for the
same fluids as those used in figure 6(a). For a given fluid (suspensions or reference fluid),
the tight collapse of the different θ3

app(Ca0) curves coming from the different runs bears
witness to the good reproducibility of the experiments. All the datasets collapse on straight
lines with unity slopes in log-log representation, i.e. θ3

app/9 ∝ Ca0. For each run, a linear
fit is performed and the average (dashed) line for a given fluid is the average of the
corresponding linear fits. Typically, the measured angles lie between 30◦ and 90◦, the
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upper limit being set by the algorithm. Tracking is interrupted below 30◦ due to the failure
of the Cox–Voinov law. Protrusions of the particles from the free surface are observed at
small contact angles and might be responsible for this discrepancy.

As expected, the data from the suspending fluid are in excellent agreement with the
Cox–Voinov law (2.3). The logarithm factor in (2.3) is found to be 	11.9, in good
agreement with values in the literature (Voinov 1976). It is important to note that the
measurements are undertaken at a constant height h within the plateau region, and not at
a constant x. However, since x and h are of the same order of magnitude and sufficiently
large compared to λ, the logarithm factor is not varying significantly and can be considered
constant.

For suspensions, data for θ3
app(Ca0) in figure 6(b) equally collapse on a straight line

with a slope of unity in the log-log representation (red and orange dashed lines): the
spreading of these materials still seems to follow a Cox–Voinov relation (2.3). However,
since the values of θ3

app in the plateau are changed by the addition of particles as shown
in figure 6(a), the different θ3

app(Ca0) lines are shifted with respect to each other in
figure 6(b), in agreement with previous experiments (Zhao et al. 2020). Assuming that
the logarithmic factor has the same order of magnitude for the pure suspending fluid
and for suspensions (as we do not expect the particles to modify the mechanics at the
nanometric scale), we can superimpose all curves and recover the Cox–Voinov law (2.3)
for all liquids if we adjust the viscosity used in the capillary number Ca = ηU/γ , with
η = ηf ηw where ηw is the relative apparent wetting viscosity of the suspensions. Again,
the shift and consequently the apparent wetting viscosity strongly depend on the particle
mixture components. Here, we see that the suspension of 10 μm particles has a larger
apparent wetting viscosity than the 10–80 μm bimodal suspension. The behaviour of the
apparent viscosity ηw is examined in detail in § 5 for suspensions consisting of different
particle combinations.

5. Probing dissipation with particles

5.1. Suspensions with particles having a large difference in size
We focus first on suspensions consisting of particles having a large difference in diameter,
d1 = 10 μm and d2 = 80 μm (d2/d1 = 8). Figure 7(a) shows that the relative wetting
viscosity of these suspensions, ηw, increases with increasing fraction of the small particles,
ζ10, with a steeper growth beyond ζ10 	 50 %. This behaviour is in stark contrast with the
ζ10 dependence of the relative bulk viscosity of the same mixtures shown in figure 2(b) and
plotted again in the inset in figure 7(a). The relative bulk viscosity of the blends presents
a minimum at ζ10 = 35 %, i.e. a mixture containing roughly a third of small particles.
This minimum viscosity is 40 % smaller than the values obtained in the monomodal
cases at ζ10 = 0 % and 100 % (consisting of monomodal suspensions of 80 and 10 μm,
respectively). It is worth noting that even in the monomodal case with the small particles,
ηw is smaller (by a factor of order 2) than the corresponding value of its bulk viscosity, ηs.
This inability to reach the bulk value is always observed even for the smallest particles as
there is always a small region devoid of particles at the tip followed by an ordered region,
as discussed in the following and in § 6.

Top-view pictures of the suspension near the moving contact line provide information
about the origin of the discrepancy between the apparent viscosity extracted from bulk
rheology and its counterpart extracted from the dynamics of spreading; see figure 7(b). As
shown previously in the monomodal case (Zhao et al. 2020), there is a pure-fluid region
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Figure 7. Experimental results for suspension blends with fixed d1 = 10 μm and d2 = 80 μm, and varying ζ10
at φ = 0.4. (a) Relative wetting viscosity ηw as a function of the fraction of the small particles in the solid
phase, ζ10. Inset: bulk viscosity ηs of the corresponding suspensions versus ζ10. The dotted lines are guides for
the eyes. (b) Top-view pictures taken when θapp = 35◦ at h = 50 μm for ζ10 = 0 %, 25 %, 50 %, 75 %, 100 %
from top to bottom, respectively.

devoid of particles near the contact line. We observe a similar region in the monomodal
and bimodal cases depicted in figure 7(b). The extent of this region is larger in the case of
the 80 μm particles, ζ10 = 0 % (top picture), than in the 10 μm case, ζ10 = 100 % (bottom
picture). For intermediate values of ζ10, the 10 μm particles are able to move in between the
80 μm particles. The particles closest to the contact line arrange in an orderly, crystalline
structure. This ordering is particularly marked for the 80 μm particles, seen in the top
pictures of figure 7(b). The large 80 μm particles seem to be maintained at the same
distance from the contact line as small 10 μm particles are added, i.e. as ζ10 is increased,
but their linear density decreases.

The images displayed in figure 7(b) are obtained for the same dynamic contact
angle θapp = 35◦. The real capillary number of all these experiments (using the
effective viscosity of the suspension, Ca = ηw Ca0) is thus constant, and equal here
to approximately 2 × 10−3, leading to h	 ∼ 100 μm according to (2.10) and using the
prefactor inferred from figure 5(d), i.e. h	 	 0.3�c Ca1/3. The discrepancy between the
viscosity measured in the bulk and that estimated from spreading experiments is now
clear. The 80 μm particles experience strong confinement in the viscous–capillary region
since h	 ∼ d2, and only a few of them can penetrate this region. In contrast, h	 is 10 times
larger than the diameter of the 10 μm particles. Even if these small particles experience
confinement close to the contact line, a significant part of the viscous–capillary region is
filled with a dense phase of small particles akin to a suspension bulk. Thus the contribution
of the 10 μm particles to dissipation in the Cox–Voinov region is expected to be larger than
that of the 80 μm particles, as reported in experiments with monomodal suspensions. In
the case of the bimodal suspensions studied in this section, increasing the small particle
fraction ζ10 is expected to lead to a continuous increase in ηw, as observed in figure 7(a).

955 A7-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1034


A. Pelosse, É. Guazzelli and M. Roché

0

1.5

1.0

2.0

2.5

3.0

3.5

4.0
12.5

10.0

7.5

5.0
0 4 8

4.5 100
80402010

80

60

40

20

0
2

2

Geometrical

prediction

4
4 6 8

6 8
d2/d1 d2/d1

300 µm

d2/d1

d1 = 10 µm

d1 = 10 µm

θ � 35°

d2

ηs

ηw

d2 (µm)

L 
(µ

m
)

(b) (c)(a)

Figure 8. Experimental results for 10 μm monomodal suspension (• symbols) and bimodal blends with
d1 = 10 μm and varying d2 (= 20, 40, 80 μm) at fixed ζ10 = 25 % and φ = 0.4 (� symbols). (a) Relative
wetting viscosity ηw as a function of the size ratio d2/d1. The horizontal dashed line indicates the viscosity
value for the monomodal suspension consisting of the sole small particles of size 10 μm. Inset: bulk
viscosity ηs of the corresponding suspensions versus d2/d1. The grey dotted lines are guides for the eyes.
(b) Distance of approach of the large particles for the bimodal suspensions with d1 = 10 μm and ζ10 = 25 %
(� symbols) and the 10 μm monomodal suspension (• symbol). The dashed line corresponds to the geometrical
prediction (5.1). (c) Top-view pictures taken when θapp = 35◦ at h = 50 μm for monomodal suspension of size
10 μm and bimodal suspensions with (d1, ζ10) = (10 μm, 25 %) and d2 = 20, 40, 80 μm (from bottom to top,
respectively).

5.2. Varying the size of the large particles
We now turn to bimodal suspensions consisting of 10 μm particles but with large particles
of variable diameter (i.e. d2 = 20, 40, 80 μm) at ζsmall = 25 %. Bimodal suspensions
formulated this way should have a bulk viscosity close to the minimum observed on
the curves of figure 2(b). Figure 8(a) shows that the apparent wetting viscosity of these
suspensions is maximum in the monomodal case, and decreases for bimodal suspensions
as the large particle size increases, i.e. with increasing d2/d1. This result again confirms
that particles with a diameter much smaller than h	 increase the dissipation in the
Cox–Voinov region. This trend is similar to that of the bulk viscosity ηs, with increasing
d2/d1 for ζsmall = 25 %; see the inset of figure 8(a). However, the magnitude of the
size-ratio effect comes from two distinct physical origins. For example, the value of
the apparent wetting viscosity ηw for d2/d1 = 8 is close to that of the suspending fluid,
whereas the value of the bulk viscosity ηs is much larger. The decrease of the bulk
viscosity comes from the size ratio affecting the maximum packing fraction φc (larger
for large d2/d1), while the wetting viscosity reduction comes from confinement effects
near the contact line as the dissipation is greater for particles that can efficiently reach
the dissipation region near the contact line (d � h	). In the case of figure 8, the small
particles are participating less in the dissipation as ζ10 is small and the overall dissipation
is set mostly by the large particles.

Figure 8(b) shows that the distance of approach of the large particles, L, increases
with their diameter. This measured length follows the prediction of a geometrical model
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describing the minimal distance of approach of a particle in a wedge,

L = d
2

[
1

sin(θapp)
+ 1

tan(θapp)
− 1

]
, (5.1)

where θapp is the apparent contact angle near the contact line. We find that this distance
is not affected sensibly by the presence of the small particles. The relation (5.1) holds for
both monomodal and bimodal cases using the diameter of the corresponding particles. In
the monomodal case, it determines the size of the depleted region (Zhao et al. 2020).

The top-view pictures in figure 8(c) confirm the existence of size segregation at the
contact line as already mentioned in § 5.1. The large particles form ordered rows behind
the small particle region as already noted in § 5.1. However, we observe that the 10 μm
particles do not go through the network formed by the 20 μm particles; see the bottom
image of figure 8(c). We move to this aspect of suspension spreading in the following
subsection, with clearer visualisations with larger particles.

5.3. Varying the size of the small particles
Figure 9(a) gathers the wetting viscosity ηw of the monomodal 80 μm suspension and
bimodal blends having a fixed d2 = 80 μm and varying d1, and ζsmall. When the solid
phase consists mainly of small particles (ζsmall = 75 %), ηw decreases with increasing d1,
as seen in figure 9(a). This observation confirms again that the wetting viscosity is set
by the possibility of particles having diameter much smaller than h	 approaching close to
the contact line. However, a continuous decrease of ηw with d1 is absent when ζsmall =
25 % or ζsmall = 50 %, i.e. when large particles constitute a significant portion of the
solid blend. The relative wetting viscosity ηw reaches a maximum around d1/d2 = 0.25,
but it otherwise shows low values, even lower than those obtained for the monomodal
suspensions of 80 μm particles for d1/d2 = 0.5. In other words, for ζsmall = 25 %–50 %,
the apparent wetting viscosity of the 10–80 and 40–80 μm blends are particularly low
compared to that of the 20–80 μm and even to that of the monomodal 80 μm suspension.

The top views shown in figure 9(b) provide some clues about the variation of the
apparent wetting viscosity. At ζsmall = 25 %, for small values of d1/d2 (top two pictures),
small particles flow through the large particle network and get close to the contact line.
In contrast, for d1/d2 = 0.5 (third picture from the top), the presence of 40 μm particles
disrupts the ordering of the 80 μm particles, compared to the other cases. A similar trend
is observed for ζsmall = 50 %. In contrast, for ζsmall = 75 %, there is a large amount of
ordered small particles near the contact line in front of the large spheres, as seen in
figure 9(c).

Geometrical considerations can explain the effect observed for d1/d2 = 0.5. Two large
particles with radius R2 = d2/2 sitting on the surface of a solid come to contact if the
distance l between them goes to zero; see figure 10. A small particle of radius R1 can
pass through the hole between the two particles and the solid surface if its radius is at
most R1 = R2/4. Consequently, while the 10 and 20 μm particles can flow through the
interstices created by the large 80 μm particles, the 40 μm particles cannot. Instead, these
particles induce defects in the 80 μm particle network, leading to the distortion of the
large-particle matrix when the portion of small particles is not too large (ζsmall � 50 %).
This loss of organisation seems detrimental to the local dissipation. These geometrical
considerations coupled with the wetting viscosity measurements suggest that the structure
and therefore the local solid volume fraction near the contact line is a key element to
explain the value of the wetting viscosity of granular suspensions.
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Figure 9. Experimental results for suspension blends with d2 = 80 μm and varying d1 (= 10, 20, 40 μm) at
ζsmall = 25 % (� symbols), ζsmall = 50 % (♦ symbols), and ζsmall = 75 % (� symbols). (a) Relative wetting
viscosity ηw as a function of d1/d2. The dashed line indicates the viscosity value for the monomodal suspension
consisting of the sole large particles of size 80 μm. Inset: bulk viscosity of the corresponding suspensions. (b,c)
Top-view pictures taken when θapp = 35◦ at h = 50 μm for bimodal suspensions, with d2 = 80 μm, ζsmall =
25 % (b), and ζsmall = 75 % (c). Small particle size is increasing from top to bottom (d1 = 10, 20, 40 μm, and
monomodal suspension of size 80 μm).

R2 + l/2

R2 + R1

R2 – R1

l

Figure 10. Sketch of two large particles separated by a small one on a solid plane.

However, the above geometrical arguments cannot explain the lower values of ηw for
the 10–80 μm blends compared to those of the 20–80 μm blends for ζsmall = 25–50 %
in figure 9(a). Instead, this lessening effect may be attributed to bulk effects impacting
on the variation of the wetting viscosity. The inset of figure 9(a) indicates that the bulk
viscosity is significantly smaller for the 10–80 μm blends than for the 20–80 μm blends
for a given value of ζsmall. Moreover, the bulk viscosity for ζsmall = 25–50 % is lower than
for ζsmall = 75 % as it corresponds to the minimum bulk viscosity for bimodal blends, as
seen in figure 2(b). Bulk effects are therefore evidenced in this specific example and impact
the value of ηw as they happen to overcome size effects.

It is worth noting that in the monomodal case, variation of the wetting viscosity can
come only from the confinement effect near the contact line, as the bulk viscosity does
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not vary with particle size, as shown in figure 2(a). The case of fixed d2 and increasing
d1 evidences two competing effects: confinement effect governing the particle ability to
approach the contact line, and the variation of the bulk viscosity with ζsmall and d1/d2.
In conclusion, for bimodal suspensions, a high wetting viscosity results from a complex
compromise between a high fraction of small particles ζsmall, a large size ratio d2/d1, and
a high bulk viscosity ηs, in addition to size effects already demonstrated.

6. Concluding remarks

The spreading of large drops onto a solid substrate is a rich and complex phenomenon by
itself. Adding particles affects the spreading dynamics in a non-trivial way as there exists a
high degree of inhomogeneity in the particulate drop going from a random solid bulk phase
far from the contact line (h � d), to ordered dense monolayers when particles undergo
confinement (h � d), and finally to a particle-depleted region in the very close vicinity
of the contact line (h < d). Using granular suspensions nonetheless offers an interesting
way to investigate dynamical wetting as one can take advantage of this complex particulate
organisation to modify locally the dissipation near the contact line.

Dimensional analysis of the equation governing the spreading of large drops (Bo � 1)
shows that the profile of the liquid/gas interface between the droplet and the atmosphere
is set by a viscous–capillary balance as long as its height is smaller than a length scale
h	 ∼ �c Ca1/3 beyond which the drop profile becomes also sensitive to gravity. This
scaling has been validated in the present work for both simple fluids and suspensions,
and care was taken to perform measurements below this length scale (typically 50 μm) to
ensure that gravity is negligible across the range of capillary numbers that we can probe.
Drops of granular suspensions were then seen to follow the Cox–Voinov law relating the
contact angle to the capillary number in a way similar to that found for regular Newtonian
fluids. However, the relative apparent viscosity ηw involved in the capillary number was
found to differ from that of the bulk suspension, ηs.

In the present experiments, the typical magnitude of h	 ∼ 100 μm lies in the size
range of the non-Brownian particles used. Therefore, dissipation is affected by particles
during the spreading when d � h	, while the spreading dynamics is close to that of the
pure fluid when d � h	, i.e. when particles cannot reach the viscous–capillary region.
These geometrical considerations help to rationalise that the relative wetting viscosity
ηw depends on the particle size d, unlike the relative bulk viscosity ηs, which depends
only on the particle volume fraction φ. The relative wetting viscosity ηw is found to be
maximum for the smallest particles, and decreases to values close to the suspending fluid
viscosity for d � 100 μm even though ηs is much larger than ηw 	 ηf for these dense
suspensions (φ = 0.4); see figure 4 of Zhao et al. (2020). This size cut-off of the wetting
viscosity is thus roughly of the order of h	. This confirms that particles affect the wetting
dynamics only if their size is small enough for them to reach the region dominated by
viscosity.

It may seem surprising that the Cox–Voinov law applies to such a complex system.
Indeed, the possibility for the particles to occupy the viscous–capillary region in the case
of a spreading droplet evolves with time as h	 ∝ Ca1/3 ∝ U1/3 decreases with increasing
time. However, in the present experiments, the variation of Ca over only one decade
prevents a strong change in h	. Performing measurements in a much lower Ca range, while
rather challenging, may reveal intriguing effects.

Predicting the value of the apparent wetting viscosity when d � h	 remains a difficult
task. The value of the bulk viscosity ηs certainly affects the wetting viscosity ηw. However,
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knowing whether this observation comes from long-range effects of the bulk phase far
from the contact line is not easy. One must also keep in mind that ηs varies with φc − φ,
and strongly diverges as φ → φc. For bimodal suspensions, a lower ηs is the signature of
a higher φc for the corresponding solid phase and therefore produces a lower ηw, as seen
in the present experiments.

Another fundamental ingredient to consider in predicting ηw is the possibility for the
particles to crystallise in the viscous region. For monomodal suspensions, a monolayer
of several rows of ordered particles is always observed in the vicinity of the contact line.
In the bimodal case, crystallisation of the two population sizes can be hindered when the
small particles cannot flow through large-particle holes, leading to a significant diminution
of the apparent wetting viscosity. The structure of the particulate network near the contact
line therefore impacts directly the drop-spreading dynamics captured in ηw. It also explains
that even for the smallest particles for which d < h	, the wetting viscosity ηw cannot reach
the bulk value ηs, because of this ordered region that possesses a lower viscosity.

This ordering very likely comes from the confinement of the particles near the contact
line combined with the pressure of the dense particulate phase farther out. Rheological
measurements combined with direct visualisation of dense colloidal suspensions (φ =
0.52) have established clearly the relation between a significant viscosity drop and
moderate confinement, owing to the ordering of the particulate phase in sliding layers
(Ramaswamy et al. 2017). Conversely, for many dilute granular suspensions (φ ≤ 0.2),
rheological measurements have exhibited a monotonous increase in dissipation for gap
sizes of ten diameters and less (Peyla & Verdier 2011). This apparent disagreement
could be explained by the nature of the solid phase (colloidal/granular) or the dissipation
mechanisms (friction/hydrodynamics) that depends on the solid volume fraction (Gallier
et al. 2014). Indeed, at low volume fraction, dissipation is due mainly to hydrodynamic
interactions, while frictional contacts dominate for dense suspensions and may depend
crucially on the local solid structure (Guazzelli & Pouliquen 2018).

With confinement strengthening, complex behaviours become even more apparent, e.g.
viscosity minima when the gap thickness is commensurate with the particle diameters
(Ramaswamy et al. 2017). Such oscillatory values of the viscosity as a function of the gap
have been reported under high confinement and high shear in numerical simulations of
dense granular suspensions (Fornari et al. 2016). In the present experiments, confinement
effects may, however, be less easy to quantify for the following reasons. Confinement
is changing over time as the drop spreads and the local fluid thickness varies with
the radial position. Moreover, it is set by a solid surface and a free interface that can
deform to relax high stress, contrary to solid boundaries in a rheometer and most of the
simulations.

Finally, the present work may help us to understand the spreading of suspensions that
are closer to those used in industrial processes and have a wide range of particle sizes
(e.g. from sub-micron to hundreds of microns in cement paste; see Bentz et al. 1999; Celik
2009). Bimodal suspensions can be seen as a first step towards polydisperse solid blends
as a smart choice in particle size, and fraction in a bidisperse system can partially mimic
an equivalent polydisperse suspension (Pednekar, Chun & Morris 2018).
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