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Integral expressions for the first-order correction to the effective slip length for
longitudinal flows over a unidirectional superhydrophobic surface with rectangular
grooves are determined under the assumptions that the meniscus curvature is small
and the viscosity contrast between the groove-trapped subphase gas and the working
fluid is significant. Both pressure-driven channel flows and semi-infinite shear flows
are considered. Reciprocity ideas, based on use of Green’s second identity, provide
the integral expressions with integrands dependent on known flat-meniscus solutions
found by Philip (Z. Angew. Math. Phys., vol. 23, 1972, pp. 353–372). The results
extend earlier work by Sbragaglia & Prosperetti (Phys. Fluids, vol. 19, 2007, 043603)
on how weak meniscus curvature affects hydrodynamic slip. In particular, we derive a
new integral expression for the first-order slip length correction due to weak meniscus
curvature.

Key words: drag reduction, interfacial flows (free surface), microfluidics

1. Introduction
The study of superhydrophobic surfaces is an active area of research owing to its

relevance in a rich variety of micro- and nano-fluidics applications. Such surfaces
can dramatically reduce flow resistance in the manipulation of small volumes of fluid
(Rothstein 2010). They typically have a surface microstructure that, owing to capillary
effects, prevents fluid from fully penetrating interstitial regions between grooves, posts
or protrusions leading to enhanced slip of the fluid over that surface. Consequently
the usual assumption of a no-slip condition is no longer relevant (Neto et al. 2005;
Lauga, Brenner & Stone 2007) and must be replaced by some more accurate effective
boundary condition allowing some degree of slip.

The focus of the present paper is on the case of surfaces made up of periodic
arrays of unidirectional grooves where the flow along the surface is parallel to those
structures (longitudinal flow). Ou, Perot & Rothstein (2004) and Ou & Rothstein
(2005) have found in experiments for such longitudinal flows in microchannels that
significant drag reduction can be achieved. Other experimental and numerical works,
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of both longitudinal and transverse flow along grooved channels, have been carried
out by Davies et al. (2006), Maynes, Webb & Davies (2007b) and Woolford, Maynes
& Webb (2009). Numerical investigations of drag reduction in this setting have been
performed by Ng & Wang (2009), Ng, Chu & Wang (2010) and Teo & Khoo (2010).

A common quantifier of the degree of slip is the so-called hydrodynamic slip length:
for shear flows with shear rate γ̇ over such a surface occupying the plane y= 0 the
velocity field u far from the plane of the surface takes the form

u= γ̇ (y+ λ)x̂, (1.1)

where x̂ is the flow direction. The constant λ is the effective slip length and is a
measure of the frictional properties of the surface: it is the fictional distance below
the surface at which the shear flow would extrapolate to zero. Higher values of slip
length mean greater slip at the surface. For pressure-driven channel flows the effective
slip length λ is defined by equating the mass flux through the channel to that which
would ensue, for the same driving pressure gradient, if the superhydrophobic surface
is replaced by a Navier-slip boundary with slip parameter λ.

Theoretical studies of superhydrophobic surfaces include that by Lauga & Stone
(2003) who harnessed analytical results due to Philip (1972) on solutions to a class
of mixed boundary value problems for harmonic and biharmonic fields to infer their
global slip properties. In their models the surfaces are made up of combinations of
no-slip and no-shear surfaces so that the effect of a second viscous fluid enclosed in
the grooves is ignored. Moreover Lauga & Stone (2003) study arrangements in which
all no-shear surfaces have the same curvature as the adjacent no-slip surfaces. Indeed
the majority of existing theoretical and numerical studies adopt the same assumption
that the meniscus does not protrude into or out of the fluid.

The purpose of the present paper is to offer theoretical insights on the situation in
which both weak meniscus curvature and the effect of a viscous subphase fluid are
taken into account. Concerning the effects on slip of a subphase gas, Davies et al.
(2006), Maynes et al. (2007a) and Woolford et al. (2009) have carried out numerical
simulations to study the effects of trapped pockets of air in closed-end grooves
in unidirectional grooved surfaces and compared their results with experimental
data. Ng & Wang (2009) and Ng et al. (2010) devised numerical methods based
on eigenfunction expansions to study the same problem, both in longitudinal and
transverse flows, and including the incorporation of intrinsic slip on the solid–liquid
surfaces. In an effort to model subphase gas effects theoretically Schönecker & Hardt
(2013) and Schönecker, Baier & Hardt (2014) have proposed a semi-analytical method
where the liquid–gas interface, taken to be flat, is assumed to be a constant non-zero
shear-stress boundary which leads to a non-uniform local slip length distribution
across the interface. Those authors produce approximate formulas for the effective
slip length as a function of viscosity contrast and the flow geometry; the formulas are
shown, by comparison with full numerical simulations, to give good approximations
in many situations. Other models have been presented (Asmolov & Vinogradova
2012; Nizkaya, Asmolov & Vinogradova 2013, 2014) including a ‘gas cushion model’
which assumes that dissipation at the gas/liquid interface is dominated by the shearing
of a continuous gas layer. The theoretical treatment relies on a so-called operator
method (Nizkaya et al. 2014) which provides a mechanism which transplants the flow
in the gas subphase to a local slip boundary condition at the liquid–gas interface.

For superhydrophobic surfaces with air trapped in the grooves and where the
working fluid is water the ratio of fluid viscosities is typically 1/55≈ 0.02, which is
significantly less than unity. For liquid-infused surfaces Solomon, Khalil & Varanasi
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Subphase gas and meniscus curvature effects for superhydrophobic surfaces 309

(2014) give a table recording drag reduction characteristics associated with varying
working fluid to subphase fluid viscosity ratios and it is noticeable that the viscosity
ratios cited are either much smaller, or much larger, than unity. It is therefore natural
to contemplate carrying out a formal perturbation analysis of the problem with the
viscosity contrast taken as the expansion parameter. Such a perturbation analysis, with
a view to gaining theoretical insight into the effect on slip of an enclosed subphase
gas, does not appear to have been carried out before. In this paper we carry out
such an analysis for the case of a weakly viscous subphase gas; in the supplementary
material available at https://doi.org/10.1017/jfm.2017.274, we include details of the
generalization of our approach to a highly viscous subphase more relevant to so-called
liquid-infused surfaces.

On the other hand, a perturbation approach to incorporating non-zero meniscus
curvature has already been explored. Sbragaglia & Prosperetti (2007) calculated the
first-order correction to the effective longitudinal slip length for flows in channels
assuming that the curvature of the meniscus is small. Their analysis places no
restriction on the no-shear fraction of the surface. Proceeding from a complementary
direction, the present author (Crowdy 2010) has studied the same problem of
longitudinal shear flow over a periodic array of protruding menisci using a conformal
geometric approach that places no restriction on the protrusion angle but which is
valid in the dilute limit of small no-shear fraction (hence, the no-shear fraction is now
the relevant perturbation expansion parameter). An explicit formula for the effective
slip length was found. The author has since performed a higher-order analysis in the
no-shear fraction (Crowdy 2016) producing explicit slip length formulas that are now
nonlinear in both protrusion angle and no-shear fraction and which give excellent
approximations to the effective slip length even at large no-shear fractions, and still
without restriction on the protrusion angle. The latter results pertain to semi-infinite
shear flows over the surfaces and are not directly relevant to channel flows although
they can be used to approximate hydrodynamic slip in large aspect ratio channel
flows via asymptotic methods. Schnitzer (2016) has built on these results to find
asymptotic formulas valid at even higher no-shear fractions.

We now summarize the main results of the present paper. The flow situation to be
considered is longitudinal pressure-driven flow in a channel of height h comprising an
upper no-slip wall and a lower wall made up of a periodic array of curved circular-arc
menisci spanning rectangular grooves of depth H. We also treat the case in which h→
∞ and contemplate that, instead of a pressure-driven flow, a shear flow, with imposed
shear rate γ̇ , exists in the semi-infinite region above the meniscus; this semi-infinite
case has been considered theoretically by several other authors using different methods
(Nizkaya et al. 2014; Schönecker et al. 2014). The period of the surface is 2a and the
meniscus occupies width 2b; the protrusion angle is θ � 1; thus we assume that the
meniscus is only weakly deformed from the flat state. Figure 1 shows a schematic of
a typical period window. Region D is occupied by fluid of viscosity η1 and region G
contains fluid of viscosity η2 where, in the main body of this paper, we assume that
the viscosity ratio

ε ≡
η2

η1
� 1. (1.2)

Under the assumption that the two non-dimensional parameters θ ∼ ε� 1 are of the
same order, our principal result is to show that an integral expression for the effective
slip length λ associated with the pressure-driven flow is

λ=
2

ah2S2

∫
meniscus

[
−wP

∂(wP +P)
∂n

+ εwP
∂W0

∂n

]
ds+ o(ε, θ). (1.3)
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FIGURE 1. Single period window, in an (x, y) plane, for longitudinal flow in a channel
of height h with a periodic array of rectangular grooves of height H. The upper wall is
a no-slip surface. The meniscus protrusion angle θ is assumed to be small. Domain D is
occupied by fluid of viscosity η1, the groove G by fluid of viscosity η2 with ε=η2/η1�1.

Here ∂/∂n denotes the outward normal derivative on the meniscus. In this expression
P denotes a simple Poiseuille flow in a rectangular channel – see (2.15) – and
wP(x, y) is Philip’s solution for longitudinal flow over a periodic array of flat no-shear
slots along the lower wall (Philip 1972); the latter solution has been found in closed
form. The function W0 is the leading-order flow induced in a rectangular groove
by the known flow wP for a flat meniscus; we show here, using complex variable
methods, that W0 can also be found in analytical form. All these observations imply
that the integrand in (1.3) is known. Consequently (1.3) can be used to infer the
following formulas for the first-order corrections to the slip length. With the constant
S ≡−(1/η1)∂p/∂Z encoding the longitudinal pressure gradient along the Z direction
in an (x, y, Z) plane then in the expansion

λ= λP + θλ
(θ)
+ εΛ(ε)

+ o(ε, θ) (1.4)

we show here that

λ(θ) = λ(θ)1 + λ
(θ)
2 , Λ(ε)

=−
1

aπh2S2

∑
n>1

I2
2n−1

(2n− 1)
, (1.5a,b)

where λP is the slip length found by Philip (1972) and

λ(θ)1 ≡−
1

abh2S

∫ b

−b
(b2
− x2)

[
wP(x, 0)−

1
S

(
∂wP(x, 0)

∂x

)2
]

dx,

λ(θ)2 ≡−
1

abh2S

∫ b

−b
(b2
− x2)wP(x, 0) dx,

 (1.6)
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and

In =

∫ b

−b

∂wP(x, 0)
∂x

[
1

ξ(x)n
+ ξ(x)n

]
dx, (1.7)

where

ξ(z)≡
P(−ie−iπz/2b, ρ)− P(ie−iπz/2b, ρ)

P(−ie−iπz/2b, ρ)+ P(ie−iπz/2b, ρ)
, ρ = e−πH/(2b), (1.8)

with

P(η, ρ)≡ (1− η)
∞∏

n=1

(1− ρ2nη)(1− ρ2n/η). (1.9)

Formulas (1.3)–(1.9) are the main results of the paper.
Ignoring subphase gas effects, Sbragaglia & Prosperetti (2007) studied the effect of

weak meniscus curvature on the slip length in unidirectional channels. They calculate
the slip length correction as an expansion

λ= λ(0,h) + ε̃λ(1,h) + o(ε̃), (1.10)

where their non-dimensional expansion parameter ε̃ � 1 is related to the protrusion
angle θ (and is not to be confused with our viscosity ratio parameter ε). In the semi-
infinite case h→∞ Sbragaglia & Prosperetti (2007) report an integral expression for
the first-order slip length correction (rewritten in the notation of figure 1):

ε̃λ(1,∞)

2π
=−

b2

4Ra
F(δ), δ=

b
a
, F(δ)= δ

∫ 1

0
(1− x2)

[1− cos(xπδ)] dx
cos(xπδ)− cos(πδ)

. (1.11a−c)

For channel flows with h <∞, Sbragaglia & Prosperetti (2007) offer no analogous
integral formula; instead the first-order slip length correction is found numerically by
solving an infinite set of dual series equations coupling expansion coefficients for the
first-order velocity correction with the required slip length correction. Formulas (1.5)
and (1.6) reveal that solving such an infinite linear system is not necessary and that
an integral expression akin to (1.11) exists even for finite channel heights h<∞. This
result appears to be new.

The theoretical approach here rests on a combination of perturbation theory with use
of a ‘reciprocal formula’ based on Green’s second integral identity. While Sbragaglia
& Prosperetti (2007) did not use any such reciprocity arguments ours is not the
first study to exploit the latter to understand superhydrophobic surfaces: Squires
(2008) employed reciprocal theorems to examine electrokinetic effects on flat slipping
surfaces; Baier, Steffes & Hardt (2010) used them to study thermal Marangoni flow
over a superhydrophobic array of fins oriented parallel or perpendicular to an applied
temperature gradient. None of these prior works using reciprocity ideas, however,
take non-zero meniscus curvature into account.

2. Perturbation theory and reciprocity
The flow is periodic in the x-direction so attention is restricted to the single period

window shown in figure 1. We divide the flow into regions D and G where D is
occupied by a ‘working fluid’ of viscosity η1 and G is the groove region filled with
fluid of viscosity η2. We define the non-dimensional parameter

ε =
η2

η1
(2.1)
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312 D. G. Crowdy

and assume it is small, ε � 1. In Cartesian coordinates (x, y, Z) we assume
unidirectional flow in the Z direction with w and W denoting the longitudinal
velocities in regions D and G respectively so that the fluid velocity u is

u=
{
(0, 0,w(x, y)), (x, y) in D,
(0, 0,W(x, y)), (x, y) in G. (2.2)

In the subphase groove there are several choices to be made depending on the
experimental set-up. Here we assume that the subphase gas is simply dragged along
by the working pressure-driven fluid in region D. Other choices are to assume
‘dead-end grooves’ which will lead to an induced pressure gradient in region G;
adaptations of the analysis herein to this case can be made. In our case, the governing
partial differential equations for w and W are

∇
2w=−

1
η1

∂p
∂Z
≡−S, ∇2W = 0. (2.3a,b)

In region D the boundary condition on the no-slip walls at the top of the channel
and on the portions of the plane y= 0 away from the menisci is

w= 0. (2.4)

Periodicity conditions are imposed on the side walls of region D. The boundary
conditions in the groove G are that

W = 0 (2.5)

on the no-slip side walls and on the no-slip lower wall at y = −H. On the curved
meniscus, where the two fluids meet, we have boundary conditions

w=W,
∂w
∂n
= ε

∂W
∂n
, (2.6a,b)

where ∂/∂n denotes a normal derivative reflecting the requirement that the fluid
velocities and shear stresses are continuous at the interface.

Let wP be the solution, with the same driving pressure gradient, for longitudinal
flow over a periodic array of flat menisci as found by Philip (1972) and let λP be the
effective slip length for such a flow. Within a perturbation approach which assumes
that the meniscus deflection from the flat state is small and accounting now for weakly
viscous fluid in the subphase we can write the expansions

w=wP + θw(θ)
1 + εw(ε)

1 + o(ε, θ),

W =W0 + θW (θ)
1 + εW (ε)

1 + o(ε, θ),
λ= λP + θλ

(θ)
+ εΛ(ε)

+ o(ε, θ),

 (2.7)

where wP and λP are known, but all other quantities in the expansions (2.7) are
unknown. λ is the effective slip length incorporating the first-order corrections

θλ(θ) + εΛ(ε), (2.8)

which are the key quantities of interest in this paper.
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On substitution of the expansions (2.7) into the first of the boundary conditions (2.6)
we find, at leading order,

W0 =wP, (2.9)

which provides a boundary condition on the leading-order flow W0 in the subphase
region G. It shows that, at leading order, the gas in the groove only moves because it
is dragged along by the upper working fluid. All other conditions obtained at higher
order in θ and ε from this boundary condition will not be needed in what follows.

Turning to the second stress balance boundary condition in (2.6) at first order in θ
and ε we find

∂wP

∂n
+ θ

∂w(θ)
1

∂n
= 0,

∂w(ε)
1

∂n
=
∂W0

∂n
, (2.10a,b)

where we recall that since the meniscus is only weakly deflected then ∂wP/∂n is O(θ).
These boundary conditions are the only ones needed in what follows.

By Green’s second identity,∫∫
D
[w∇2wP −wP∇

2w] dA=
∮
∂D

[
w
∂wP

∂n
−wP

∂w
∂n

]
ds, (2.11)

where ds denotes an element of arclength and ∂/∂n denotes the outward normal
derivative. ∂D denotes the boundary of D. Suppose Q is the volume flux through D
associated with the flow w and let QP be the flux through D of Philip’s channel flow
solution wP. Since ∇2wp =∇

2w=−S then (2.11) implies, on substitution of (2.7),

S(QP −Q) =
∫

meniscus
(wP + θw(θ)

1 + εw(ε)
1 )
∂wP

∂n
ds

−

∫
meniscus

wP
∂

∂n
(wP + θw(θ)

1 + εw(ε)
1 ) ds+ o(ε, θ), (2.12)

where, to eliminate all other contributions to the surface integral, we have used the
periodicity of w and wP in the x direction, and the no-slip conditions satisfied by both
flows on the solid wall portions of ∂D. But, after a cancellation of terms, and recalling
the fact that ∂wP/∂n is O(θ), then

S(QP −Q)=−
∫

meniscus

[
wPθ

∂w(θ)
1

∂n
ds+wPε

∂w(ε)
1

∂n

]
ds+ o(ε, θ). (2.13)

On use of the boundary conditions (2.10), we find

S(QP −Q)=
∫

meniscus

[
wP
∂wP

∂n
ds−wPε

∂W0

∂n

]
ds+ o(ε, θ). (2.14)

To determine QP a second invocation of the reciprocal theorem is useful. Let P denote
the Poiseuille flow in the channel, that is,

P =
Sy
2
(h− y). (2.15)

Now Green’s identity implies that∫∫
D
[wP∇

2P −P∇2wP] dA=
∮
∂D

[
wP
∂P
∂n
−P

∂wP

∂n

]
ds. (2.16)
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314 D. G. Crowdy

But, if QP is the volume flux through D of the Poiseuille flow, then (2.16) leads to

S(QP −QP)=−

∫
meniscus

[
wP
∂P
∂n
−P

∂wP

∂n

]
ds=−

∫
meniscus

wP
∂P
∂n

ds+ o(θ), (2.17)

where we have used the x-periodicity of P and wP and the no-slip conditions on the
solid wall portions of ∂D satisfied by both flows. We have also used the fact that the
quantity ∫

meniscus
P
∂wP

∂n
ds= o(θ) (2.18)

since both P and ∂wP/∂n vanish on y = 0 so each will be O(θ) on the weakly
perturbed interface. We can now eliminate QP between (2.14) and (2.17) to find

Q=QP +
1
S

∫
meniscus

[
−wP

∂(wP +P)
∂n

+ εwP
∂W0

∂n

]
ds+ o(ε, θ). (2.19)

By direct calculation,

QP

2S
=

∫ b

0
dx
∫ h

θη(x)

y(h− y)
2

dy+
∫ a

b
dx
∫ h

0

y(h− y)
2

dy

=

∫ b

0

[
hy2

4
−

y3

6

]h

θη(x)

dx+
∫ a

b

[
hy2

4
−

y3

6

]h

0

dx

=

∫ a

0

[
hy2

4
−

y3

6

]h

0

dx+ o(θ), (2.20)

where

η(x)=
(b2
− x2)

2b
(2.21)

is the parabolic shape of the meniscus (see supplementary material for more details).
The consequence is that

QP =
ah3S

6
+ o(θ), (2.22)

and, on substitution into (2.19),

Q=
(

ah3S
6

)
+

1
S

∫
meniscus

[
−wP

∂(wP +P)
∂n

+ εwP
∂W0

∂n

]
ds+ o(ε, θ). (2.23)

We now compare (2.23) with the relation for the flux Qeff through a channel
with the same driving pressure gradient but now with a flat lower wall on which a
Navier-slip condition with slip parameter λ is imposed. We will follow Sbragaglia &
Prosperetti (2007) and use the formula

Qeff =
ah3S

6

(
1+

3λ
h

)
(2.24)

even though this is really a linear approximation for λ/h� 1 of the actual result

Qeff =
ah3S

6

(
1+ 4λ/h
1+ λ/h

)
(2.25)
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obtained by solving the channel flow problem with a Navier-slip condition λ dw/dy=
w imposed on the lower boundary y= 0. A comparison of (2.23) and (2.24) implies

ah2λS
2
=

1
S

∫
meniscus

[
−wP

∂(wP +P)
∂n

+ εwP
∂W0

∂n

]
ds+ o(ε, θ), (2.26)

which leads to our key result (1.3), and which involves only the leading-order
solutions wP and W0. It is already clear from (2.26) that, to first order in θ and ε, it
is unnecessary to compute either of the first-order flow corrections in regions D and
G and that only the leading-order flows in each subdomain are needed to compute
the first-order slip length modification. Recall that the solution wP has been found in
closed form by Philip (1972). The solution W0 for the leading-order flow in region G
is itself uniquely determined by wP through the boundary condition (2.9) which has
not yet been used in the analysis. In § 4 we show how to solve the boundary value
problem for W0 using complex variable methods.

Finally, in the limit h→∞, so that we consider instead a flow in region D tending
to a semi-infinite linear shear with

w→ γ̇ (y+ λ), as y→∞, (2.27)

the result (2.26) must be modified. The analysis starts again from formula (2.11)
but now, since there is no driving pressure gradient, the left-hand side area integral
vanishes identically. However the surface integral on the right-hand side acquires a
new non-zero contribution from y→∞ yielding

0=
∫

meniscus

[
wP
∂wP

∂n
− εwP

∂W0

∂n

]
ds+ 2aγ̇ 2(λ− λP)+ o(ε, θ), (2.28)

or, on rearrangement,

λ= λP +
1

2aγ̇ 2

∫
meniscus

[
−wP

∂wP

∂n
+ εwP

∂W0

∂n

]
ds+ o(ε, θ). (2.29)

3. Meniscus curvature effects: ε = 0, θ 6= 0

First we first ignore subphase gas effects and set ε = 0. Sbragaglia & Prosperetti
(2007) used an approach based on dual series equations and find it necessary to solve
for the first-order flow correction in region D in order to deduce the first-order slip
length correction. We know now that formula (2.26) offers a more direct route to the
same result.

We write Philip’s channel flow solution (Philip 1972) in the form

wP =−
Sy2

2
+ ŵ, (3.1)

where the function ŵ is harmonic. In the supplementary materials full details are given
of how, starting from (2.26), one can derive the formulas

ah2SλP

2
=

∫ b

−b

h
2

ŵ(x, 0) dx, or λP =
1

ahS

∫ b

−b
ŵ(x, 0) dx, (3.2a,b)
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and

λ(θ) =−
4

ah2S

∫ b

−b
η(x)

[
ŵ(x, 0)−

1
2S

(
∂ŵ(x, 0)
∂x

)2
]

dx= λ(θ)1 + λ
(θ)
2 , (3.3)

where we separate the final result into the two contributions

λ(θ)1 ≡−
2

ah2S

∫ b

−b
η(x)

[
ŵ(x, 0)−

1
S

(
∂ŵ(x, 0)
∂x

)2
]

dx,

λ(θ)2 ≡−
2

ah2S

∫ b

−b
η(x)ŵ(x, 0) dx.

 (3.4)

The quantity ∂ŵ(x, 0)/∂x has inverse square root singularities at the integration end
points x = ±b but the integrand in the expression for λ(θ) is nevertheless regular
since η(x) has simple zeros at those points. From (3.1) we notice that, on y = 0,
ŵ(x, 0)= wP(x, 0) and ∂ŵ(x, 0)/∂x = ∂wP(x, 0)/∂x which leads, after substitution of
the expression (2.21) for η(x), to formulas (1.6).

Sbragaglia & Prosperetti (2007) state their (non-dimensionalized) slip length in the
form

λ(L) = λ(0,L) + ε̃[λ(1,L)1 + λ(1,L)2 ] + o(ε̃), (3.5)

where the leading-order slip length is also decomposed into two parts. In their
paper all lengths are non-dimensionalized with respect to a∗/π; the non-dimensional
expansion parameter ε̃ is related to angle θ via

ε̃∗ =
1

2R∗
=−

θ

2b∗
=

π

a∗
ε̃, (3.6)

where we have added asterisks to emphasize dimensional quantities. We have also
added a minus sign in front of angle θ because a depressed meniscus (rather than a
protruding one) was studied in Sbragaglia & Prosperetti (2007). It follows that the non-
dimensional expansion parameters used here and in Sbragaglia & Prosperetti (2007)
are related by

ε̃ =−
a∗θ

2πb∗
. (3.7)

The contribution λ(1)2 found here precisely corresponds to the quantity λ(1,L)2 found by
Sbragaglia & Prosperetti (2007) after appropriate non-dimensionalization. Indeed, it
can be verified that

ε̃λ(1,L)2 =−θ
( π

a∗

)
λ(θ)∗2 , (3.8)

where, on the right-hand side, we have non-dimensionalized our result λ(θ)∗2 in the
same way adopted in Sbragaglia & Prosperetti (2007). To check (3.8), on substituting
from (3.7), it becomes

a∗θ
2πb∗

λ(1,L)2 =−θ
( π

a∗

)
λ(θ)∗2 (3.9)

implying that

λ(1,L)2 =
π2

a∗2
(2b∗λ(θ)∗2 )=

π2

a∗2

[
2

a∗h∗2S

] ∫ b∗

−b∗
(b∗2 − x∗2)w∗P(x, 0) dx∗. (3.10)
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FIGURE 2. (Colour online) Normalized slip length λ(1)1 /2π (as a function of channel
height) computed using the new integral formula (1.6). This graph should be compared
with that in figure 4 of Sbragaglia & Prosperetti (2007).

With the non-dimensionalizations used in Sbragaglia & Prosperetti (2007),

b∗ =
a∗

π
b, h∗ =

a∗

π
h, x∗ =

a∗

π
x, w∗P(x, 0)= S

(
a∗

π

)2

w̃P(x, 0), (3.11a−d)

and (3.10) reduces to

λ(1,L)2 =
2

πh2

∫ b

−b
(b2
− x2)w̃P(x, 0) dx, (3.12)

which is precisely formula (42) of Sbragaglia & Prosperetti (2007) (once we rename
h as L and b as c).

From this point of view, a new result here is to show that the quantity λ(1,L)1
considered in Sbragaglia & Prosperetti (2007) is in fact given by the integral formula

λ(1,L)1 =
2

πh2

∫ b

−b
(b2
− x2)

[
w̃P(x, 0)−

(
∂w̃P(x, 0)

∂x

)2
]

dx, (3.13)

where, in the original work, it was computed from the numerical solution of a
truncated set of dual series equations.

Figure 2 shows a graph of the normalized slip length correction λ(1)1 /2π as a
function of normalized channel height calculated from the new integral formula
(3.13). It should be compared with figure 4 of Sbragaglia & Prosperetti (2007) where
the same graph was plotted based on the numerical solution of dual series equations.

In the supplementary material we rederive (1.11) relevant to the case of semi-infinite
shear flow h→∞ in an analogous way that differs from the dual series methods of
Sbragaglia & Prosperetti (2007). We show that, in this case, equation (2.29) with ε=0
leads to

λ= λP + θλ
(θ)
+ · · ·, λ(θ) =

θ

2a

∫ b

−b
η

(
∂wP

∂x

)2

dx (3.14a,b)

and this formula is equivalent to (1.11).
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H
1

k–k

–b b

FIGURE 3. (Colour online) Sequence of conformal mappings to construct the mapping
between the groove region to the upper half-unit disc in a complex ξ -plane. The top edge
of the rectangular groove, which neighbours with the working fluid, is transplanted to C+ξ ;
the other three sides are transplanted to the real diameter [−1, 1].

4. Subphase fluid effects: ε 6= 0, θ = 0

The boundary value problem for the leading-order flow W0 in the subphase fluid is
a Dirichlet problem

∇
2W0 = 0, (4.1)

with boundary conditions
W0 =wP (4.2)

on the top of the rectangular groove y= 0, −b< x< b and

W0 = 0 (4.3)

on its other three no-slip walls. The nature of the flow in the upper fluid is
communicated to the subphase gas via the boundary condition (4.2).

4.1. Conformal mapping
To solve for W0 it is useful to construct the conformal mapping from the rectangular
groove to an upper half-unit disc, in a complex ξ -plane with the upper half-circle
denoted by C+ξ corresponding to the flat meniscus (i.e. the upper edge of the
rectangle). This is done by composing a sequence of simpler transformations
illustrated in figure 3. The logarithmic mapping

z 7→
2ib
π

log η+ b (4.4)
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transplants the upper half-annulus in a complex η-plane

Im[η]> 0, ρ < |η|< 1, (4.5a,b)

with
H =−

2b
π

log ρ, or ρ = e−πH/(2b) (4.6a,b)

to the rectangular groove. Relation (4.4) implies that

η= ie−iπz/2b. (4.7)

Next let
η 7→ χ =

P(η, ρ)
P(−η, ρ)

, (4.8)

where the special function P(η, ρ) is defined in (1.9). The latter function can easily
be shown, directly from its infinite product definition (1.9), to satisfy:

P(ρ2η, ρ)=−
P(η, ρ)
η

, P(1/η, ρ)=−
P(η, ρ)
η

. (4.9a,b)

These functional relations can be used to show that the function (4.8) transplants the
entire annulus ρ < |η|< 1 to the right half-plane with the circle |η| = ρ mapping to a
slit along the positive real η-axis. Finally, if we now apply the Cayley mapping

χ 7→ ξ =
1− χ
1+ χ

(4.10)

then the right half-χ -plane containing the excised slit is transplanted to the interior of
the unit ζ -circle with an excised slit along its real diameter. The composition is the
mapping (1.8) reported earlier. If we view z= z(ξ)= x(ξ , ξ)+ iy(ξ , ξ) as a function
of ξ then the properties (4.9) can be used to demonstrate that, for |ξ | = 1,

x(ξ , ξ)= x(ξ , ξ), (4.11)

which will be useful later.

4.2. Solution of boundary value problem
Let us define the complex potential H0(ξ)≡ h0(z) such that

W0 = Im[H0(ξ)]. (4.12)

By the no-slip conditions on the three submerged edges of the groove we know that
on the real diameter ξ ∈ [−1, 1]

Im[H0(ξ)] = 0 (4.13)

so that
H0(ξ)=H0(ξ), (4.14)

where the so-called Schwarz conjugate of an analytic function f (z) is defined by f (z)≡
f (z). By the Schwarz reflection principle this relation allows us both to analytically
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continue the complex potential into the lower half-ξ -plane and to deduce information
on the imaginary part of the potential on the lower half-unit ξ -circle, denoted by C−ξ ,
given these data on the upper half-unit circle. Specifically, if ξ ∈C−ξ then ξ ∈C+ξ and
we have that

Re[−iH0(ξ)] =Re[+iH0(ξ)] =Re[+iH0(ξ)] =−Re[−iH0(ξ)]. (4.15)

Hence, by (4.2), we have

Re[−iH0(ξ)] =

{
wP(x(ξ , ξ), 0), ξ ∈C+ξ ,
−wP(x(ξ , ξ), 0), ξ ∈C−ξ .

(4.16)

The sought-after function −iH0(ξ), by the Schwarz reflection principle, is analytic
everywhere in the unit ξ -disc. Moreover, from (4.16), its real part is known
everywhere on the boundary of the unit disc. The boundary value problem for
−iH0(ξ) is of the standard Schwarz type. The solution can be written down explicitly
in one of two ways: either using the classical Poisson integral formula (which leads
to a singular integral representation for −iH0(ξ)), or by finding the coefficients of a
Taylor series. We adopt the latter method.

Define the Laurent series

∞∑
n=−∞

pnξ
n
=

{
wP(x(ξ , ξ), 0), ξ ∈C+ξ ,
−wP(x(ξ , ξ), 0), ξ ∈C−ξ ,

(4.17)

representing the given data on |ξ | = 1. Since the data are real, then p−n = pn, n > 1.
Using orthogonality these coefficients are given, for n > 1, by

pn = In + Jn n > 1, (4.18)

with

In =
1

2πi

∫
C+ξ

wP(x(ξ , ξ), 0)
ξ n+1

dξ, Jn =
1

2πi

∫
C−ξ

−
wP(x(ξ , ξ), 0)

ξ n+1
dξ . (4.19a,b)

On taking a complex conjugate of Jn we find

Jn =
1

2πi

∫
C+ξ

−
wP(x(ξ , ξ), 0)

ξ
n+1 dξ =−

1
2πi

∫
C+ξ

wP(x(ξ , ξ), 0)

ξ
n+1 dξ =−In, (4.20)

where we have used the fact that wP and x are real functions together with property
(4.11). Hence

pn = [In − In] = 2iIm[In], n > 1. (4.21)

It is useful to note that

In =−
1

2πin

∫
C+ξ

wP(x(ξ , ξ), 0) d
[

1
ξ n

]
=−

1
2πin

∫ b

−b

∂wP

∂x
(x, 0)

dx
ξ(x)n

, (4.22)

where we have used integration by parts, and the fact that wP vanishes at ξ =±1, and
where a minus sign has been added to account for the fact that traversing C+ξ in an
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anticlockwise direction implies traversing the meniscus in the z-plane from +b to −b.
Also, on taking a complex conjugate,

In =
1

2πin

∫ b

−b

∂wP

∂x
(x, 0)ξ(x)n dx, (4.23)

where we have used the fact that ξ(x)= 1/ξ(x) on x ∈ [−b, b], y= 0.
Now introduce the Taylor expansion, convergent in the unit ξ -disc:

−iH0(ξ)= a0 +

∞∑
n=1

anξ
n. (4.24)

On substitution into the boundary value problem (4.16) for H0(ξ) and after equating
coefficients of powers of ξ we find

Re[a0] = 0, an = 2pn, n > 1. (4.25a,b)

Hence,
H0(ξ)=−4

∑
n>1

Im[In]ξ
n
+ c, (4.26)

where c is a real constant whose value turns out to be unimportant.

4.3. Calculation of the slip length correction
The O(ε) terms in both (1.3) (pertaining to pressure-driven channel flow) and (2.29)
(pertaining to semi-infinite shear flow) depend on the quantity∫

meniscus
wP
∂W0

∂n
ds≈−

∫ b

−b
wP
∂W0

∂y
dx+O(θ), (4.27)

where we have used the fact that on the weakly deformed meniscus ∂/∂n=−∂/∂y+
O(θ) and ds≈ dx+O(θ). By the analyticity of h0(z),

∂W0

∂y
=Re

[
dh0

dz

]
. (4.28)

Hence,∫ b

−b
wP(x, 0)

∂W0

∂y
dx=Re

[∫ b

−b
wP(x, 0) dh0

]
=−Re

[∫ b

−b

∂wP

∂x
(x, 0)H0(ξ) dx

]
, (4.29)

where we have used integration by parts and the fact that wP vanishes at x=±b, y= 0.
If we now substitute for H0 from (4.26), we find∫ b

−b
wP(x, 0)

∂W0

∂y
dx= 4

∑
n>1

Im[In]Re
[∫ b

−b

∂wP

∂x
(x, 0)ξ(x)n dx

]
, (4.30)

where a contribution proportional to the unknown constant c vanishes owing to the
oddness of ∂wP/∂x. But

Re
[∫ b

−b

∂wP

∂x
(x, 0)ξ(x)n dx

]
=Re

[∫ b

−b

∂wP

∂x
(x, 0)

dx
ξ(x)n

]
=Re[−2πinIn] = 2πnIm[In],

(4.31)
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where we have used (4.22) and the fact that ξ(x)= 1/ξ(x) when x∈ [−b, b] and y= 0.
Relation (4.30) then becomes∫ b

−b
wP(x, 0)

∂W0

∂y
dx= 8π

∑
n>1

n{Im[In]}
2. (4.32)

Finally, it is easy to show

Im[In] =
In

4πn
, (4.33)

where In is defined in (1.7). The conclusion is that∫
meniscus

wP
∂W0

∂n
ds=−

1
2π

∑
n>1

I2
n

n
+O(θ), (4.34)

which leads to the expression for Λ(ε) given in (1.5) once account is taken of the fact
that the terms for n even turn out to be identically zero. For semi-infinite flow the
corresponding O(ε) contribution to the slip length correction, found on substituting
(4.34) into (2.29), is

−
ε

4πaγ̇ 2

∑
n>1

I2
n

n
, (4.35)

where, again, contributions from even integers n vanish.

5. Discussion
Philip (1972) determined analytical expressions for both the velocity field, and the

effective slip lengths, for semi-infinite shear flow and pressure-driven channel flow
over a periodic array of flat no-shear slots on a lower wall. This paper has determined
the first-order slip length correction, incorporating both weak meniscus curvature and
the additional dissipation of a weakly viscous subphase fluid, to be

θ(λ(θ)1 + λ
(θ)
2 )+

η2

η1
Λ(ε), (5.1)

with explicit formulas determined for all terms, and depending only on Philip’s
analytical solutions for the leading-order flow in the upper working fluid.

As is clear from its representation in (1.5) the sign of the last term in (5.1)
is evidently negative. This is natural since we expect that additional dissipation
associated with the working fluid having to drag the viscous subphase along will
lead to a decrease in the effective slip for a given pressure gradient. If θ < 0, so that
the meniscus bows into the groove (which is to be expected if the hydrodynamic
pressure in the upper working fluid is large) then the term θλ(θ)2 is positive – as is
also evident from the expression (1.6) – since it is associated with the increase in
cross-sectional area of the longitudinal flow. The term θλ(θ)1 is associated with the
change in the axial velocity distribution caused by the deflection of the meniscus and,
although it is no longer obvious from (1.6), this term tends to decrease the slip. An
explanation for this is that, when the interface bows into the groove, the condition of
free shear is moved below the level y = 0 implying a residual non-zero shear stress
there.
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FIGURE 4. (Colour online) Normalized coefficients of the slip length correction for
semi-infinite shear flow as a function of groove depth (solid line). Results from formulas
derived from the models of Schönecker et al. (2014) (circles) and Nizkaya et al. (2014)
(crosses) are also shown.

Even for channels with rectangular grooves, the geometrical parameter space
comprising a, b, h and H is large. It is therefore convenient to have available explicit
integral formulas in terms of these parameters for the slip length corrections when
both weak meniscus curvature and the effect of a weakly viscous subphase gas are
incorporated. To gain some insights into the relative importance of the two effects,
we focus on the case where the working fluid is a semi-infinite shear flow over the
superhydrophobic surface so that h→∞. In this case, for x ∈ [−b, b] and y= 0 we
have (Philip 1972)

wP(x, 0)=
2a
π

cosh−1

[
cos(πx/2a)
cos(πb/2a)

]
,

∂wP

∂x
(x, 0)=−

sin(πx/2a)
[cos2(πx/2a)− cos2(πb/2a)]1/2

.

(5.2a,b)
The associated slip length is

λP =
2a
π

log sec
(

πb
2a

)
. (5.3)

These formulas can simply be substituted into (3.14) and (4.35) to determine the slip
length corrections λ(θ) and Λ(ε) for this case.

Figure 4 shows a graph of the normalized coefficients λ(θ)/2a and Λ(ε)/2a as a
function of normalized groove depth for b/a= 0.5 and b/a= 0.7. The quantity λ(θ)/2a
is independent of groove height, but depends on no-shear fraction b/a and increases in
magnitude as the no-shear fraction increases; if θ < 0, so that the meniscus bows into
the groove, then the net effect is to decrease the slip length. On the other hand, the
value of Λ(ε)/2a, which is also negative (so that it always decreases the slip length),
depends sensitively on the no-shear fraction and groove depth. Figure 5 shows a graph
of the normalized coefficients λ(θ)/2a and Λ(ε)/2a as a function of no-shear fraction
b/a for the normalized groove depths H/a= 0.25 and 1. For a given no-shear fraction,
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FIGURE 5. (Colour online) Normalized coefficients of the slip length correction for semi-
infinite shear flow as a function of no-shear fraction. Results from formulas derived from
the models of Schönecker et al. (2014) (circles) and Nizkaya et al. (2014) (crosses) are
also shown.

shallower grooves decrease the effective slip more severely than deeper ones as might
be expected given that the lower no-slip wall is moving closer to the interface trapping
smaller volumes of viscous fluid in the groove so that this trapped fluid is expected
to become harder to drag along. For small H/a, of order θ , and for θ < 0 there will
be a lower limit on admissible values of H/a since there will be a critical geometry
in which the meniscus touches the lower wall.

Also shown in both figures 4 and 5 are the results obtained from formulas for the
effective slip length derived from the models of Nizkaya et al. (2014) and Schönecker
et al. (2014); after expanding their formulas for small viscosity ratio ε one can read
off expressions for the first-order correction for small ε as predicted by those models.
Both are found to give good agreement, for a wide range of parameters, with the
results of the perturbation analysis. These models give approximations to the effective
slip length for any viscosity ratio; the new formulas of the present paper, while
valid only for small viscosity ratios ε � 1, also give expressions for the effective
slip length for pressure-driven flow in channels of finite height and, to the best of
our knowledge, no other expressions for the h <∞ case have previously appeared
in the literature. Furthermore, in the supplementary materials, we give details of
the perturbation analysis in the opposite limit ε � 1 (and also compare the results
derived from the models of Nizkaya et al. (2014) and Schönecker et al. (2014) in
that case). Since, as mentioned in the Introduction, in many practical settings the
viscosity contrast is either small or large, we expect the new formulas of this paper
to be useful additions to the literature. Moreover, it is important to emphasize that the
formulas here result from a perturbation analysis of the full boundary value problem
without any heuristic modelling assumptions or parameter fitting.

It has been found that the magnitude of the coefficient Λ(ε)/2a is significantly larger
than λ(θ)/2a for many geometrical configurations; indeed the two can differ by an
order of magnitude (cf.: figures 4 and 5). This evidence suggests that the effect on
hydrodynamic slip of a weakly viscous subphase is likely to be far more important
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in most circumstances than any drag reduction/enhancement due to curvature of the
meniscus. Our formulas provide a route to easy estimates on the balance between ε
and θ at which the effects on slip should be of approximately equal significance.

From a broader perspective, we have demonstrated the usefulness of reciprocity
ideas in calculating slip lengths in longitudinal channel flows over superhydrophobic
surfaces when additional physical effects are introduced perturbatively. The same
ideas can be used in several variants of this problem, including cases where different
assumptions are made about the grooves (e.g. the case of ‘dead-end’ grooves wherein
there is an induced pressure gradient required by a condition in steady state of a zero
net flux condition) or the viscosity of the fluid in the subphase is large (compared
to the working fluid), a situation pertinent to the study of so-called liquid-infused
surfaces (Wexler, Jacobi & Stone 2015). By way of example, the supplementary
materials includes the analysis of the first-order slip length correction in the upper
fluid in the high viscosity contrast limit ε� 1.
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