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Sums and Products of Weighted Shifts
Laurent W. Marcoux

Abstract. In this article it is shown that every bounded linear operator on a complex, infinite dimen-
sional, separable Hilbert space is a sum of at most eighteen unilateral (alternatively, bilateral) weighted
shifts. As well, we classify products of weighted shifts, as well as sums and limits of the resulting oper-
ators.

1 Introduction

1.1 Preliminaries

Suppose that H is a complex Hilbert space, and by B(H) let us denote the set of
bounded linear operators acting on H. The literature is replete with examples of
factorizations of elements in B(H) as sums and products of operators of a specified
class. We cite but a few examples, [9, 11, 20, 22, 29, 30], and refer the reader to [31]
and its references for an extensive account of these problems. In many classical cases
[1, 23, 24], the underlying Hilbert space is finite dimensional. More recently, there
has been an interest in asymptotic versions of these questions. For example, in [19]
and [13], a study of the norm closure of products of k positive invertible operators
was undertaken, where k is a fixed integer greater than or equal to 2.

In this note, our focus will be upon characterizing sums and products of weighted
shifts, as well as the closures of these and associated sets.

1.2

From this point onward, we shall assume that H is infinite dimensional, but sepa-
rable. The term “shift” appears often in the literature, where it is assigned different
meanings, depending upon the context. For our purposes, a bounded operator W
will be called a bilateral weighted shift if there exists an orthonormal basis {en}n∈Z for
H and a bounded sequence {wn}n∈Z of complex numbers (called the weights of W )
such that Wen = wnen+1 for all n ∈ Z. Similarly, an operator V is called a unilateral
(forward) shift if there exists an orthonormal basis { fn}∞n=1 for H and a bounded se-
quence {vn}∞n=1 such that V fn = vn fn+1. If we can choose the orthonormal basis so
that wn = 1 for all n ∈ Z, then we shall write B instead of W and refer to this as a
bilateral (unweighted) shift. Analogously, if we can choose vn = 1 for all n ≥ 1, we
write S for V and refer to this as a unilateral (unweighted, forward) shift. Unlike [14]
or [5], we will not allow our shifts to have multiplicity greater than 1. In particular,
neither S∗ nor S ⊕ S are shifts according to our definition. (In this connection it is
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worth mentioning that L. G. Brown [5] has shown that every contraction is a product
of a forward (unweighted) shift of infinite multiplicity and a backward (unweighted)
shift of infinite multiplicity.) The paper by X.H. Ding and G. Shi [7] also deals with
related questions.

It is clear that the set W of bilateral weighted shifts and the set V of unilateral
weighted shifts are invariant under unitary equivalence (—recall that two operators
A and B are unitarily equivalent if there exists a unitary operator U such that A =
U ∗BU , in which case we write A � B). Given a set S ⊆ B(H) and an integer
k ≥ 1, let us write Sk (resp.

∑
k S) for the set {S1S2 · · · Sk : Si ∈ S, 1 ≤ i ≤ k}

(resp. {S1 + S2 + · · · + Sk : Si ∈ S, 1 ≤ i ≤ k}). It is understood that S = S1. It
then follows from the above observation that

∑
j Wk and

∑
j Vk are invariant under

unitary conjugation as well, as are their closures and even
∑

j Wk and
∑

j Vk for each
j, k ≥ 1.

1.3

Before proceeding, we would like to record a few simple but useful facts about Vk and
Wk which will be repeatedly used below.

(i) By a finite weighted shift, we shall mean an operator X ∈ B(Cn) (where n is a
positive integer) for which we can find an orthonormal basis {e1, e2, . . . , en} for Cn

and scalars xi , 1 ≤ i ≤ n so that Xe j = x je j+1, 1 ≤ j ≤ n− 1, and Xen = 0. Observe
that X∗ is then also a finite shift with weights {x̄n−1, x̄n−2, . . . , x̄1} with respect to
the orthonormal basis {en, en−1, . . . , e1}.

Given a family {X j}∞j=1 of finite shifts, V =
⊕∞

j=1 X j and V ∗ both lie in V1.
Indeed, Z,Z∗ ∈ V1 if and only if Z is a direct sum of finite weighted shifts.

Furthermore, if κ : Z→ N is a bijection, then W =
⊕

j∈Z Xκ( j)(� V ) also defines
a bilateral weighted shift.

(ii) The set W is self-adjoint: if Wen = wnen+1 for all n ∈ Z, then W ∗ fn =
w̄−(n+1) fn+1 for all n ∈ Z, where fn = e−n. It follows that Wk,

∑
k W and their

closures are again self-adjoint.
(iii) Let D denote the set of diagonalizable operators on H; that is, those oper-

ators for which there exists an orthonormal basis {en} (indexed by N or by Z) and
a bounded sequence {dn} so that Den = dnen for all n. Then D ⊆ W2. Indeed,
let D = diag{dn}n∈Z be any diagonal operator with respect to the basis {en}n∈Z.
Let Wen = dnen+1 and Xen = en−1, n ∈ Z. By (ii), X � B∗ ∈ W1. Then
XWen = dnen = Den for all n ∈ Z, so that W2 contains all diagonal operators.

Also, V2 ⊇ {0(∞)⊕D ′ : D ′ ∈ D}. Let { fn}∞n=1 be an orthonormal basis for H and
suppose D ′ fn = d ′n fn, n ≥ 1. Define V fn = vn fn+1, n ≥ 1 and X fn = xn fn−1, where

xn = 1 if n is even, and xn = 0 if n is odd. Then X �
[

0 1
0 0

](∞)
�
[

0 0
1 0

](∞)
∈ V∩V∗.

Thus T = XV ∈ V2, where T = diag{v1, 0, v3, 0, . . . }. Let v2k−1 = d ′k for each k ≥ 1
to find that T � 0(∞) ⊕ D ′.

(iv) The classes Vk, Wk are invariant under scalar multiplication for all k ≥ 1. We
will use this implicitly in our proofs—often we will only show that an operator X of
norm 1 lies in Vk (for example), from which we may automatically deduce that all
multiples of X also lie there.
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1.4

Some of our estimates are based on results of P. Y. Wu and of C. K. Fong and P. Y. Wu
on sums and products of normal operators. Let us also record these, as well as the
Weyl-von Neumann-Berg-Sikonia Theorem for use below.

Theorem 1.5 (Wu [30]) Let N denote the set of normal operators in B(H). For T ∈
B(H), the following are equivalent:

(i) T ∈
⋃∞

k=1 Nk;
(ii) T ∈ N3;
(iii) nul T = nul T∗ or ran T is not closed.

Theorem 1.6 (Fong-Wu [12])

(i) Every operator is a sum of three diagonal operators; that is, B(H) =
∑

3 D.
(ii) D5 = N3.

Recall that two operators A and B are said to be approximately unitarily equivalent
and we write A �a B if for all ε > 0 there exists U unitary and K compact with
‖K‖ < ε such that A = U ∗BU + K. Denote by K(H) the set of all compact operators
on H, and by Q(H) the Calkin algebra B(H)/K(H). Set π : B(H) → Q(H) to be
the canonical quotient map. The essential spectrum of A is σe(A) := σ

(
π(A)
)

in
Q(H). By σlre (A) we denote the left-right essential spectrum of A, and by N the set
of normal operators. The decomposition of an operator into its real and imaginary
parts implies the trivial result that B(H) =

∑
2 N.

Theorem 1.7 (Weyl-von Neumann-Berg-Sikonia [2, 27]) Given N normal and ε >
0, there exists a diagonalizable operator D and a compact operator K with ‖K‖ < ε such
that N = D + K.

Corollary 1.8 Two normal operators N and M are approximately equivalent if and
only if σe(N) = σe(M), σ(N) = σ(M), and any isolated eigenvalues of N and M
appear with equal multiplicities.

2 Products of Weighted Shifts

Lemma 2.1 Let X ∈ B(H).

(i) If X ∈ Vk for some k ≥ 1 and X is semi-Fredholm, then X is Fredholm of index
−k.

(ii) If X ∈Wk for some k ≥ 1 and X is semi-Fredholm, then X is Fredholm of index 0.

Proof (i) First choose ε > 0 so that π(Y ) ∈ Q(H) and ‖π(Y )− π(X)‖ < ε implies
π(Y ) is semi-Fredholm and ind Y = ind X. This is possible because the set of semi-
Fredholm operators is open, and the index function is continuous. Next, choose
Vi, 1 ≤ i ≤ k ∈ V1 so that

‖X −V1V2 · · ·Vk‖ < ε.
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Clearly ‖π(X) − π(V1)π(V2) · · ·π(Vk)‖ < ε as well. If π(X) is left invertible, then
so is π(Vk), and so Vk is semi-Fredholm. But then the weight sequence {v j(k)}∞j=1

for Vk is essentially bounded below, from which it follows that Vk is Fredholm, and
ind Vk = −1.

Multiplying on the right by π(Vk)−1, we find that π(V1)π(V2) · · ·π(Vk−1) is left
invertible, and so we may repeat the argument to find that each Vi is Fredholm with
index−1. Finally,

ind X = ind(V1V2 · · ·Vk) =
k∑

j=1

ind V j = −k.

If π(X) is right invertible, then π(V1) is right invertible, and the proof follows in
an analogous manner.

(ii) The fact that W1 is self-adjoint means that the situation is symmetric with
respect to left and right invertibility. The only change to the above argument is that
if we choose W j ∈ W1 to play the analogous rôle to that played by V j , then W j

Fredholm implies that ind W j = 0, and hence ind X =
∑k

j=1 ind W j = 0.

Lemma 2.2

(i) N ⊆W2, whence Nk ⊆W2k for each k ≥ 1;
(ii) N ∩ V2 = {N normal : 0 ∈ σe(N)}.

Proof (i) As observed in paragraph 1.3, D ⊆ W2. Since D is dense in N by the
Weyl-von Neumann-Berg-Sikonia Theorem, we are done. The second statement is a
trivial consequence of the first.

(ii) Suppose first that N is normal and 0 ∈ σe(N). As before, we may use Corol-
lary 1.8 to replace N by an (approximately unitarily equivalent) diagonal operator
D = diag{dn}∞n=1 satisfying d2n = 0, n ≥ 1 and acting on the basis {en}∞n=1. By
1.3(iii), D ∈ V2, and so N ∈ V2.

Conversely, suppose N ∈ V2 ∩ N. If N is semi-Fredholm, then by Lemma 2.1, N
is Fredholm and ind N = −2. But this contradicts the fact that ker N = ker N∗ for
all normal operators. Thus N is not semi-Fredholm, i.e. 0 ∈ σlre(N) = σe(N).

Lemma 2.3 Let B denote the bilateral shift. Then N3B = N3.

Proof Note that B,B∗ ∈ N. Using Theorem 1.5, we obtain:

N3 = N3B∗B ⊆ N4B = N3B ⊆ N4 = N3.

Theorem 2.4

(i) Wk = N3 when k ≥ 6.
(ii) Wk = N3 when k ≥ 10.
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Proof (i) First observe that Wk ⊆ N3 for all k ≥ 1. Indeed, suppose T ∈ Wk, but
T �∈ N3. Then ran T is closed, and at least one of nul T and nul T∗ must be finite. In
other words, T must be semi-Fredholm. By Lemma 2.1, T is Fredholm of index zero,
contradicting the fact that T �∈ N3. It remains to prove the reverse inclusion when
k ≥ 6.

Since I ∈ W2 by 1.3(iii), we have Wk ⊆ Wk+2 for all k ≥ 1. Thus N3 ⊆ W6 ⊆
W6+2 j for all j ≥ 1. Also, N3 ⊆W6 implies, using Lemma 2.3, that

N3 = N3B ⊆W6B ⊆W7 ⊆W7+2 j for all j ≥ 1.

This completes the proof.
(ii) By Theorem 1.6(ii), N3 = D5. Since D1 ⊆W2, the result easily follows.

Theorem 2.5 For each k ≥ 7, Vk = {T ∈ B(H) : T is not semi-Fredholm, or T is
Fredholm of index−k}.

Proof One inclusion is Proposition 2.1 (i). We now consider the other inclusion. Let
k ≥ 7 be a fixed integer.

There are two ways that T can fail to be semi-Fredholm. Either the range of T is
not closed, or nul T = nul T∗ =∞.

Let us first consider the case where nul T = nul T∗ = ∞. Consider H1 = ker T,
H2 = H⊥1 ∩ ran T, and H3 = H⊥1 ∩ (ran T)⊥. Then H1 is infinite dimensional and
H = H1 ⊕H2 ⊕H3. With respect to this decomposition of H, we may write

T =




0 T1 T2

0 T3 T4

0 0 0


 .

Suppose dim H3 <∞. Let M = ker T∩ker T∗. Since nul T∗ =∞, dim M =∞.
With respect to the decomposition H = M ⊕ M⊥, T decomposes as 0(∞) ⊕ T0.
By Corollary 2.3 of [12], T ∈ D3, say T = D1D2D3. But then T � 0(∞) ⊕ T =
(0(∞) ⊕ D1)(0(∞) ⊕ D2)(0(∞) ⊕ D3) ∈ V6, by 1.3(iii). By Lemma 5 of [15] (or by
[21, 25]), S �a S⊕ I, and hence T � (0(∞)⊕T) = (0(∞)⊕T)(S⊕ I) ∈ V6V1 ⊆ V7.

Secondly, suppose that dim H3 = ∞ = dim H2. As above, from [12] we see

that X1 =
[ 0 0 0

0 T1 T2
0 T3 T4

]
lies in V6. Since X2 =

[
0 I 0
0 0 I
0 0 0

]
�
[

0 1 0
0 0 1
0 0 0

](∞)
∈ V1, we obtain

T = X2X1 ∈ V7.
If dim H3 =∞ but dim H2 <∞, then we can decompose H1 as H1a⊕H1b, each

of infinite dimension. With respect to the decomposition H = H1a⊕ (H1b⊕H2)⊕
H3, we see that

T �




0 0 T1a T2a

0 0 T1b T2b

0 0 T3 T4

0 0 0 0


 �



0 T ′1 T2a

0 T ′3 T ′4
0 0 0




H1a

H1b ⊕H2

H3

.

But by the argument in the previous paragraph, every operator of this form lies in
V7.
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So far we have shown that if nul T = nul T∗ =∞, then T ∈ V7. Now, as we have
seen, L = S⊕ I ∈ V1, and so T = TL j ∈ V7+ j for all j ≥ 1. Let j = k − 7 to obtain
the precise statement of the theorem.

Next, if ran T is not closed, then 0 ∈ σlre (T) as T is not semi-Fredholm. But
then T is the limit of operators Tn, each of which has infinite dimensional kernel and
cokernel. By the previous paragraph, Tn ∈ Vk for all n ≥ 1, from which we conclude
that T ∈ Vk.

Finally, suppose that T is Fredholm of index −k. Consider the polar decompo-
sition T = U |T| of T, where U is a partial isometry of index −k, and kerU =
ker |T| = ker T. Let H1 = ker T and H0 = H⊥1 . With respect to the decompo-
sition H = H1 ⊕ H0, we may write |T| = 0 ⊕ |T|0. Furthermore, given ε > 0,
we can use the Weyl-von Neumann-Berg-Sikonia Theorem to find an invertible op-
erator D0 ∈ B(H0) so that D0 − |T|0 is compact and has norm less than ε. Let
{e1, e2, . . . , es} be a basis for H1, and choose a basis {es+1, es+2, . . . } for H0 which
diagonalises D0—say D0ei = diei for all i ≥ s + 1. Set D = 0⊕ D0 ∈ B(H1 ⊕H0).

Next, let S ∈ B(H) be the unilateral shift satisfying Sen = en+1 for all n ≥ 1. Then
V1 := SD ∈ V1, and if R = U S∗ and Y = RV1, then

‖T − Y‖ =
∥∥U |T| −U S∗SD

∥∥
=
∥∥ |T| − D

∥∥ < ε.

(The difference T − Y is also seen to be compact.) We claim that R is a partial isom-
etry. Indeed, since U is a partial isometry, Q1 = U ∗U and Q2 = UU ∗ are both
projections. Now RR∗ = U S∗SU ∗ = UU ∗ = Q2 is clearly a projection. As well, R∗R
is self adjoint and (R∗R)2 = (SU ∗U S∗)2 = (SQ1S∗)2 = SQ2

1S∗ = SQ1S∗ = R∗R,
proving that R∗R is also idempotent, as required.

Furthermore, ker R = span {e1, S(ker U )} = span {e1, e2, . . . , es+1}, and ind R =
ind U +ind S∗ = −k+1. Let Z be any partial isometry whose initial space is ker R and
whose final space is contained in (ran R)⊥. Then R + Z is an isometry, ind(R + Z) =
ind R (as Z is finite rank, for example), and (R + Z)V1 = (R + Z)SD = RSD + ZSD =
Y + 0.

By the Wold decomposition ([6], Theorem V.2.1), (R + Z) is unitarily equivalent
to S(k−1) ⊕ A, where A is a (possibly vacuous) unitary operator. Once again, we may
apply Lemma 5 of [15] to obtain S(k−1)⊕A � S(k−2)⊕S⊕A �a S(k−2)⊕S � S(k−1) �
Sk−1. Hence R + Z ∈ Vk−1.

It follows that Y = (R+Z)V1 ∈ Vk. Since ε > 0 was arbitrary, T ∈ Vk, completing
the proof.

It is clear that a dual result holds for backward shifts by considering adjoints.

3 Sums of (Products of) Weighted Shifts

Lemma 3.1

(i) V1 ⊆W1 + W1.
(ii) W1 ⊆ V1 + V1.
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Proof (i) Suppose Ven = vnen+1 for all n ≥ 1. Let X and Y be weighted shifts with re-
spect to {en}∞n=1 with weight sequences {v1, 0, v3, 0, v5, 0, . . . } for X and {0, v2, 0, v4,
0, v6, . . . } for Y . Clearly V = X + Y and X,Y ∈W1, by 1.3(i).

(ii) Similar to the above, as operators of the form
⊕

n∈Z

[
0 0
∗ 0

]
lie in V1 as well.

Proposition 3.2

(i) B(H) =
∑

6 V1 =
∑

6 V1.

(ii) B(H) =
∑

6 W1 =
∑

6 W1.
(iii) B(H) =

∑
18 V1 =

∑
18 W1.

Proof (i) Using a technique due to I. D. Berg [3], it was shown by D. A. Herrero
[17], Corollary 5.3 that there exists a normal operator M0 with σ(M0) = D̄ which is
a limit of nilpotent weighted shifts Yn. Since each nilpotent weighted shift is a direct
sum of finite weighted shifts, Yn ∈ V1 for each n ≥ 1. By Corollary 1.8, it follows
that every normal M with σ(M) = D̄ lies in V1.

Suppose N is normal, ‖N‖ ≤ 1 and write N = N1 ⊕ N2 where both summands
act on infinite dimensional subspaces. (That such a decomposition is possible follows
from the Spectral Theorem.)

Now M �a −M �a M ⊕M �a −M ⊕ −M, again, by the Weyl-von Neumann-
Berg-Sikonia Theorem. Furthermore, the same result shows that M �a N1 ⊕M �a

M ⊕ N2. Hence X1 = N1 ⊕ M, X2 = −M ⊕ −M, and X3 = M ⊕ X2 are all
approximately unitarily equivalent to M and hence lie in V1. It follows that N =
X1 + X2 + X3 ∈

∑
3 V1, from which we deduce that B(H) =

∑
6 V1 =

∑
6 V1.

(ii) We remark that the above proof also works for bilateral weighted shifts, since
Yn ∈W1 for all n ≥ 1.

(iii) We shall prove that D1 ⊆
∑

6 V1. Since B(H) =
∑

3 D by 1.6(i), this is suf-
ficient to prove our claim. For each λ ∈ C, consider the matrix Mλ =

[
0 λ
λ 0

]
. Then

Mλ is normal, σ(Mλ) = {λ,−λ}, and so Mλ � diag{−λ, λ} � diag{λ,−λ} �
−Mλ. Now given D = diag{dn}∞n=1, we let D1 = diag{d2n−1}∞n=1 and D2 =
diag{d2n}∞n=1. Clearly D � D1 ⊕ D2. Consider next

L0 :=
∞⊕

n=1

Mdn =




0 d1

d1 0 0
0 0 d2

d2 0 0
0 0 d3

d3 0
. . .

. . .
. . .




.

Clearly L0 � D⊕ −D � −L0 ∈ V1 + V1. Indeed, the same proof shows that for any
diagonal operator C , C ⊕ −C ∈

∑
2 V1. Since C = D(∞) is just another diagonal

operator, we find that L = L(∞)
0 ∈

∑
2 V1. It is not hard to see that L � L ⊕ L �

−L⊕−L � −L, and that L � D1 ⊕ L � L⊕ D2.
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Thus X1 = D1⊕L, X2 = −L⊕−L, and X3 = L⊕D2 are all unitarily equivalent to
L and hence lie in

∑
2 V1. As such, their sum D1⊕D2 � D lies in

∑
6 V1, as required.

As for bilateral shifts, simply note that L0 also lies in
∑

2 W1, and so the same
argument applies.

Remark 3.3 In part (i) of the above theorem, we showed that N1 ⊆
∑

3 V1. That
this is the best possible estimate for this inclusion is demonstrated by the following
argument. For X ∈ B(H), we denote the spectral radius of X by spr(X), and we let
T = {z ∈ C : |z| = 1}.

The key to the argument is that if Z ∈ V̄1 and α ∈ σ(Z) with |α| = spr(Z), then
λα ∈ σ(Z) for all λ ∈ T, i.e. spr(Z)T ⊆ σ(Z).

We shall show that this is the case by demonstrating that if Y ⊆ B(H) and if
X ∈ Y implies X �a λX for all λ ∈ T, then every Y ∈ Ȳ has spectrum with circular
symmetry; i.e., α ∈ σ(Y ) implies αT ⊆ σ(Y ).

To see this, suppose Y = limn→∞ Xn with {Xn} ⊆ Y. If α ∈ σ(Y ), then either
there exists an infinite subsequence {Xnk} of {Xn} so that α ∈ σ(Xnk ) for all k ≥ 1,
or there exists n0 so that n ≥ n0 implies α �∈ σ(Xn).

Let λ ∈ T. In the first case, λα ∈ σ(Xnk ), since Xnk �a λXnk . Since the invertibles
are open in B(H), we conclude that λα ∈ σ(Y ). In the second case, α ∈ σ(Y ) but
α �∈ σ(Xn) for n ≥ n0 implies that {(αI−Xn)−1}n≥n0 is not bounded in norm. Since
‖(αI − Xn)−1‖ = ‖(αI − λ̄Xn)−1‖ for all n ≥ n0 (as Xn �a λ̄Xn), it follows that
{‖(αλI − Xn)−1‖}n≥n0 is not bounded. Since (αλI − Xn) converges to (αλI −Y ), it
follows that αλ ∈ σ(Y ). Since λ ∈ T was arbitrary, we are done with this part of the
proof.

Now suppose that Z is any subset of B(H) for which Z ∈ Z implies spr(Z)T ⊆
σ(Z). We claim that I �∈

∑
2 Z. Indeed, suppose I = Z1 + Z2 with Z1,Z2 ∈ Z, and

let ri = spr(Zi), i = 1, 2. We may assume without loss of generality that 0 ≤ r1 ≤ r2.
Since ∂

(
σ(X)

)
⊆ σa(X) for all X ∈ B(H), we can find a sequence {xn} of unit

vectors in H so that ‖(Z2 + r2I)xn‖ → 0. Let us write 0 =
(

(Z1 + Z2) − I
)

xn =

(Z2 + r2I)xn +
(

Z1 − (r2 + 1)I
)

xn. Since limn→∞(Z2 + r2I)xn = 0, it follows that

‖Z1xn − (r2 + 1)xn‖ → 0.

But then spr(Z1) = r1 < r2 + 1 ∈ σa(Z1), a contradiction.
Since V1 has the property that V ∈ V1 implies V � λV for all λ ∈ T, we conclude

that I �∈
∑

2 V̄1. The same argument also shows that I �∈
∑

2 W̄1.

Proposition 3.4

(i) B(H) =
∑

3 Wk for all k ≥ 2.
(ii) B(H) =

∑
2 Wk for all k ≥ 6.

(iii) B(H) =
∑

6 Vk for all k ≥ 2.

Proof (i) From 1.3(iii), D1 ⊆ W2. In particular, I ∈ W2, and so D1 ⊆ W2k for all
k ≥ 1. Thus B(H) =

∑
3 D1 =

∑
3 W2k for all k ≥ 1.

From this we see that if X ∈ B(H), then XB ∈
∑

3 W2k, and hence X = (XB)B∗ ∈∑
3 W2k+1 for all k ≥ 1.
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(ii) By Lemma 4.3 of [12], every normal operator is a product of 3 diagonal op-
erators. Since each diagonal is in turn a product of two bilateral weighted shifts,
N1 ⊆W6, from which we obtain B(H) =W6 + W6. Again, since I ∈W2, it follows
that B(H) =W2k +W2k for all k ≥ 3. Finally, as in part (i) above, if X ∈ B(H), then
XB ∈W2k + W2k implies that X = (XB)B∗ ∈W2k+1 + W2k+1 for all k ≥ 3.

(iii) Again, from 1.3(ii), we see that if D is a diagonal operator, then D⊕ 0 ∈ V2.
Thus I ⊕ 0 ∈ V2, and therefore D ⊕ 0 = (D ⊕ 0)(I ⊕ 0) j ∈ V2+2 j for all j ≥ 1.
Since every diagonal operator is the sum of two diagonal operators, each unitarily
equivalent to one of the form D ⊕ 0, and since every operator is the sum of three
diagonal operators, it follows that B(H) =

∑
6 V2k for all k ≥ 1.

Next, in an argument similar to that above, let X ∈ B(H). Then XS∗ ∈
∑

6 V2k

and so X = (XS∗)S ∈
∑

6 V2k+1 for each k ≥ 1.

Proposition 3.5

(i) B(H) =Wk + Wk for every k ≥ 2.
(ii) B(H) =

∑
4 Vk for each k ≥ 2.

(iii) B(H) = Vk + Vk for each k ≥ 6.

Proof (i) By Lemma 2.2(i), N1 ⊆ W2, and so B(H) =
∑

2 W2 ⊆
∑

2 W2+2 j for
all j ≥ 1. As in the previous proof, X ∈ B(H) implies XB∗ ∈

∑
2 W2k and hence

X = (XB∗)B ∈
∑

2 W2k+1 for all k ≥ 1.

(ii) Now for all normal operators N , we have seen that N ⊕ 0 ∈ V2. Recall that
I⊕ S ∈ V1, and hence N ⊕ 0 = (N ⊕ 0)(I ⊕ S) j ∈ V2+ j for all j ≥ 0. Given N ∈ N1,
write N = (N1 ⊕ 0) + (0 ⊕ N2) to get N1 ⊆ V2+ j + V2+ j . Then B(H) =

∑
4 Vk for

all k ≥ 2.
(iii) By Corollary 2.3 of [12], every operator of the form T ⊕ 0(∞) is a product

of three diagonal operators. From this it easily follows that T ⊕ 0(∞) ⊕ 0(∞) can be
written as (D1 ⊕ 0(∞)) + (D2 ⊕ 0(∞)) + (D3 ⊕ 0(∞)) where each Di is diagonal. Since
Di ⊕ 0(∞) ∈ V2, we obtain T ⊕ 0(∞) ∈ V6 for any T ∈ B(H).

We can then apply Voiculescu’s Theorem [28] to write X �a X ⊕ ρ
(
π(X)

) (∞)
,

where ρ : C∗
(
π(X)

)
→ B(Hρ) is a faithful representation of the C∗-algebra gener-

ated by π(X) in the Calkin algebra. Since X ⊕ 0(∞) and 0(∞) ⊕ ρ
(
π(X)

) (∞)
both lie

in V6, it follows that X ∈ V6 + V6. The usual trick now shows that B(H) = Vk + Vk

for each k ≥ 6.

4 Miscellanea

4.1

We shall finish this note by pointing out some open questions as well as a couple
of miscellaneous results on sums of Laurent and Toeplitz operators. Recall that an
operator N is called a Laurent operator if N is unitarily equivalent to a multiplica-
tion operator M f on L2(T, dm), where dm represents normalized Lebesgue arclength
measure and f ∈ L∞(T, dm); equivalently, N admits a matrix form N = [ni, j]i, j∈Z
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for which ni, j = ni+1, j+1 for all i, j. If P denotes the projection of L2(T, dm) onto
the Hardy space H2(T, dm), and if f ∈ L∞(T, dm), then the corresponding Toeplitz
operator is defined by T f (ϕ) = P( fϕ) for each ϕ ∈ H2. Equivalently, T defines a
Toeplitz operator if T admits a matrix [ti, j ]∞i, j=1 with ti, j = ti+1, j+1 for all i, j. We
denote the set of Laurent and Toeplitz operators by L and T respectively. A useful
characterization (for our purposes) of Laurent operators was given by A. Brown and
P. R. Halmos.

Theorem 4.2 (Brown-Halmos [4]) A normal operator N is a Laurent operator if and
only if N has no eigenvalues of finite multiplicity.

Proposition 4.3 N1 ⊆
∑

3 L. Thus B(H) =
∑

6 L.

Proof Choose N ∈ N1, and write N = N1 ⊕ N2 where each summand acts on an
infinite dimensional space. Let M = N(∞) ⊕ −N(∞) and observe that M ∈ L by
Theorem 4.2. Now M � N1 ⊕M � −M ⊕ −M � M ⊕ N2, and therefore N ∈ L3,
being the sum of three operators in L. The second statement is trivial.

Proposition 4.4 If N is normal, then N ∈ L + L. Hence B(H) =
∑

4 L.

Proof By the Weyl-von Neumann-Berg-Sikonia Theorem, given ε > 0 we can per-
turb N by a compact operator K with ‖K‖ < ε to obtain N + K � D1⊕D(∞)

2 , where
D1 and D2 are diagonal and act on infinite dimensional spaces.

Then X1 = D1 ⊕ D(∞)
1 ⊕ 0(∞) and X2 = 0(∞) ⊕ (D2 − D1)∞ ⊕ D(∞)

2 ∈ L by
Theorem 4.2. As such, N + K � X1 + X2 ∈ L + L, and hence N1 ∈ L + L. From this
the result follows.

We now need an auxiliary result, not unrelated to the Marriage Lemma.

Lemma 4.5 (Ménage-à-trois) Let {dn}∞n=1 be an enumeration of the rational num-
bers in [−1, 1] with each number appearing infinitely often in the sequence. Let {hn}∞n=1

be any sequence of rational numbers in [−1, 1]. Then there exist three permutations α,
β, and γ of N so that

hn = dα(n) + dβ(n) + dγ(n) for all n ≥ 1.

Proof Choose α(1) = 1. Select β(1), γ(1) ∈ N so that dβ(1) = −dα(1) and dγ(1) =
h1. Next, choose β(2) = min

(
N \ {β(1)}

)
. Choose γ(2) ∈ N \ {γ(1)} and

α(2) ∈ N \ {α(1)} so that dγ(2) = −dβ(2) and dα(2) = h2. Thirdly, choose γ(3) =
min
(

N \ {γ(i)}2
i=1

)
. Choose α(3) ∈ N \ {α(i)}2

i=1, β(3) ∈ N \ {β(i)}2
i=1 so that

dα(3) = −dγ(3) and dβ(3) = h3.
In general, given k ≥ 1, suppose that α( j), β( j), and γ( j) have been chosen,

1 ≤ j ≤ 3k.
Choose α(3k + 1) = min

(
N \ {α( j)}3k

j=1

)
. Select β(3k + 1) ∈ N \ {β( j)}3k

j=1

and γ(3k + 1) ∈ N \ {γ( j)}3k
j=1 so that dβ(3k+1) = −dα(3k+1) and dγ(3k+1) = h3k+1.

Choose β(3k + 2) = min
(

N \ {β( j)}3k+1
j=1

)
. Select γ(3k + 2) ∈ N \ {γ( j)}3k+1

j=1
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and α(3k + 2) ∈ N \ {α( j)}3k+1
j=1 so that dγ(3k+2) = −dβ(3k+2) and dα(3k+2) = h3k+2.

Choose γ(3k + 3) = min
(

N \ {γ( j)}3k+2
j=1

)
. Select α(3k + 3) ∈ N \ {α( j)}3k+2

j=1 and

β(3k + 3) ∈ N \ {β( j)}3k+2
j=1 so that dα(3k+3) = −dγ(3k+3) and dβ(3k+3) = h3k+3.

That α, β, and γ are injective is clear from the construction. That they are surjec-
tive follows from the fact that α(3k + 1) = min

(
N\{α( j)}3k

j=1

)
≥ k + 1, β(3k + 2) =

min
(

N \ {β( j)}3k+1
j=1

)
≥ k + 1, and γ(3k + 3) = min

(
N \ {γ( j)}3k+2

j=1

)
≥ k + 1 for all

k ≥ 1.

Using what is essentially the same argument as in Remark 3.3, we can show that
we can not do this with only two permutations. Let hn =

1
2 for all n ≥ 1. If hn =

dα(n) + dβ(n) for each n ≥ 1, then for some m ≥ 1, dα(m) = −1, so that dβ(m) =
3
2 , a

contradiction.

Theorem 4.6 If H is a self-adjoint operator, then H ∈
∑

3 T. Thus B(H) =
∑

6 T.

Proof As always, we may assume that ‖H‖ ≤ 1. By Theorem 1.7, given ε > 0, we
can approximate H by a self-adjoint diagonal operator H1 = diag{hn}∞n=1 satisfying
hn ∈ [−1, 1] ∩Q for all n ≥ 1, and ‖H −H1‖ < ε.

Let {dn}∞n=1 be an enumeration of the rational numbers in [−1, 1] with each num-
ber appearing infinitely often, and set D = diag{dn}∞n=1. Let f ∈ L∞(T, dm) be the
function f (z) = (z + z̄)/2. Then f = f̄ and ran f = [−1, 1]. Thus T f = T f̄ = T∗f
and by the Hartman-Wintner Theorem ([8], Theorem 7.20), σ(T f ) = [−1, 1]. Once
again, Theorem 1.7 implies that T f �a D, and hence D ∈ T̄. The permutations
α, β and γ of Lemma 4.5 give rise to three unitary operators U1, U2 and U3 so
that D1 := U ∗1 DU1 = diag{dα(n)}∞n=1, D2 := U ∗2 DU2 = diag{dβ(n)}∞n=1, and
D3 := U ∗3 DU3 = diag{dγ(n)}∞n=1.

Thus T f �a Di ∈ T̄, 1 ≤ i ≤ 3. Furthermore, H1 = D1 + D2 + D3 ∈
∑

3 T̄. As

such, ‖H − (D1 + D2 + D3)‖ < ε. Since ε > 0 was arbitrary, H ∈
∑

3 T.

4.7 Open Questions

A number of open questions remain. Among the most interesting is one posed by
Halmos [14] and again by Herrero [18]: what is the closure of the set of weighted
shifts? Again, the answer depends upon one’s notion of “weighted shift”, so we pro-
pose this question for both unilateral shifts and bilateral shifts as defined in this note.

A second question is to find optimal bounds for the estimates obtained here.
In particular, can every operator be expressed as a sum of fewer than 18 unilateral
weighted shifts?

Proposition 4.3 for Laurent operators clearly suggests tackling the same question
for Toeplitz operators. The lack of an analogue of the Brown-Halmos Theorem for
Toeplitz operators provides an impediment. On the other hand, the fact that every
operator is a finite sum of Toeplitz operators follows simply from the fact that this
latter set is closed under unitary conjugation as well as scalar multiplication. The set
of finite sums of Toeplitz operators therefore coincides with the linear span of this set,
and forms a unitarily invariant linear manifold of B(H). Since it is not contained in
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CI + K(H), a result of Fong, Miers and Sourour [10] implies that it coincides with
B(H).

There is nothing special about the Toeplitz operators in this regard. Let T be any
operator which is not of the form scalar plus compact. Let U(T) denote the set of all
operators unitarily equivalent to T. The same result implies that span U(T) = B(H).
(Note: this fact was independently observed by P. Y. Wu [32].) Given X ∈ B(H), let
βT(X) = min{k ∈ N : X ∈

∑
k CU(T)}; that is, βT(X) denotes the minimum

number k such that X =
∑k

j=1 λ jT j for some λ j ∈ C and T j ∈ U(T), 1 ≤ j ≤ k. Set
βT = supX∈B(H) βT(X). For which T ∈ B(H) is βT finite? There is also a topological

version of this problem, namely: set β̄T(X) = min{k ∈ N : X ∈
∑

k CU(T)}
and β̄T = supX∈B(H) β̄T(X). Since span U(T) = B(H) from above, it follows that

B(H) =
⋃∞

k=1

∑
k CU(T). The Baire Category Theorem says that B(H) is not a

countable union of closed, nowhere dense sets, and hence there exists k0 ∈ N so
that
∑

k0
CU(T) has interior. It follows that

∑
2k0

CU(T) has the zero operator in its

interior, and thus
∑

2k0
CU(T) coincides with B(H). In particular, β̄T is finite for all

operators T ∈ B(H) which are not of the form scalar plus compact.
The proof of Theorem 4.6 shows that if R = R∗ and σ(R) = [−1, 1], then β̄R ≤ 6.

We conclude with an example of an operator T for which β̄T = 3.

Example 4.7 Let T =
⊕∞

n=1

⊕∞
j=1(Tn, j ⊕ −Tn, j)(∞), where {Tn, j}∞j=1 is a dense

subset of the unit ball of Mn(C) for all n ≥ 1. If follows from [16], Corollary 4.2
that if Y ∈ B(H), ‖Y‖ ≤ 1, then T �a T ⊕ Y . We may now recycle the proof of
Proposition 3.5.

Given X ∈ B(H), ‖X‖ ≤ 1, we can apply Voiculescu’s Theorem to obtain a

faithful representation ρ of C∗
(
π(X)

)
so that X �a X ⊕ ρ

(
π(X)

) (∞)
. Since T(∞) �

T � −T, we have Z1 = −T⊕−T, Z2 = X⊕T, and Z3 = T⊕ρ
(
π(X)

) (∞)
which are

all approximately unitarily equivalent to T. Then X �a Z1 + Z2 + Z3 ∈
∑

3 CU(T).
Since X ∈ B(H) was arbitrary, β̄T ≤ 3.

It is not difficult to see that σ(T) = D̄, and that for any λ ∈ T, T �a λT. The
argument used in Remark 3.3 implies that I �∈

∑
2 CU(T), and hence β̄T ≥ 3. In

conclusion, β̄T = 3.
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125–154.

[19] M. Khalkhali, C. Laurie, B. Mathes and H. Radjavi, Approximation by products of positive operators.
J. Operator Theory 29(1993), 237–247.

[20] G. J. Murphy, Diagonalising operators on Hilbert space. Proc. Roy. Irish Acad. Sect. A 87(1987),
67–71.

[21] C. Pearcy and N. Salinas, Compact perturbations of seminormal operators. Indiana Univ. Math. J.
22(1973), 789–793.

[22] H. Radjavi, On self-adjoint factorization of operators. Canad. J. Math. 21(1969), 1421–1426.
[23] , Products of hermitian matrices and symmetries. Proc. Amer. Math. Soc. 21(1969), 369–372.
[24] , Products of hermitian matrices and symmetries; errata. Proc. Amer. Math. Soc. 26(1970),

701.
[25] N. Salinas, Reducing essential eigenvalues. Duke Math. J. 40(1973), 561–580.
[26] A. L. Shields, Weighted shift operators and analytic function theory. Math. Surveys 13, Amer. Math.

Soc., Providence, RI, 1974, 49–128.
[27] W. Sikonia, The von Neumann converse of Weyl’s theorem. Indiana Univ. Math. J. 21(1971),

121–123.
[28] D. Voiculescu, A non-commutative Weyl-von Neumann theorem. Rev. Roumaine Math. Pures Appl.

21(1976), 97–113.
[29] P. Y. Wu, Products of nilpotent matrices. Linear Algebra Appl. 96(1987), 227–232.
[30] , Products of normal operators. Canad. J. Math 40(1988), 1322–1330.
[31] , The operator factorization problems. Linear Algebra Appl. 117(1989), 35–63.
[32] , Additive combinations of special operators. Functional analysis and operator theory 30,

Warsaw, 1992, Banach Center Publ., Polish Acad. Sci., Warsaw, 1994, 377–361.

Department of Mathematical Sciences
University of Alberta
Edmonton, Alberta
T6G 2G1
e-mail: L.Marcoux@ualberta.ca

https://doi.org/10.4153/CMB-2001-047-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-047-1

