AN INCLUSION THEOREM FOR GENERALIZED CESÀRO AND RIESZ MEANS

A. MEIR

For a positive integer, p, a strictly increasing unbounded sequence of positive numbers $\left\{\lambda_{n}: n \geqslant 1\right\}$ and an arbitrary sequence of complex numbers $\left\{a_{n}\right\}$ let

$$
\begin{gather*}
A^{p}(\omega)=\sum_{\lambda_{\nu}<\omega}\left(\omega-\lambda_{\nu}\right)^{p} a_{\nu}, \tag{1}\\
C_{n}^{p}=\sum_{\nu=0}^{n}\left(\lambda_{n+1}-\lambda_{\nu}\right) \ldots\left(\lambda_{n+p}-\lambda_{\nu}\right) a_{\nu} . \tag{2}
\end{gather*}
$$

The series $\sum a_{\nu}$ is said to be (R, λ, p) summable to s if

$$
\begin{equation*}
R^{p}(\omega) \equiv \omega^{-p} A^{p}(\omega) \rightarrow s \quad \text { as } \omega \rightarrow \infty, \tag{3}
\end{equation*}
$$

and (C, λ, p) summable to s if

$$
\begin{equation*}
t_{n}^{p} \equiv\left(\lambda_{n+1} \lambda_{n+2} \ldots \lambda_{n+p}\right)^{-1} C_{n}^{p} \rightarrow s \quad \text { as } n \rightarrow \infty . \tag{4}
\end{equation*}
$$

D. C. Russell (2) proved that $(C, \lambda, p) \subseteq(R, \lambda, p)$ for any $\left\{\lambda_{n}\right\}$ and any $p \geqslant 0$. In the opposite direction he showed that $(R, \lambda, p) \subseteq(C, \lambda, p)$ for $p \geqslant 3$ if the sequence $\left\{\lambda_{n}\right\}$ satisfies the condition

$$
\begin{equation*}
\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}}=O\left(\frac{\lambda_{n+1}}{\lambda_{n+1}-\lambda_{n}}\right), \tag{5}
\end{equation*}
$$

and for all $\left\{\lambda_{n}\right\}$ if $p=0,1,2$. In a recent note, D. Borwein (1) established the same inclusion relation under another (independent) condition:

$$
\begin{equation*}
\lambda_{n+1}=O\left(\lambda_{n}\right) . \tag{6}
\end{equation*}
$$

We shall prove here that the inclusion relation holds for all $p \geqslant 0$ without any restriction on the sequence $\left\{\lambda_{n}\right\}$.

Theorem. $(R, \lambda, p) \subseteq(C, \lambda, p)$ for all sequences λ and $p \geqslant 0$.
The proof of the theorem is an immediate consequence of the following lemma.

Lemma. For every $n \geqslant 1$ there exist real numbers $C_{j}{ }^{(n)}, \omega_{j}{ }^{(n)}(j=0,1, \ldots, p)$ satisfying

$$
\begin{align*}
\sum_{j=0}^{p} C_{j}^{(n)} & =1, \tag{7}\\
\left|C_{j}^{(n)}\right| \leqslant H, \quad j & =0,1, \ldots, p ;
\end{align*}
$$

Received October 21, 1966.
where H depends on p but not on n,

$$
\begin{equation*}
\lambda_{n} \leqslant \omega_{j}^{(n)} \leqslant \lambda_{n+p}, \quad j=0,1, \ldots, p \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{n}^{p}=\sum_{j=0}^{p} C_{j}^{(n)} R^{p}\left(\omega_{j}^{(n)}\right) . \tag{10}
\end{equation*}
$$

Proof of the lemma. We may take $p \geqslant 1$ in the proof. Let n be any fixed integer. We distinguish between two cases.

Case (i). Suppose that

$$
\begin{equation*}
\lambda_{n+p} / \lambda_{n} \leqslant(p+1)^{p} . \tag{11}
\end{equation*}
$$

From equations (3), (4), and (5) of (1) it follows that there exist $y_{j}{ }^{(n)}$ and $\omega_{j}{ }^{(n)}$ satisfying

$$
\begin{align*}
& \lambda_{n} \leqslant \omega_{j}^{(n)} \leqslant \lambda_{n+p}, \tag{12}\\
&\left|y_{j}^{(n)}\right| \leqslant(p+1)!(p+1)^{2 p}, \tag{13}\\
& C_{n}^{p}=\sum_{j=0}^{p} y_{j}^{(n)} A^{p}\left(\omega_{j}^{(n)}\right) . \tag{14}
\end{align*}
$$

Also it follows from the construction of the y_{j} 's that

$$
\begin{equation*}
\sum_{j=0}^{p} y_{j}{ }^{(n)}\left(\omega_{j}^{(n)}\right)^{p}=\lambda_{n+1} \ldots \lambda_{n+p} \tag{15}
\end{equation*}
$$

Dividing both sides of (14) by $\lambda_{n+1} \ldots \lambda_{n+p}$ we have that

$$
\begin{equation*}
t_{n}^{p}=\sum_{j=0}^{p} C_{j}^{(n)} R^{p}\left(\omega_{j}^{(n)}\right), \tag{16}
\end{equation*}
$$

where

From (15) it follows that

$$
C_{j}^{(n)}=y_{j}^{(n)} \frac{\left(\omega_{j}^{(n)}\right)^{p}}{\lambda_{n+1} \ldots \lambda_{n+p}} .
$$

(17)

$$
\begin{equation*}
\sum_{j=0}^{p} C_{j}^{(n)}=1 \tag{17}
\end{equation*}
$$

and from (11), (12), and (13) that

$$
\begin{equation*}
\left|C_{j}^{(n)}\right| \leqslant(p+1)!(p+1)^{2 p+p^{2}} \tag{18}
\end{equation*}
$$

(12), (16), (17), and (18) prove the lemma in case (i).

Case (ii). Suppose that

$$
\lambda_{n+p} / \lambda_{n}>(p+1)^{p} .
$$

Then there exists an integer $r, 0 \leqslant r \leqslant p-1$, such that

$$
\begin{equation*}
\lambda_{n+r+1} / \lambda_{n+r}>p+1 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{n+j+1} / \lambda_{n+j} \leqslant p+1, \quad j=0,1, \ldots, r-1 . \tag{20}
\end{equation*}
$$

We define the numbers $\omega_{j}{ }^{(n)}$ for $j=0,1, \ldots, p$ by

$$
\begin{equation*}
\omega_{j}^{(n)}=(j+1) \lambda_{n+r}, \tag{21}
\end{equation*}
$$

and the numbers $C_{j}{ }^{(n)}$ by

$$
\begin{equation*}
\prod_{k=1}^{p}\left(1-\frac{x}{\lambda_{n+k}}\right) \equiv \sum_{j=0}^{p} C_{j}^{(n)}\left(1-\frac{x}{\omega_{j}^{(n)}}\right)^{p} . \tag{22}
\end{equation*}
$$

It is easily seen that the identity (22) is equivalent to the system of equations:

$$
\begin{equation*}
\sum_{j=0}^{p} C_{j}^{(n)}(j+1)^{-k}=\beta_{k}^{(n)}, \quad k=0,1, \ldots, p \tag{23}
\end{equation*}
$$

where

$$
\beta_{k}^{(n)}=\binom{p}{k}^{-1} \sum\left(\lambda_{\nu_{1}} \cdot \lambda_{\nu_{2}} \cdot \ldots \cdot \lambda_{\nu_{k}}\right)^{-1} \lambda_{n+r}^{k}
$$

and the summation extends to all $\binom{p}{k}$ combinations of k integers $\nu_{1}, \nu_{2}, \ldots, \nu_{k}$ from $n+1, n+2, \ldots, n+p$. By (20) we have for all ν obeying

$$
n+1 \leqslant \nu \leqslant n+p
$$

that

$$
0<\lambda_{n+r} / \lambda_{\nu} \leqslant(p+1)^{p}
$$

from which it follows easily that for $0 \leqslant k \leqslant p$

$$
0<\beta_{k}^{(n)} \leqslant(p+1)^{k p} \leqslant(p+1)^{p^{2}}
$$

Using Cramer's formula to solve (23) for $C_{j}{ }^{(n)}$ we conclude by an elementary argument that there exists a constant $A=A_{p}$ independent of n such that

$$
\begin{equation*}
\left|C_{j}^{(n)}\right| \leqslant A . \tag{24}
\end{equation*}
$$

It also follows from (23), with $k=0$, that

$$
\begin{equation*}
\sum_{j=0}^{p} C_{j}^{(n)}=1, \tag{25}
\end{equation*}
$$

and from (18) and (20) that

$$
\begin{equation*}
\lambda_{n+r} \leqslant \omega_{j}^{(n)}<\lambda_{n+r+1}, \quad j=0,1, \ldots, p \tag{26}
\end{equation*}
$$

Now on putting $x=\lambda_{\nu}$ in (22), multiplying by a_{ν}, and summing over $1 \leqslant \nu \leqslant n+r$,

$$
t_{n}{ }^{p}=\sum_{j=0}^{p} C_{j}^{(n)} R^{p}\left(\omega_{j}^{(n)}\right),
$$

which, together with (24), (25), and (26), concludes the proof of the lemma in case (ii).

References

1. D. Borwein, On a generalized Cesàro summability method of integral order, Tôhoku Math. J., 18 (1966), 71-73.
2. D. C. Russell, On generalized Cesàro means of integral order, Tôhoku Math. J., 17 (1965), 410-442.

The University of Alberta
Edmonton, Alberta

