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Abstract
We give new descriptions of the Bruhat order and Demazure products of affine Weyl groups in terms of the
weight function of the quantum Bruhat graph. These results can be understood to describe certain closure relations
concerning the Iwahori–Bruhat decomposition of an algebraic group. As an application towards affine Deligne–
Lusztig varieties, we present a new formula for generic Newton points.
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1. Introduction

Let us begin by considering a Coxeter group (𝑊, 𝑆). The Bruhat order on W can be defined by inclusion
of reduced words, namely 𝑥1 ≤ 𝑥2 if some reduced word for 𝑥1 can be obtained from some fixed
reduced word for 𝑥2 by deleting any number of letters. This partial order is of central importance for
the general theory of Coxeter groups, and it enjoys a number of remarkable properties and applications
[2, Chapter 2 and beyond]. For example, the Kazhdan–Lusztig polynomials associated with (𝑊, 𝑆)
satisfy that 𝑃𝑢,𝑣 ≠ 0 if and only if 𝑢 ≤ 𝑣 [2, Proposition 5.1.5].
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2 F. Schremmer

Related to this is the notion of Demazure products. The Demazure product 𝑥1 ∗ 𝑥2 of two elements
𝑥1, 𝑥2 ∈ 𝑊 is the largest element of the form 𝑥 ′1𝑥

′
2 ∈ 𝑊 where 𝑥 ′1 ≤ 𝑥1 and 𝑥 ′2 ≤ 𝑥2 in the Bruhat order.

The Demazure product describes the multiplication in the 0-Hecke algebra of (𝑊, 𝑆), cf. [12, Section
1.2]. It, too, has a number of remarkable properties and applications.

In this paper, we focus on a specific class of (quasi-)Coxeter groups, namely affine Weyl groups.
These groups arise naturally in the context of arithmetic geometry. In a sense, affine Weyl groups are
the “simplest” examples of infinite Coxeter groups, so they are also important examples from a pure
Coxeter theoretic viewpoint.

If G is a connected reductive group over a non-Archimedian local field F, we get an associated
extended affine Weyl group 𝑊 . This group famously occurs as the indexing set of the Iwahori–Bruhat
decomposition

𝐺 (�̆�) =
⊔
𝑥∈𝑊

𝐼𝑥𝐼.

Here, �̆� is the maximal unramified extension of F, and 𝐼 ⊆ 𝐺 (�̆�) is an Iwahori subgroup.
The closure relations of the above decomposition are precisely given by the Bruhat order, that is,

𝐼𝑥𝐼 =
⊔
𝑦≤𝑥

𝐼𝑦𝐼 ⊆ 𝐺 (�̆�).

If 𝑥, 𝑦 ∈ 𝑊 , the product 𝐼𝑥𝐼 · 𝐼𝑦𝐼 ⊆ 𝐺 (�̆�) will in general not be of the form 𝐼𝑧𝐼 for any 𝑧 ∈ 𝑊 . However,
if we pass to closures, we have

𝐼𝑥𝐼𝑦𝐼 = 𝐼 (𝑥 ∗ 𝑦)𝐼

for the Demazure product.
The Iwahori–Bruhat decomposition has been studied intensively, partly because of its connection to

the Bruhat–Tits building [5, Section 4]. Due to this, both the Bruhat order and Demazure products of
affine Weyl groups have been used and studied in the past. We mention the definition of admissible sets
due to Kottwitz and Rapoport [15, 25], the description of generic Newton points in terms of the Bruhat
order due to Viehmann [31] and the recent works on generic Newton points and Demazure products
due to He and Nie [11, 12].

The Iwahori Hecke algebra H of G, that received tremendous interest starting with the discovery of
the Satake isomorphism [27], can be defined as follows: H is an algebra over Z[𝑣, 𝑣−1], and it is a free
Z[𝑣±1] module with basis given by {𝑇𝑥 | 𝑥 ∈ 𝑊}. The multiplication is defined by

𝑇𝑥𝑇𝑦 = 𝑇𝑥𝑦 if ℓ(𝑥𝑦) = ℓ(𝑥) + ℓ(𝑦),

𝑇2
𝑠 = (𝑣 − 𝑣−1)𝑇𝑠 + 1 if 𝑠 ∈ 𝑊 is a simple affine reflection.

The multiplication of the Iwahori Hecke algebra is quite complicated and poorly understood. For
𝑥, 𝑦 ∈ 𝑊 , the product 𝑇𝑥𝑇𝑦 will in general have the form

𝑇𝑥𝑇𝑦 =
∑
𝑧∈𝑊

𝑓𝑥,𝑦,𝑧 (𝑣 − 𝑣−1)𝑇𝑧

for some polynomials 𝑓𝑥,𝑦,𝑧 (𝑋) ∈ Z[𝑋]. This product𝑇𝑥𝑇𝑦 can be seen as a combinatorial model for the
multiplication of Iwahori double cosets 𝐼𝑥𝐼 · 𝐼𝑦𝐼 in 𝐺 (�̆�). Among all 𝑧 ∈ 𝑊 such that 𝑓𝑥,𝑦,𝑧 ≠ 0, there
is a unique largest one, which is the Demazure product 𝑧 = 𝑥 ∗ 𝑦. We may summarize that understanding
Demazure products is a first step towards fully understanding the multiplication in Iwahori Hecke
algebras, which is related to important geometric problems. For example, the dimensions of affine
Deligne–Lusztig varieties can be expressed in terms of degrees of class polynomials of the Iwahori–
Hecke algebra [10, Theorem 6.1]. In view of this connection, our result on Demazure products is enough
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to describe generic Newton points associated with the Iwahori–Bruhat decomposition of an algebraic
group.

Our main results fully describe the Bruhat order and Demazure products for 𝑊 . We refer to the
corresponding sections for the most general statements. To summarize our results roughly, recall that
each element 𝑥 ∈ 𝑊 can be written as 𝑥 = 𝑤𝜀𝜇, where w is an element of the finite Weyl group W and 𝜇 is
an element of an abelian group denoted 𝑋∗ (that can be chosen as the coweight lattice of our root system).
By wt : 𝑊 ×𝑊 → 𝑋∗, we denote the weight function of the quantum Bruhat graph, cf. Section 3.

Theorem 1.1. Let 𝑥1, 𝑥2 ∈ 𝑊 , and write them as 𝑥1 = 𝑤1𝜀
𝜇1 , 𝑥2 = 𝑤2𝜀

𝜇2 . Then 𝑥1 ≤ 𝑥2 in the Bruhat
order if and only if for each 𝑣1 ∈ 𝑊 , there exists some 𝑣2 ∈ 𝑊 satisfying

𝑣−1
1 𝜇1 + wt(𝑣2 ⇒ 𝑣1) + wt(𝑤1𝑣1 ⇒ 𝑤2𝑣2) ≤ 𝑣−1

2 𝜇2.

For more refined descriptions of the Bruhat order, we refer to Theorems 4.2 and 4.33 as well as
Remark 5.23. The order of quantifiers in the above theorem is essential: If one were to instead ask for
the analogous condition of the form ∀𝑣2∃𝑣1, neither implication of Theorem 1.1 would be true. One
can easily construct counterexamples by choosing one of the elements 𝑥1, 𝑥2 to be 1 ∈ 𝑊 and the other
one to be of very large length.

The description of Demazure products has the following form:

Theorem 1.2 (Cf. Theorem 5.11). Let 𝑥1, 𝑥2 ∈ 𝑊 , written as 𝑥1 = 𝑤1𝜀
𝜇1 and 𝑥2 = 𝑤2𝜀

𝜇2 . Then for
explicitly described 𝑣1, 𝑣2 ∈ 𝑊 , we have

𝑥1 ∗ 𝑥2 = 𝑤1𝑣1𝑣
−1
2 𝜀𝑣2𝑣−1

1 𝜇1+𝜇2−𝑣2wt(𝑣1⇒𝑤2𝑣2) .

As an application of our results, we describe the admissible sets as introduced in [15] and [25] as
Propositions 4.12 and 4.35. We also get an explicit description of Bruhat covers in 𝑊 (Proposition 4.5)
and of the semi-infinite order on 𝑊 (Corollary 4.10). Finally, combining the aforementioned result
of Viehmann [31] with ideas of He [11], we present a new description of generic Newton points
(Theorem 5.29).

The methods of this paper build upon a previous paper by the same author [28]. In particular, the
language and results on length functionals as introduced there will be used throughout this paper. To
complement the combinatorial prerequisites, this paper introduces and proves a number of new properties
of the quantum Bruhat graph in Sections 3 and 5.2. These new results on the quantum Bruhat graph
are not only the foundation of our results on the Bruhat order and Demazure products, they also may
have potentially further-reaching applications, given the previous usage of the quantum Bruhat graph
for quantum cohomology [24] or Kirillov–Reshetikhin crystals [17, 18]. In addition to the previously
studied weight functions of the (parabolic) quantum Bruhat graph, we introduce a new semiaffine weight
function.

Note that while both this paper and our previous paper [28] provide explicit formulas for generic
Newton points, these results are actually complementing rather than overlapping. In terms of logical
dependencies, this paper only relies on the discussion of root functionals and length positivity in
Section 2.2 of [28] and is otherwise independent. Together, both papers cover the contents of the
author’s PhD thesis.

2. Affine root system

In this section, we describe the fundamental root-theoretic setup. In the literature, there are several
different notions of affine Weyl groups studied in different contexts, so we present a uniform setup that
covers all cases. Readers with a combinatorial background are invited to consider any reduced root
datum, whereas readers whose background is closer to arithmetic geometry may find more appealing to
have the context of an algebraic group, as presented, for example, in [28, Section 2.1].
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4 F. Schremmer

Let Φ be a reduced crystallographic root system. We choose a basis Δ ⊆ Φ and denote the set of
positive/negative roots by Φ±.

Let 𝑋∗ denote an abelian group with a fixed embedding of the coroot lattice ZΦ∨ ⊆ 𝑋∗. The group
𝑋∗ is allowed to have a torsion part. We assume that a bilinear map

〈·, ·〉 : 𝑋∗ ⊗ ZΦ → Z

has been chosen that extends the natural pairing between Φ∨ and Φ. For example, both the coroot
lattice 𝑋∗ = ZΦ∨ and the coweight lattice 𝑋∗ = HomZ(ZΦ,Z) are possible choices for 𝑋∗. We turn
𝑋∗ and 𝑋∗ ⊗ Q into ordered abelian groups by defining that 𝜇1 ≤ 𝜇2 if 𝜇2 − 𝜇1 is a Z≥0-linear, resp.
Q≥0-linear, combination of positive coroots. An element 𝜇 in 𝑋∗ or 𝑋∗ ⊗ Q will be called C-regular for
some constant 𝐶 > 0 if |〈𝜇, 𝛼〉| ≥ 𝐶 for all 𝛼 ∈ Φ. Typically, we will not specify the constant and talk of
sufficiently regular or superregular elements. An element 𝜇 in 𝑋∗ or 𝑋∗ ⊗ Q is dominant if 〈𝜇, 𝛼〉 ≥ 0
for each positive root 𝛼.

Denote the Weyl group of Φ by W and the set of simple reflections by

𝑆 = {𝑠𝛼 | 𝛼 ∈ Δ} ⊆ 𝑊.

The Weyl group W acts on 𝑋∗ via the usual convention

𝑠𝛼 (𝜇) = 𝜇 − 〈𝜇, 𝛼〉𝛼∨, 𝛼 ∈ Φ, 𝜇 ∈ 𝑋∗.

The semidirect product 𝑊 := 𝑊 � 𝑋∗ is called extended affine Weyl group. Elements in 𝑊 will typically
be expressed as 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 with 𝑤 ∈ 𝑊 and 𝜇 ∈ 𝑋∗.

By abuse of notation, we write Φ+ for the indicator function of positive roots, that is,

Φ+(𝛼) :=

{
1, 𝛼 ∈ Φ+,

0, 𝛼 ∈ Φ−.

The following easy facts will be used often, usually without further reference:

Lemma 2.1. Let 𝛼 ∈ Φ.

(a) Φ+(𝛼) +Φ+(−𝛼) = 1.
(b) If 𝛽 ∈ Φ and 𝑘, ℓ ≥ 1 are such that 𝑘𝛼 + ℓ𝛽 ∈ Φ, we have

0 ≤ Φ+(𝛼) +Φ+(𝛽) −Φ+(𝑘𝛼 + ℓ𝛽) ≤ 1.

The sets of affine roots, positive affine roots, negative affine roots and simple affine roots are given by

Φaf := Φ × Z,

Φ+
af := (Φ+ × Z≥0) � (Φ− × Z≥1) = {(𝛼, 𝑘) ∈ Φaf | 𝑘 ≥ Φ+(−𝛼)},

Φ−
af := −Φ+

af = Φaf \Φ
+
af = {(𝛼, 𝑘) ∈ Φaf | 𝑘 < Φ+(−𝛼)},

Δaf := {(𝛼, 0) | 𝛼 ∈ Δ}∪

{(−𝜃, 1) | 𝜃 is the longest root of an irreducible component Φ′ ⊆ Φ} ⊆ Φ+
af .

One checks that the positive affine roots are precisely those affine roots which are a sum of simple affine
roots.

The action of 𝑊 on Φaf is given by

(𝑤𝜀𝜇) (𝛼, 𝑘) := (𝑤𝛼, 𝑘 − 〈𝜇, 𝛼〉).
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The length of an element 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 is defined as

ℓ(𝑥) := #{𝑎 ∈ Φ+
af | 𝑥𝑎 ∈ Φ−

af}.

Associated to each affine root 𝑎 = (𝛼, 𝑘), we have the affine reflection

𝑟𝑎 = 𝑠𝛼𝜀
𝑘 𝛼∨

∈ 𝑊.

Denote by 𝑊af ⊆ 𝑊 the subgroup generated by the affine reflections (called affine Weyl group), and
write 𝑆af := {𝑟𝑎 | 𝑎 ∈ Δaf} (the set of simple affine reflections). It is easy to check that (𝑊af , 𝑆af) is a
Coxeter group with length function ℓ as defined above, and 𝑊af = 𝑊 � ZΦ∨ ⊆ 𝑊 .

Denoting the subgroup of length zero elements of 𝑊 by Ω ≤ 𝑊 , we get a semidirect product
decomposition 𝑊 = Ω �𝑊af .

The Bruhat order on 𝑊af is the usual Coxeter-theoretic notion. We define the Bruhat order on 𝑊 by
declaring that

𝜔1𝑥1 ≤ 𝜔2𝑥2 ⇐⇒ (𝜔1 = 𝜔2 and 𝑥1 ≤ 𝑥2 ∈ 𝑊af),

where 𝜔1, 𝜔2 ∈ Ω and 𝑥1, 𝑥2 ∈ 𝑊af . Equivalently, this is the partial order on𝑊 generated by the relations
𝑥 < 𝑥𝑟𝑎 for 𝑥 ∈ 𝑊 and 𝑎 ∈ Φaf such that ℓ(𝑥) < ℓ(𝑥𝑟𝑎).

We will occasionally denote the classical part of an affine root 𝑎 = (𝛼, 𝑘) or an element 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊
by

cl(𝑎) = 𝛼 ∈ Φ, cl(𝑥) = 𝑤 ∈ 𝑊.

We need the language of length functionals from [28, Section 2.2]. We recall the basic definitions
here and refer to the cited paper for some geometric intuition and fundamental properties.

Definition 2.2. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 .

(a) For 𝛼 ∈ Φ, we define the length functional of x by

ℓ(𝑥, 𝛼) := 〈𝜇, 𝛼〉 +Φ+(𝛼) −Φ+(𝑤𝛼).

(b) An element 𝑣 ∈ 𝑊 is called length positive for x, written as 𝑣 ∈ LP(𝑥), if every positive root 𝛼 ∈ Φ+

satisfies ℓ(𝑥, 𝑣𝛼) ≥ 0.
(c) If 𝑣 ∈ 𝑊 is not length positive for x and 𝛼 ∈ Φ+ satisfies ℓ(𝑥, 𝑣𝛼) < 0, we call 𝑣𝑠𝛼 ∈ 𝑊 an

adjustment of v for ℓ(𝑥, ·).

The name “length functional” comes from the fact that the length of x can be expressed as the sum
of all positive values ℓ(𝑥, 𝛼) for 𝛼 ∈ Φ.

We prove in [28, Lemma 2.3] that iteratively adjusting any given 𝑣 ∈ 𝑊 yields a length positive
element for x. The following characterization of length positive elements will frequently come in handy:

Lemma 2.3 [28, Corollary 2.11]. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and 𝑣 ∈ 𝑊 . Then

ℓ(𝑥) ≥ 〈𝑣−1𝜇, 2𝜌〉 − ℓ(𝑣) + ℓ(𝑤𝑣).

Equality holds if and only if v is length positive for x.

The length functional can be used to characterize the shrunken Weyl chambers [28, Proposition 2.15]:
The element 𝑥 ∈ 𝑊 lies in a shrunken Weyl chamber if and only if ℓ(𝑥, 𝛼) ≠ 0 for all 𝛼 ∈ Φ, which is
equivalent to saying that LP(𝑥) contains only one element.
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6 F. Schremmer

3. Quantum Bruhat graph

In this section, we recall the definition of quantum Bruhat graphs and study its weight functions. Before
turning to the abstract theory of these graphs, we will discuss the situation of root systems of type 𝐴𝑛

as a motivational example.
For each simple affine root 𝑎 = (𝛼, 𝑘) ∈ Δaf , we define a coweight 𝜔𝑎 ∈ QΦ∨ as follows: For 𝛽 ∈ Δ ,

we define

〈𝜔𝑎, 𝛽〉 =

{
1, 𝛼 = 𝛽,

0, 𝛼 ≠ 𝛽.

In particular, 𝜔𝑎 = 0 if 𝛼 ∉ Δ .
Let now 𝑥1 = 𝑤1𝜀

𝜇1 , 𝑥2 = 𝑤2𝜀
𝜇2 ∈ 𝑊 . By [2, Theorem 8.3.7], we have

𝑥1 ≤ 𝑥2 ⇐⇒ ∀𝑎, 𝑎′ ∈ Δaf : (𝜇1 + 𝜔𝑎 − 𝑤−1
1 𝜔𝑎′ )dom ≤ (𝜇2 + 𝜔𝑎 − 𝑤−1

2 𝜔𝑎′ )dom.

Here, we write 𝜈dom ∈ 𝑋∗ for the unique dominant element in the W-orbit of 𝜈 ∈ 𝑋∗.
Suppose that 𝜇1 and 𝜇2 are sufficiently regular such that we find 𝑣1, 𝑣2 ∈ 𝑊 with

∀𝑎, 𝑎′ ∈ Δaf : (𝜇𝑖 + 𝜔𝑎 − 𝑤−1
𝑖 𝜔𝑎′ )dom = 𝑣−1

𝑖 (𝜇𝑖 + 𝜔𝑎 − 𝑤−1
𝑖 𝜔𝑎′ ).

Then we conclude

𝑥1 ≤ 𝑥2 ⇐⇒ ∀𝑎, 𝑎′ : 𝑣−1
1 (𝜇1 + 𝜔𝑎 − 𝑤−1

1 𝜔𝑎′ ) ≤ 𝑣−1
2 (𝜇2 + 𝜔𝑎 − 𝑤−1

2 𝜔𝑎′ )

⇐⇒ 𝑣−1
1 𝜇1 + sup

𝑎∈Δaf

(𝑣−1
1 𝜔𝑎 − 𝑣−1

2 𝜔𝑎) + sup
𝑎′ ∈Δaf

(𝑤2𝑣2)
−1𝜔𝑎′ − (𝑤1𝑣1)

−1𝜔𝑎′ ≤ 𝑣−1
2 𝜇2.

So if we define

wt(𝑣1 ⇒ 𝑣2) := sup
𝑎∈Δaf

(𝑣−1
2 𝜔𝑎 − 𝑣−1

1 𝜔𝑎), (3.1)

we can conclude a version of our result on the Bruhat order (Theorem 1.1).
Indeed, formula (3.1) holds true for root systems of type 𝐴𝑛, but not for any other root system. Many

properties of the weight function are easier to prove for type 𝐴𝑛, where an explicit formula exists, so it
is helpful to keep this example in mind.

We refer to a paper of Ishii [14] for explicit formulas for the weight functions of all classical root
systems (while he discusses explicit criteria for the semi-infinite order, these can be translated to explicit
formulas for the weight function as outlined above in the 𝐴𝑛 case).

3.1. (Parabolic) quantum Bruhat graph

We start with a discussion of the quantum roots in Φ+.

Lemma 3.1. Let 𝛼 ∈ Φ+. Then

ℓ(𝑠𝛼) ≤ 〈𝛼∨, 2𝜌〉 − 1.

Equality holds if and only if for all 𝛼 ≠ 𝛽 ∈ Φ+ with 𝑠𝛼 (𝛽) ∈ Φ−, we have 〈𝛼∨, 𝛽〉 = 1.

Roots satisfying the equivalent properties of Lemma 3.1 are called quantum roots. We see that all
long roots are quantum (so in a simply laced root system, all roots are quantum). Moreover, all simple
roots are quantum.
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The first inequality of Lemma 3.1 is due to [4, Lemma 4.3]. By [3, Lemma 7.2], we have the following
more explicit (but somehow less useful for us) result: A short root 𝛼 is quantum if and only if 𝛼 is a
sum of short simple roots.

Proof of Lemma 3.1. We calculate

〈𝛼∨, 2𝜌〉 =
1
2
(
〈𝛼∨, 2𝜌〉 + 〈𝑠𝛼 (𝛼

∨), 𝑠𝛼 (2𝜌)〉
)
=

1
2
〈𝛼∨, 2𝜌 − 𝑠𝛼 (2𝜌)〉.

Let

𝐼 := {𝛽 ∈ Φ+ | 𝑠𝛼 (𝛽) ∈ Φ−}.

Then 𝑠𝛼 (𝐼) = −𝐼 and 𝑠𝛼 (Φ+ \ 𝐼) = Φ+ \ 𝐼. It follows that

2𝜌 − 𝑠𝛼 (2𝜌) =
∑
𝛽∈𝐼

(𝛽 − 𝑠𝛼 (𝛽)) +
∑

𝛽∈Φ+\𝐼

(𝛽 − 𝑠𝛼 (𝛽))

= 2
∑
𝛽∈𝐼

𝛽.

Therefore, we obtain

〈𝛼∨, 2𝜌〉 =
∑
𝛽∈𝐼

〈𝛼∨, 𝛽〉.

Certainly, 𝛼 ∈ 𝐼. Hence,

〈𝛼∨, 2𝜌〉 = 2 +
∑

𝛼≠𝛽∈Φ+

𝑠𝛼 (𝛽) ∈Φ−

〈𝛼∨, 𝛽〉.

Now, if 𝛼, 𝛽 ∈ Φ+ and 𝑠𝛼 (𝛽) = 𝛽 − 〈𝛼∨, 𝛽〉𝛼 ∈ Φ−, we get 〈𝛼∨, 𝛽〉 ≥ 1. We conclude

〈𝛼∨, 2𝜌〉 = 2 +
∑

𝛼≠𝛽∈Φ+

𝑠𝛼 (𝛽) ∈Φ−

〈𝛼∨, 𝛽〉 ≥ 2 + #{𝛽 ∈ Φ+ \ {𝛼} | 𝑠𝛼 (𝛽) ∈ Φ−} = 1 + ℓ(𝑠𝛼).

All claims of the lemma follow immediately from this. �

The parabolic quantum Bruhat graph as introduced by Lenart–Naito–Sagaki–Schilling–Schimozono
[17] is a generalization of the classical construction of the quantum Bruhat graph by Brenti–Fomin–
Postnikov [4]. To avoid redundancy, we directly state the definition of the parabolic quantum Bruhat
graph, even though we will be mostly concerned with the (ordinary) quantum Bruhat graph.

Fix a subset 𝐽 ⊆ Δ . We denote by 𝑊𝐽 the Coxeter subgroup of W generated by the reflections 𝑠𝛼 for
𝛼 ∈ 𝐽. We let

𝑊 𝐽 = {𝑤 ∈ 𝑊 | 𝑤(𝐽) ⊆ Φ+}.

For each 𝑤 ∈ 𝑊 , let 𝑤𝐽 ∈ 𝑊 𝐽 and 𝑤𝐽 ∈ 𝑊𝐽 be the uniquely determined elements with 𝑤 = 𝑤𝐽 · 𝑤𝐽

[2, Proposition 2.4.4].
We write Φ𝐽 = 𝑊𝐽 (𝐽) for the root system generated by J. The sum of positive roots in Φ𝐽 is denoted

2𝜌𝐽 . The quotient lattice ZΦ∨/ZΦ∨
𝐽 is ordered by declaring 𝜇1 + Φ∨

𝐽 ≤ 𝜇2 + Φ∨
𝐽 if the difference

𝜇2 − 𝜇1 +Φ∨
𝐽 is equal to a sum of positive coroots modulo Φ∨

𝐽 .
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Definition 3.2.

(a) The parabolic quantum Bruhat graph associated with 𝑊 𝐽 is a directed and (ZΦ∨/ZΦ∨
𝐽 )-weighted

graph, denoted QB(𝑊 𝐽 ). The set of vertices is given by 𝑊 𝐽 . For 𝑤1, 𝑤2 ∈ 𝑊 𝐽 , we have an edge
𝑤1 → 𝑤2 if there is a root 𝛼 ∈ Φ+ \Φ𝐽 such that 𝑤2 = (𝑤1𝑠𝛼)

𝐽 and one of the following conditions
is satisfied:
(B) ℓ(𝑤2) = ℓ(𝑤1) + 1 or
(Q) ℓ(𝑤2) = ℓ(𝑤1) + 1 − 〈𝛼∨, 2𝜌 − 2𝜌𝐽 〉.
Edges of type (B) are Bruhat edges and have weight 0 ∈ ZΦ∨/ZΦ∨

𝐽 . Edges of type (Q) are quantum
edges and have weight 𝛼∨ ∈ ZΦ∨/ZΦ∨

𝐽 .
(b) A path in QB(𝑊 𝐽 ) is a sequence of adjacent edges

𝑝 : 𝑤 = 𝑤1 → 𝑤2 → · · · → 𝑤ℓ+1 = 𝑤′.

The length of p is the number of edges, denoted ℓ(𝑝) ∈ Z≥0. The weight of p is the sum of its edges’
weights, denoted wt(𝑝) ∈ ZΦ∨/ZΦ∨

𝐽 . We say that p is a path from w to𝑤′.
(c) If 𝑤, 𝑤′ ∈ 𝑊 𝐽 , we define the distance function by

𝑑QB(𝑊 𝐽 ) (𝑤 ⇒ 𝑤′) = inf{ℓ(𝑝) | 𝑝 is a path in QB(𝑊 𝐽 ) from 𝑤 to 𝑤′} ∈ Z≥0 ∪ {∞}.

A path p from w to 𝑤′ of length 𝑑QB(𝑊 𝐽 ) (𝑤 ⇒ 𝑤′) is called shortest.
(d) The quantum Bruhat graph of W is the parabolic quantum Bruhat graph associated with 𝐽 = ∅,

denoted QB(𝑊) := QB(𝑊 ∅). We also shorten our notation to

𝑑 (𝑤 ⇒ 𝑤′) := 𝑑QB(𝑊 ) (𝑤 ⇒ 𝑤′).

Remark 3.3. Let us consider the case 𝐽 = ∅, that is, the quantum Bruhat graph. If 𝑤 ∈ 𝑊 and 𝛼 ∈ Δ ,
then 𝑤 → 𝑤𝑠𝛼 is always an edge of weight 𝛼∨Φ+(−𝑤𝛼).

The quantum edges are precisely the edges of the form 𝑤 → 𝑤𝑠𝛼, where 𝛼 is a quantum root and
ℓ(𝑤𝑠𝛼) = ℓ(𝑤) − ℓ(𝑠𝛼).

Proposition 3.4 [17, Proposition 8.1] and [18, Lemma 7.2]. Consider 𝑤, 𝑤′ ∈ 𝑊 𝐽 .

(a) The graph QB(𝑊 𝐽 ) is strongly connected, that is, there exists a path from w to 𝑤′ in QB(𝑊 𝐽 ).
(b) Any two shortest paths from w to 𝑤′ have the same weight, denoted

wtQB(𝑊 𝐽 ) (𝑤 ⇒ 𝑤′) ∈ ZΦ∨/ZΦ∨
𝐽 .

(c) Any path p from w to 𝑤′ has weight wt(𝑝) ≥ wtQB(𝑊 𝐽 ) (𝑤 ⇒ 𝑤′) ∈ ZΦ∨/ZΦ∨
𝐽 .

(d) The image of

wt(𝑤 ⇒ 𝑤′) := wtQB(𝑊 ) (𝑤 ⇒ 𝑤′) ∈ ZΦ∨

under the canonical projection ZΦ∨ → ZΦ∨/ZΦ∨
𝐽 is given by wtQB(𝑊 𝐽 ) (𝑤 ⇒ 𝑤′).

One interpretation of the weight function is that it measures the failure of the inequality 𝑤1𝑊𝐽 ≤

𝑤2𝑊𝐽 in the Bruhat order on 𝑊/𝑊𝐽 (cf. [2, Section 2.5]): Indeed, 𝑤1𝑊𝐽 ≤ 𝑤2𝑊𝐽 if and only if
wtQB(𝑊 𝐽 ) (𝑤1 ⇒ 𝑤2) = 0.

We have the following converse to part (c) of Proposition 3.4:

Lemma 3.5 (Cf. [21, Formula 4.3]). Let 𝑤1, 𝑤2 ∈ 𝑊 𝐽 . For any path p from 𝑤1 to 𝑤2 in QB(𝑊 𝐽 ), we
have

〈wt(𝑝), 2𝜌 − 2𝜌𝐽 〉 = ℓ(𝑝) + ℓ(𝑤1) − ℓ(𝑤2).
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In particular,

〈wtQB(𝑊 𝐽 ) (𝑤1 ⇒ 𝑤2), 2𝜌 − 2𝜌𝐽 〉 = 𝑑QB(𝑊 𝐽 ) (𝑤1 ⇒ 𝑤2) + ℓ(𝑤1) − ℓ(𝑤2),

and p is shortest if and only if wt(𝑝) = wtQB(𝑊 𝐽 ) (𝑤1 ⇒ 𝑤2).

Proof. Note that if 𝑝 : 𝑤1 → 𝑤2 = (𝑤1𝑠𝛼)
𝐽 is an edge in QB(𝑊 𝐽 ), then by definition,

ℓ(𝑤2) = ℓ(𝑤1) + 1 − 〈wt(𝑝), 2𝜌 − 2𝜌𝐽 〉.

In general, iterate this observation for all edges of p. �

The weights of nonshortest paths do not add more information:
Lemma 3.6. Let 𝜇 ∈ ZΦ∨/ZΦ∨

𝐽 and 𝑤1, 𝑤2 ∈ 𝑊 . Then 𝜇 ≥ wtQB(𝑊 𝐽 ) (𝑤1 ⇒ 𝑤2) if and only if there
is a path p from 𝑤1 to 𝑤2 in QB(𝑊 𝐽 ) of weight 𝜇.
Proof. By part (d) of Proposition 3.4, it suffices to consider the case 𝐽 = ∅, that is, the quantum Bruhat
graph.

The if condition is part (c) of Proposition 3.4. It remains to show the only if condition. Note that for
each 𝑤 ∈ 𝑊 and 𝛼 ∈ Δ , we get a “silly path” of the form

𝑤 → 𝑤𝑠𝛼 → 𝑤

in QB(𝑊). Precisely one of the edges is quantum with weight 𝛼∨, and the other one is Bruhat with
weight 0.

If 𝜇 ≥ wt(𝑤1 ⇒ 𝑤2), we may compose a shortest path from 𝑤1 to 𝑤2 with suitably chosen silly
paths as above to obtain a path from 𝑤1 to 𝑤2 of weight 𝜇. �

Lemma 3.7 [17, Lemma 7.7]. Let 𝐽 ⊆ Δ , 𝑤1, 𝑤2 ∈ 𝑊 𝐽 and 𝑎 = (𝛼, 𝑘) ∈ Δaf such that 𝑤−1
2 𝛼 ∈ Φ−.

(a) We have an edge (𝑠𝛼𝑤2)
𝐽 → 𝑤2 in QB(𝑊 𝐽 ) of weight −𝑘𝑤−1

2 𝛼∨ ∈ ZΦ∨/ZΦ∨
𝐽 .

(b) If 𝑤−1
1 𝛼 ∈ Φ+, then the above edge is part of a shortest path from 𝑤1 to 𝑤2, that is,

𝑑QB(𝑊 𝐽 ) (𝑤1 ⇒ 𝑤2) = 𝑑QB(𝑊 𝐽 ) (𝑤1 ⇒ (𝑠𝛼𝑤2)
𝐽 ) + 1.

(c) If 𝑤−1
1 𝛼 ∈ Φ−, we have

𝑑QB(𝑊 𝐽 ) (𝑤1 ⇒ 𝑤2) = 𝑑QB(𝑊 𝐽 ) ((𝑠𝛼𝑤1)
𝐽 ⇒ (𝑠𝛼𝑤2)

𝐽 ),

wtQB(𝑊 𝐽 ) (𝑤1 ⇒ 𝑤2) = wtQB(𝑊 𝐽 ) ((𝑠𝛼𝑤1)
𝐽 ⇒ (𝑠𝛼𝑤2)

𝐽 ) + 𝑘 (𝑤−1
1 𝛼∨ − 𝑤−1

2 𝛼∨).

We can use this lemma to reduce the calculation of weights wt(𝑤1 ⇒ 𝑤2) to weights of the form
wt(𝑤 ⇒ 1): If 𝑤2 ≠ 1, we find a simple root 𝛼 ∈ Δ with 𝑤−1

2 𝛼 ∈ Φ−. Then

wt(𝑤1 ⇒ 𝑤2) =

{
wt(𝑤1 ⇒ 𝑠𝛼𝑤2), 𝑤−1

1 𝛼 ∈ Φ+,

wt(𝑠𝛼𝑤1 ⇒ 𝑠𝛼𝑤2), 𝑤−1
1 𝛼 ∈ Φ−,

= wt(min(𝑤1, 𝑠𝛼𝑤1), 𝑠𝛼𝑤2).

For an alternative proof of this reduction, cf. [26, Corollary 3.3].
The quantum Bruhat graph has a number of useful automorphisms.

Lemma 3.8. Let 𝑤1, 𝑤2 ∈ 𝑊 , and let 𝑤0 ∈ 𝑊 be the longest element.
(a) wt(𝑤0𝑤1 ⇒ 𝑤0𝑤2) = wt(𝑤2 ⇒ 𝑤1).
(b) wt(𝑤0𝑤1𝑤0 ⇒ 𝑤0𝑤2𝑤0) = −𝑤0wt(𝑤1 ⇒ 𝑤2).
(c) wt(𝑤1 ⇒ 1) = wt(𝑤−1

1 ⇒ 1).
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Proof. Part (a) follows from [17, Proposition 4.3].
For part (b), observe that we have an automorphism of Φ given by 𝛼 ↦→ −𝑤0𝛼. The induced

automorphism of W is given by 𝑤 ↦→ 𝑤0𝑤𝑤0. Since the function wt(· ⇒ ·) is compatible with
automorphisms of Φ, we get the claim.

Now, for (c), consider a reduced expression

𝑤0𝑤1 = 𝑠1 · · · 𝑠𝑞 .

Then, iterating Lemma 3.7, we get

wt(𝑤1 ⇒ 1) =
(a)

wt(𝑤0 ⇒ 𝑤0𝑤1) = wt(𝑤0 ⇒ 𝑠1 · · · 𝑠𝑞)

= wt(𝑠1𝑤0 ⇒ 𝑠2 · · · 𝑠𝑞) = · · · = wt(𝑠𝑞 · · · 𝑠1𝑤0 ⇒ 1)
= wt((𝑤0𝑤1)

−1𝑤0 ⇒ 1) = wt(𝑤−1
1 ⇒ 1). �

3.2. Lifting the parabolic quantum Bruhat graph

For sufficiently regular elements of the extended affine Weyl group, the Bruhat covers in 𝑊 are in a
one-to-one correspondence with edges in the quantum Bruhat graph [16, Proposition 4.4]. This result
is very useful for deriving properties about the quantum Bruhat graph. Moreover, our strategy to prove
our results on the Bruhat order will be to reduce to this superregular case.

The result of Lam and Shimozono has been generalized by Lenart et al. [17, Theorem 5.2], and the
extra generality of the latter result will be useful for us. Throughout this section, let 𝐽 ⊆ Δ be any subset.
Definition 3.9 [17].
(a) Define

(𝑊 𝐽 )af :={𝑥 ∈ 𝑊af | ∀𝛼 ∈ Φ𝐽 : ℓ(𝑥, 𝛼) = 0},	(𝑊 𝐽 ) :={𝑥 ∈ 𝑊 | ∀𝛼 ∈ Φ𝐽 : ℓ(𝑥, 𝛼) = 0}.

(b) Let 𝐶 > 0 be any real number. We define Ω−𝐶
𝐽 to be the set of all elements 𝑥 = 𝑤𝜀𝜇 ∈ 	(𝑊 𝐽 ) such

that

∀𝛼 ∈ Φ+ \Φ𝐽 : 〈𝜇, 𝛼〉 ≤ −𝐶.

Similarly, we say 𝑥 ∈ Ω𝐶
𝐽 if

∀𝛼 ∈ Φ+ \Φ𝐽 : 〈𝜇, 𝛼〉 ≥ 𝐶.

(c) For elements 𝑥, 𝑥 ′ ∈ 𝑊 , we write 𝑥 � 𝑥 ′ and call 𝑥 ′ a Bruhat cover of x if ℓ(𝑥 ′) = ℓ(𝑥) + 1 and 𝑥−1𝑥 ′

is an affine reflection in 𝑊 .
(d) For 𝜇, 𝜇′ ∈ 𝑋∗, we write 𝜇′ ≤ 𝜇 (mod Φ∨

𝐽 ) if the difference 𝜇−𝜇′+ZΦ∨
𝐽 is a sum of positive coroots

in the quotient group 𝑋∗/ZΦ∨
𝐽 . This is, according to our convention, equivalent to 𝜇 − 𝜇′ + ZΦ∨

𝐽 ≥

0 + ZΦ∨
𝐽 in ZΦ/ZΦ∨

𝐽 .
Theorem 3.10 [17, Theorem 5.2]. There is a constant 𝐶 > 0 depending only on Φ such that the
following holds:

(a) If 𝑥 = 𝑤𝜀𝜇 � 𝑥 ′ = 𝑤′𝜀𝜇′ is a Bruhat cover with 𝑥 ∈ Ω−𝐶
𝐽 and 𝑥 ′ ∈ 	(𝑊 𝐽 ), there exists an edge

(𝑤′)𝐽 → 𝑤𝐽 in QB(𝑊 𝐽 ) of weight 𝜇 − 𝜇′ + ZΦ∨
𝐽 .

(b) If 𝑥 = 𝑤𝜀𝜇 ∈ Ω−𝐶
𝐽 and �̃�′ → 𝑤𝐽 is an edge in QB(𝑊 𝐽 ) of weight 𝜔, then there exists a unique

element 𝑥 � 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 	(𝑊 𝐽 ) with �̃�′ = (𝑤′)𝐽 and 𝜇 ≡ 𝜇′ + 𝜔 (mod ZΦ∨

𝐽 ).

This theorem‘lifts’ QB(𝑊 𝐽 ) into the Bruhat covers of Ω−𝐶
𝐽 for sufficiently large C.
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The theorem is originally formulated only for (𝑊 𝐽 )af , but the generalization to 	(𝑊 𝐽 ) is straightfor-
ward.

With a bit of bookkeeping, we can compare paths in QB(𝑊 𝐽 ) (i.e., sequences of edges) with the
Bruhat order on Ω−𝐶

𝐽 (i.e., sequences of Bruhat covers).

Lemma 3.11. Let 𝐶1 > 0 be any real number. Then there exists some 𝐶2 > 0 such that for all
𝑥 = 𝑤𝜀𝜇 ∈ Ω𝐶2

𝐽 and 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 	(𝑊 𝐽 ) with ℓ(𝑥−1𝑥 ′) ≤ 𝐶1, we have

𝑥 ≤ 𝑥 ′ ⇐⇒ 𝜇 − wt(𝑤′ ⇒ 𝑤) ≤ 𝜇′ (mod Φ∨
𝐽 ).

Proof. Let 𝐶 > 0 be a constant sufficiently large for the conclusion of Theorem 3.10 to hold. We see
that if 𝑥1 � 𝑥2 is any cover in Ω−𝐶

𝐽 , then there are only finitely many possibilities for 𝑥−1
1 𝑥2, so the length

ℓ(𝑥−1
1 𝑥2) is bounded. We fix a bound 𝐶 ′ > 0 for this length.
We can pick 𝐶2 > 0 such that for all 𝑥1 = 𝑤𝜀𝜇 ∈ Ω−𝐶2

𝐽 and 𝑥2 ∈ 𝑊 𝐽 with ℓ(𝑥−1
1 𝑥2) ≤ 𝐶1𝐶

′, we must
at least have 𝑥2 ∈ Ω−𝐶

𝐽 .
We now consider elements 𝑥 = 𝑤𝜀𝜇 ∈ Ω−𝐶2

𝐽 and 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 𝐽 with ℓ(𝑥−1𝑥 ′) ≤ 𝐶1.

First, suppose that 𝑥 ≤ 𝑥 ′. We find elements 𝑥 = 𝑥1 � 𝑥2 � · · ·� 𝑥𝑘 = 𝑥 ′. Note that 𝑘 = ℓ(𝑥 ′) − ℓ(𝑥) ≤
ℓ(𝑥−1𝑥 ′) ≤ 𝐶1. By choice of 𝐶 ′, we conclude that ℓ(𝑥−1𝑥𝑖) ≤ 𝐶 ′𝑖 ≤ 𝐶 ′𝐶1 for 𝑖 = 1, . . . , 𝑘 . Thus,
𝑥𝑖 ∈ Ω−𝐶

𝐽 .
By Theorem 3.10, we get a path from (𝑤′)𝐽 to 𝑤𝐽 of weight 𝜇 − 𝜇′ + ZΦ∨

𝐽 . Thus,

wt(𝑤1 ⇒ 𝑤2) ≤ 𝜇 − 𝜇′ (mod Φ∨
𝐽 ),

which is the estimate we wanted to prove.
Now, suppose conversely that we are given 𝜇 − wt(𝑤′ ⇒ 𝑤) ≥ 𝜇′ (mod Φ∨

𝐽 ). By Lemma 3.6, we
find a path (𝑤′)𝐽 = 𝑤1 → 𝑤2 → · · · → 𝑤𝑘 = 𝑤𝐽 in QB(𝑊 𝐽 ) of weight 𝜇 − 𝜇′ + ZΦ∨

𝐽 . Since 𝜇 − 𝜇′ is
bounded in terms of 𝐶1, the length k of this path is bounded in terms of 𝐶1 as well. By adding another
lower bound for 𝐶2, we can guarantee that each such path 𝑤1 → · · · → 𝑤𝑘 can indeed be lifted to Ω−𝐶

𝐽 ,
proving that 𝑥 ≤ 𝑥 ′. �

We find working with superdominant instead superantidominant coweights a bit easier, so let us
restate the lemma for Ω𝐶

𝐽 instead of Ω−𝐶
𝐽 .

Corollary 3.12. Let 𝐶1 > 0 be any real number. Then there exists some 𝐶2 > 0 such that for all
𝑥 = 𝑤𝜀𝜇 ∈ Ω𝐶2

𝐽 and 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 	(𝑊 𝐽 ) with ℓ(𝑥−1𝑥 ′) ≤ 𝐶1, we have

𝑥 ≤ 𝑥 ′ ⇐⇒ 𝜇 + wt(𝑤 ⇒ 𝑤′) ≤ 𝜇′ (mod Φ∨
𝐽 ).

Proof. Let 𝑤0 (𝐽) ∈ 𝑊𝐽 be the longest element. Let 𝐶2 > 0 such that the conclusion of the previous
Lemma is satisfied.

If 𝑥 ∈ Ω𝐶2
𝐽 , then 𝑥𝑤0 (𝐽)𝑤0 ∈ Ω−𝐶2

−𝑤0 (𝐽 )
. Moreover, 𝑤0 (𝐽)𝑤0 is a length positive element for x, so

ℓ(𝑥𝑤0 (𝐽)𝑤0) = ℓ(𝑥) + ℓ(𝑤0(𝐽)𝑤0). Choosing 𝐶2 appropriately, we similarly may assume 𝑥 ′ ∈ Ω𝐶
𝐽 for

some 𝐶 > 0 and obtain ℓ(𝑥 ′𝑤0 (𝐽)𝑤0) = ℓ(𝑥 ′) + ℓ(𝑤0(𝐽)𝑤0). Then, with the right choice of constants
and using the automorphism 𝛼 ↦→ −𝑤0𝛼 of Φ, we get

𝑥 ≤ 𝑥 ′ ⇐⇒ 𝑥𝑤0 (𝐽)𝑤0 ≤ 𝑥 ′𝑤0 (𝐽)𝑤0

⇐⇒ 𝑤0𝑤0 (𝐽)𝜇 − wt(𝑤′𝑤0 (𝐽)𝑤0 ⇒ 𝑤𝑤0 (𝐽)𝑤0) ≥ 𝑤0𝑤0 (𝐽)𝜇
′ (mod Φ∨

−𝑤0 (𝐽 )
)

⇐⇒ 𝑤0 (𝐽)𝜇 + wt(𝑤0𝑤
′𝑤0 (𝐽) ⇒ 𝑤0𝑤𝑤0 (𝐽)) ≤ 𝑤0 (𝐽)𝜇

′ (mod Φ∨
𝐽 )

⇐⇒
[17, Proof 4.3]

𝑤0 (𝐽)𝜇 + wt(𝑤 ⇒ 𝑤′) ≤ 𝑤0 (𝐽)𝜇
′ (mod Φ∨

𝐽 ).

Since 𝑤0 (𝐽)𝜇 ≡ 𝜇 (mod Φ∨
𝐽 ), we get the desired conclusion. �
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3.3. Computing the weight function

We already saw in Lemma 3.7 how to find for all 𝑤1, 𝑤2 ∈ 𝑊 an element 𝑤 ∈ 𝑊 such that wt(𝑤1 ⇒

𝑤2) = wt(𝑤 ⇒ 1). It remains to find a method to compute these weights. First, we note that we only
need to consider quantum edges for this task.

Lemma 3.13 [21, Proposition 4.11]. For each 𝑤 ∈ 𝑊 , there is a shortest path from w to 1 in QB(𝑊)

consisting only of quantum edges.

So we only need to find for each 𝑤 ∈ 𝑊 \ {1} a quantum edge 𝑤 → 𝑤′ in QB(𝑊) with 𝑑 (𝑤′ ⇒ 1) =
𝑑 (𝑤 ⇒ 1) − 1. In this section, we present a new method to obtain such edges.

Definition 3.14. Let 𝑤 ∈ 𝑊 .

(a) The set of inversions of w is

inv(𝑤) := {𝛼 ∈ Φ+ | 𝑤−1𝛼 ∈ Φ−}.

(b) An inversion 𝛾 ∈ inv(𝑤) is a maximal inversion if there is no 𝛼 ∈ inv(𝑤) with 𝛼 ≠ 𝛾 ≤ 𝛼. Here,
𝛾 ≤ 𝛼 means that 𝛼 − 𝛾 is a sum of positive roots.

We write max inv(𝑤) for the set of maximal inversions of w.

Remark 3.15. If 𝜃 ∈ inv(𝑤) is the longest root of an irreducible component of Φ, then certainly
𝜃 ∈ max inv(𝑤). In this case, everything we want to prove is already shown in [17, Section 5.5]. Our
strategy is to follow their arguments as closely as possible while keeping the generality of maximal
inversions.

Lemma 3.16. Let 𝑤 ∈ 𝑊 and 𝛾 ∈ max inv(𝑤). Then 𝑤 → 𝑠𝛾𝑤 is a quantum edge.

Proof. Note that 𝑠𝛾𝑤 = 𝑤𝑠−𝑤−1𝛾 . We have to show that −𝑤−1𝛾 is a quantum root and that

ℓ(𝑤𝑠−𝑤−1𝛾) = ℓ(𝑤) − ℓ(𝑠−𝑤−1𝛾).

Step 1. We show that −𝑤−1𝛾 is a quantum root using Lemma 3.1. So pick an element −𝑤−1𝛾 ≠ 𝛽 ∈ Φ+

with 𝑠−𝑤−1𝛾 (𝛽) ∈ Φ−. We want to show that 〈−𝑤−1𝛾∨, 𝛽〉 = 1.
Note that

𝑠−𝑤−1𝛾 (𝛽) = 𝛽 + 〈−𝑤−1𝛾∨, 𝛽〉𝑤−1𝛾.

In particular, 𝑘 := 〈−𝑤−1𝛾∨, 𝛽〉 > 0. It follows from the theory of root systems that

𝛽𝑖 := 𝛽 + 𝑖𝑤−1𝛾 ∈ Φ, 𝑖 = 0, . . . , 𝑘 .

Since 𝛽0 = 𝛽 ∈ Φ+ and 𝛽𝑘 = 𝑠−𝑤−1𝛾 (𝛽) ∈ Φ−, we find some 𝑖 ∈ {0, . . . , 𝑘 − 1} with 𝛽𝑖 ∈ Φ+ and
𝛽𝑖+1 ∈ Φ−. We show that 𝑘 ≤ 1 as follows:

◦ Suppose 𝑤𝛽𝑖 ∈ Φ+. Then 𝑤𝛽𝑖+1 = 𝑤𝛽𝑖 + 𝛾 > 𝛾. In particular, 𝑤𝛽𝑖+1 ∈ Φ+. We see that 𝑤𝛽𝑖+1 ∈

inv(𝑤), contradicting maximality of 𝛾.
◦ Suppose 𝑤𝛽𝑖+1 ∈ Φ−. Then −𝑤𝛽𝑖 = −𝑤𝛽𝑖+1 + 𝛾 > 𝛾. In particular, −𝑤𝛽𝑖 ∈ Φ+. We see that

−𝑤𝛽𝑖 ∈ inv(𝑤), contradicting maximality of 𝛾.
◦ Suppose 𝑖 ≥ 1. Then 𝛾 − 𝑤𝛽𝑖 = −𝑤𝛽𝑖−1 ∈ Φ. We already proved 𝑤𝛽𝑖 ∈ Φ−, so −𝑤𝛽𝑖 ∈ inv(𝑤).

Since also 𝛾 ∈ inv(𝑤), we conclude 𝛾 < −𝑤𝛽𝑖−1 ∈ inv(𝑤), contradicting the maximality of 𝛾.
◦ Suppose 𝑖 ≤ 𝑘 − 2. Then 𝑤𝛽𝑖+2 = 𝑤𝛽𝑖+1 + 𝛾 ∈ Φ. Since both 𝛾 and 𝑤𝛽𝑖+1 are in inv(𝑤), we conclude

that 𝛾 < 𝑤𝛽𝑖+2 ∈ inv(𝑤), which is a contradiction to the maximality of 𝛾.

In summary, we conclude 0 = 𝑖 ≥ 𝑘 − 1, thus 𝑘 ≤ 1. This shows 〈−𝑤−1𝛾∨, 𝛽〉 = 1.
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Step 2. We show that

ℓ(𝑤𝑠−𝑤−1𝛾) = ℓ(𝑤) − ℓ(𝑠−𝑤−1𝛾).

Suppose this is not the case. Then we find some 𝛼 ∈ Φ+ such that 𝑤𝛼 ∈ Φ+ and 𝑠−𝑤−1𝛾 (𝛼) ∈ Φ−.
As we saw before, 〈−𝑤−1𝛾∨, 𝛼〉 = 1, so 𝑠−𝑤−1𝛾 (𝛼) = 𝛼 + 𝑤−1𝛾 ∈ Φ−. Now, consider the element
𝑤𝑠−𝑤−1𝛾 (𝛼) = 𝑤𝛼 + 𝛾 ∈ Φ. Since 𝑤𝛼 ∈ Φ+ by assumption, we have 𝑤𝑠−𝑤−1𝛾 (𝛼) > 𝛾, in particular
𝑤𝑠−𝑤−1𝛾 (𝛼) ∈ Φ+. We conclude 𝑤𝑠−𝑤−1𝛾 (𝛼) ∈ inv(𝑤), yielding a final contradiction to the maximality
of 𝛾. �

Lemma 3.17. Let 𝑤 ∈ 𝑊 and 𝛼 ∈ Φ+ such that 𝑤 → 𝑤𝑠𝛼 is a quantum edge. Let moreover
−𝑤𝛼 ≠ 𝛾 ∈ max inv(𝑤). Then 𝛾 ∈ max inv(𝑤𝑠𝛼) and 〈−𝑤−1𝛾∨, 𝛼〉 ≥ 0.
Proof. We first show 𝛾 ∈ inv(𝑤𝑠𝛼), that is, 𝑠𝛼𝑤

−1𝛾 ∈ Φ−.
Aiming for a contradiction, we thus suppose that

𝑠𝛼 (−𝑤
−1𝛾) = 〈𝛼∨, 𝑤−1𝛾〉𝛼 − 𝑤−1𝛾 ∈ Φ−.

Then −𝑤−1𝛾 is a positive root whose image under 𝑠𝛼 is negative. Since 𝛼 is quantum, we conclude
〈𝛼∨,−𝑤−1𝛾〉 = 1. Thus, −𝛼 − 𝑤−1𝛾 ∈ Φ−. Consider the element

𝑤(𝛼 + 𝑤−1𝛾) = 𝛾 + 𝑤𝛼 ∈ Φ.

We distinguish the following cases:
◦ If 𝛾 + 𝑤𝛼 ∈ Φ−, we get 𝛾 < −𝑤𝛼 ∈ inv(𝑤), contradicting maximality of 𝛾.
◦ If 𝛾 + 𝑤𝛼 ∈ Φ+, we compute

𝑤𝑠𝛼 (−𝑤
−1𝛾) = −(𝑤𝑠𝛼𝑤

−1)𝛾 = −𝑠𝑤 𝛼 (𝛾) = −(𝛾 + 𝑤𝛼) ∈ Φ−.

In other words, the positive root −𝑤−1𝛾 ∈ Φ+ gets mapped to negative roots both by 𝑠𝛼 and by
𝑤𝑠𝛼 ∈ 𝑊 . This is a contradiction to ℓ(𝑤) = ℓ(𝑤𝑠𝛼) + ℓ(𝑠𝛼) (since 𝑤 → 𝑤𝑠𝛼 was supposed to be a
quantum edge).

In any case, we get a contradiction. Thus, 𝛾 ∈ inv(𝑤𝑠𝛼).
The quantum edge condition 𝑤 → 𝑤𝑠𝛼 implies ℓ(𝑤) = ℓ(𝑤𝑠𝛼) + ℓ(𝑠𝛼), so inv(𝑤𝑠𝛼) ⊂ inv(𝑤).

Because 𝛾 is maximal in inv(𝑤) and 𝛾 ∈ inv(𝑤𝑠𝛼) ⊆ inv(𝑤), it follows that 𝛾 must be maximal in
inv(𝑤𝑠𝛼) as well.

Finally, we have to show 〈−𝑤−1𝛾∨, 𝛼〉 ≥ 0. If this was not the case, then we would get

𝛾 < 𝑠𝛾 (−𝑤𝛼) = −𝑤𝛼 + 〈𝑤−1𝛾∨, 𝛼〉𝛾 ∈ inv(𝑤),

again contradicting maximality of 𝛾. �

Proposition 3.18. Let 𝑤 ∈ 𝑊 and 𝛾 ∈ max inv(𝑤). Then

wt(𝑤 ⇒ 1) = wt(𝑠𝛾𝑤 ⇒ 1) − 𝑤−1𝛾∨.

Proof. Since the estimate

wt(𝑤 ⇒ 1) ≤wt(𝑤 ⇒ 𝑠𝛾𝑤) + wt(𝑠𝛾𝑤 ⇒ 1)
≤ − 𝑤−1𝛾∨ + wt(𝑠𝛾𝑤 ⇒ 1)

follows from [28, Lemma 4.3], all we have to show is the inequality “≥”.
For this, we use induction on ℓ(𝑤). If 1 ≠ 𝑤 ∈ 𝑊 , we find by Lemma 3.13 some quantum edge

𝑤 → 𝑤𝑠𝛼 with wt(𝑤 ⇒ 1) = wt(𝑤𝑠𝛼 ⇒ 1) + 𝛼∨. If 𝛼 = −𝑤−1𝛾, we are done.
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Otherwise, 𝛾 ∈ max inv(𝑤𝑠𝛼) and 〈−𝑤−1𝛾∨, 𝛼〉 ≥ 0 by the previous lemma. By induction, we have

wt(𝑤 ⇒ 1) = wt(𝑤𝑠𝛼 ⇒ 1) + 𝛼∨

= wt(𝑠𝛾𝑤𝑠𝛼 ⇒ 1) + 𝛼∨ − (𝑤𝑠𝛼)
−1𝛾∨. (3.2)

By Lemma 3.16, we get the following three quantum edges:

𝑤

𝑤𝑠𝛼 𝑠𝛾𝑤

𝑠𝛾𝑤𝑠𝛼

This allows for the following computation:

ℓ(𝑠𝛾𝑤𝑠𝛼) = ℓ(𝑤𝑠𝛼) + 1 − 〈−(𝑤𝑠𝛼)
−1𝛾∨, 2𝜌〉

= ℓ(𝑤) + 2 − 〈𝛼∨, 2𝜌〉 − 〈−𝑤−1𝛾∨ − 〈−𝑤−1𝛾∨, 𝛼〉𝛼∨, 2𝜌〉
= ℓ(𝑠𝛾𝑤) + 1 + (〈−𝑤−1𝛾∨, 𝛼〉 − 1)〈𝛼∨, 2𝜌〉. (3.3)

We now distinguish several cases depending on the value of 〈−𝑤−1𝛾∨, 𝛼〉 ∈ Z≥0.

◦ Case 〈−𝑤−1𝛾∨, 𝛼〉 = 0. In this case, we get a quantum edge 𝑠𝛾𝑤 → 𝑠𝛾𝑤𝑠𝛼 by Equation (3.3).
Evaluating this in Equation (3.2), we get

wt(𝑤 ⇒ 1) = wt(𝑠𝛾𝑤𝑠𝛼 ⇒ 1) + 𝛼∨ − (𝑤𝑠𝛼)
−1𝛾∨

≥ wt(𝑠𝛾𝑤 ⇒ 1) − 𝑠𝛼𝑤
−1𝛾∨

= wt(𝑠𝛾𝑤 ⇒ 1) − 𝑤−1𝛾∨.

◦ Case 〈−𝑤−1𝛾∨, 𝛼〉 = 1. In this case, we get a Bruhat edge 𝑠𝛾𝑤 → 𝑠𝛾𝑤𝑠𝛼 by Equation (3.3). Evaluating
this in Equation (3.2), we get

wt(𝑤 ⇒ 1) = wt(𝑠𝛾𝑤𝑠𝛼 ⇒ 1) + 𝛼∨ − (𝑤𝑠𝛼)
−1𝛾∨

≥ wt(𝑠𝛾𝑤 ⇒ 1) + 𝛼∨ − 𝑠𝛼𝑤
−1𝛾∨

= wt(𝑠𝛾𝑤 ⇒ 1) − 𝑤−1𝛾∨.

◦ Case 〈−𝑤−1𝛾∨, 𝛼〉 ≥ 2. We get

ℓ(𝑠𝛾𝑤𝑠𝛼) ≤ ℓ(𝑠𝛾𝑤) + ℓ(𝑠𝛼) ≤
L3.1

ℓ(𝑠𝛾𝑤) + 〈𝛼∨, 2𝜌〉 − 1

< ℓ(𝑠𝛾𝑤) + ℓ(𝑠𝛼) ≤ ℓ(𝑠𝛾𝑤) + 1 +
(
〈−𝑤−1𝛾∨, 𝛼〉 − 1

)
〈𝛼∨, 2𝜌〉.

This is a contradiction to Equation (3.3).

In any case, we get a contradiction or the required conclusion, finishing the proof. �

Remark 3.19.

(a) By Lemma 3.5, it follows that concatenating the quantum edge 𝑤 → 𝑠𝛾𝑤 with a shortest path
𝑠𝛾𝑤 ⇒ 1 yields indeed a shortest path from w to 1. Thus, iterating Proposition 3.18, we get a
shortest path from w to 1.
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(b) If 𝑤 ∈ 𝑊 𝐽 and 𝛾 ∈ max inv(𝑤), we do not in general have a quantum edge 𝑤 → (𝑠𝛾𝑤)
𝐽 in

QB(𝑊 𝐽 ). However, we can concatenate a shortest path from w to (𝑠𝛾𝑤)
𝐽 (which will have weight

−𝑤−1𝛾∨ +ZΦ∨
𝐽 ) with a shortest path from (𝑠𝛾𝑤)

𝐽 to 1 in QB(𝑊 𝐽 ) to get a shortest path from w to 1.

3.4. Semiaffine quotients

We saw that for 𝑤1, 𝑤2 ∈ 𝑊 and 𝐽 ⊆ Δ , we can assign a weight to the cosets 𝑤1𝑊𝐽 and 𝑤2𝑊𝐽 in
ZΦ∨/ZΦ∨

𝐽 . In this section, we consider left cosets 𝑊𝐽𝑤 instead. This is pretty straightforward if 𝐽 ⊆ Δ;
however, it is more interesting if J is instead allowed to be a subset of Δaf . The quotient of the finite
Weyl group by a set of simple affine roots will be called semiaffine quotient.

In this section, we introduce the resulting semiaffine weight function. This new function generalizes
properties of the ordinary weight function. We have the following two motivations to study it:

◦ For root systems of type 𝐴𝑛, we can explicitly express the weight function using formula (3.1):

wt(𝑣2 ⇒ 𝑣1) = sup
𝑎∈Δaf

(𝑣−1
2 𝜔𝑎 − 𝑣−1

1 𝜔𝑎).

Using the semiaffine weight function, we can prove a generalization of this formula, expressing the
weight wt(𝑣2 ⇒ 𝑣1) as a supremum of semiaffine weights (Lemmas 3.29 and 4.34)

◦ There is a close relationship between the quantum Bruhat graph and the Bruhat order of the extended
affine Weyl group 𝑊 . Now, Deodhar’s lemma [7] is an important result on the Bruhat order of general
Coxeter groups. Translating the statement of Deodhar’s lemma to the quantum Bruhat graph yields
exactly the semiaffine weight function.

Conversely, using the semiaffine weight function and Deodhar’s lemma, we can generalize our
result on the Bruhat order in Section 4.3.

In this article, the results of this section are only used in Section 4.3, whose results are not used later. A
reader who is not interested in the aforementioned applications is thus invited to skip these two sections.

Definition 3.20. Let 𝐽 ⊆ Δaf be any subset.

(a) We denote by Φ𝐽 the root system generated by the roots

cl(𝐽) := {cl(𝑎) | 𝑎 ∈ 𝐽} = {𝛼 | (𝛼, 𝑘) ∈ 𝐽}.

(b) We denote by 𝑊𝐽 the Weyl group of the root system Φ𝐽 , that is, the subgroup of W generated by
{𝑠𝛼 | 𝛼 ∈ cl(𝐽)}.

(c) Similarly, we denote by (Φaf)𝐽 ⊆ Φ𝐽 the (affine) root system generated by J, and by 𝑊𝐽 the Coxeter
subgroup of 𝑊af generated by the reflections 𝑟𝑎 with 𝑎 ∈ 𝐽.

(d) We say that J is a spherical subset of Δaf if no connected component of the affine Dynkin diagram
of Φaf is contained in J, that is, if 𝑊𝐽 is finite.

Lemma 3.21. Let 𝐽 ⊆ Δaf be a spherical subset.

(a) cl(𝐽) is a basis of Φ𝐽 . The map (Φaf)𝐽 → Φ𝐽 , (𝛼, 𝑘) ↦→ 𝛼 is bijective.
(b) Writing Φ+

𝐽 for the positive roots of Φ𝐽 with respect to the basis cl(𝐽), we get a bijection

Φ+
𝐽 → (Φaf)

+
𝐽 , 𝛼 ↦→ (𝛼,Φ+(−𝛼)).

Proof.

(a) Consider the Cartan matrix

𝐶𝛼,𝛽 := 〈𝛼∨, 𝛽〉, 𝛼, 𝛽 ∈ cl(𝐽).
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This must be the Cartan matrix associated to a certain Dynkin diagram, namely the subdiagram of
the affine Dynkin diagram of Φaf with set of nodes given by J. We know that this must coincide
with the Dynkin diagram of a finite root system by the fact that J is spherical. Hence, 𝐶•,• is the
Cartan matrix of a finite root system. Both claims follow immediately from this observation.

(b) Let 𝜑 denote the map

𝜑 : Φ+
𝐽 → Φ+

af , 𝛼 ↦→ (𝛼,Φ+(−𝛼)).

By (a), the map is injective. For each root 𝛼 ∈ cl(𝐽), we certainly have 𝜑(𝛼) ∈ Φ+
𝐽 .

Now, for an inductive argument, suppose that𝛼 ∈ Φ+
𝐽 , 𝛽 ∈ cl(𝐽) and𝛼+𝛽 ∈ Φ satisfy 𝜑(𝛼) ∈ Φ+

𝐽 .
We want to show that 𝜑(𝛼 + 𝛽) ∈ Φ+

𝐽 .
We have (𝛼,Φ+(−𝛼)), (𝛽,Φ+(−𝛽)) ∈ Φ+

𝐽 , hence

(𝛼 + 𝛽,Φ+(−𝛼) +Φ+(−𝛽)) ∈ Φ+
𝐽 .

Hence, it suffices to show that Φ+(−𝛼) +Φ+(−𝛽) = Φ+(−𝛼 − 𝛽).
If 𝛽 ∈ Δ , this is clear. Hence, we may assume that 𝛽 = −𝜃, where 𝜃 is the longest root of the

irreducible component of Φ containing 𝛼, 𝛽. Then 𝛼 − 𝜃 ∈ Φ implies 𝛼 ∈ Φ+ and 𝛼 − 𝜃 ∈ Φ−. We
see that Φ+(−𝛼) +Φ+(𝜃) = Φ+(−𝛼 + 𝜃) holds true. �

The parabolic subgroup 𝑊𝐽 ⊆ 𝑊af allows the convenient decomposition of 𝑊af as 𝑊af = 𝑊𝐽 · 𝐽𝑊af
[2, Proposition 2.4.4]. We get something similar for 𝑊𝐽 ⊆ 𝑊 .

Definition 3.22. Let 𝐽 ⊆ Δaf .

(a) ByΦ+
𝐽 , we denote the set of positive roots inΦ𝐽 with respect to the basis cl(𝐽). By abuse of notation,

we also use Φ+
𝐽 as the symbol for the indicator function of Φ+

𝐽 , that is,

Φ+
𝐽 (𝛼) :=

{
1, 𝛼 ∈ Φ+

𝐽 ,

0, 𝛼 ∈ Φ \Φ+
𝐽 .

.

(b) We define

𝐽𝑊 :={𝑤 ∈ 𝑊 | ∀𝑏 ∈ 𝐽 : 𝑤−1cl(𝑏) ∈ Φ+}

={𝑤 ∈ 𝑊 | ∀𝛽 ∈ Φ+
𝐽 : 𝑤−1𝛽 ∈ Φ+}.

(c) For 𝑤 ∈ 𝑊 , we put

𝐽 ℓ(𝑤) := #{𝛽 ∈ Φ+
𝐽 | 𝑤−1𝛽 ∈ Φ−}.

Lemma 3.23. If 𝑤 ∈ 𝑊 and 𝛽 ∈ Φ+
𝐽 satisfy 𝑤−1𝛽 ∈ Φ−, then

𝐽 ℓ(𝑠𝛽𝑤) <
𝐽 ℓ(𝑤).

Proof. Write

𝐼 := {𝛽 ≠ 𝛾 ∈ Φ+
𝐽 | 𝑠𝛽 (𝛾) ∉ Φ+

𝐽 }.

Then

𝐽 ℓ(𝑠𝛽𝑤) = #{𝛾 ∈ Φ+
𝐽 | 𝑤−1𝑠𝛽 (𝛾) ∈ Φ−}

= #{𝛾 ∈ Φ+
𝐽 \ (𝐼 ∪ {𝛽}) | 𝑤−1𝑠𝛽 (𝛾) ∈ Φ−} + #{𝛾 ∈ 𝐼 | 𝑤−1𝑠𝛽 (𝛾) ∈ Φ−}.
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Since 𝑠𝛽 permutes the set Φ+
𝐽 \ (𝐼 ∪ {𝛽}), we get

. . . = #{𝛾 ∈ Φ+
𝐽 \ (𝐼 ∪ {𝛽}) | 𝑤−1𝛾 ∈ Φ−} + #{𝛾 ∈ 𝐼 | 𝑤−1𝑠𝛽 (𝛾) ∈ Φ−}.

Note that if 𝛾 ∈ 𝐼, then 〈𝛽∨, 𝛾〉 > 0 and thus

𝑤−1𝑠𝛽 (𝛾) = 𝑤−1𝛾 − 〈𝛽∨, 𝛾〉𝑤−1𝛽 > 𝑤−1𝛾.

We obtain

#{𝛾 ∈ Φ+
𝐽 \ (𝐼 ∪ {𝛽}) | 𝑤−1𝛾 ∈ Φ−} + #{𝛾 ∈ 𝐼 | 𝑤−1𝑠𝛽 (𝛾) ∈ Φ−}

≤ #{𝛾 ∈ Φ+
𝐽 \ (𝐼 ∪ {𝛽}) | 𝑤−1𝛾 ∈ Φ−} + #{𝛾 ∈ 𝐼 | 𝑤−1𝛾 ∈ Φ−}

= 𝐽 ℓ(𝑤) − 1. �

Lemma 3.24. Let 𝐽 ⊆ Δaf be a spherical subset. Then there exists a uniquely determined map 𝐽 𝜋 :
𝑊 → 𝐽𝑊 × ZΦ∨ with the following two properties:

(1) For all 𝑤 ∈ 𝐽𝑊 , we have 𝐽 𝜋(𝑤) = (𝑤, 0).
(2) For all 𝑤 ∈ 𝑊 and 𝛽 ∈ Φ+

𝐽 where we write 𝐽 𝜋(𝑤) = (𝑤′, 𝜇), we have

𝐽 𝜋(𝑠𝛽𝑤) = (𝑤′, 𝜇 +Φ+(−𝛽)𝑤−1𝛽∨)

and 𝑤𝜇 ∈ Zcl(𝐽).

Proof. We fix an element 𝜆 ∈ ZΦ∨ that is dominant and sufficiently regular (the required regularity
constant follows from the remaining proof).

For 𝑤 ∈ 𝑊 , we consider the element 𝑤𝜀𝜆 ∈ 𝑊 . Then there exist uniquely determined elements
𝑤′𝜀𝜆′

∈ 𝐽𝑊af and 𝑦 ∈ 𝑊𝐽 such that

𝑤𝜀𝜆 = 𝑦 · 𝑤′𝜀𝜆′

.

We define 𝐽 𝜋(𝑤) := (𝑤′, 𝜆 − 𝜆′) and check that it has the required properties.

(0) 𝑤′ ∈ 𝐽𝑊 : Since 𝑊𝐽 is a finite group, we may assume that 𝜆′ is superregular and dominant as well.
For (𝛼, 𝑘) ∈ 𝐽, we have

(𝑤′𝜀𝜆′

)−1(𝛼, 𝑘) = ((𝑤′)−1𝛼, 𝑘 + 〈𝜆′, (𝑤′)−1𝛼〉) ∈ Φ+
af

because 𝑤′𝜀𝜆′
∈ 𝐽𝑊af . Since 𝜆′ is superregular and dominant, we have

((𝑤′)−1𝛼, 𝑘 + 〈𝜆′, (𝑤′)−1𝛼〉) ∈ Φ+
af ⇐⇒ (𝑤′)−1𝛼 ∈ Φ+.

This proves 𝑤′ ∈ 𝐽𝑊 .
(1) If 𝑤 ∈ 𝐽𝑊 , then 𝐽 𝜋(𝑤) = (𝑤, 0): The proof of (0) shows that 𝑤𝜀𝜆 ∈ 𝐽𝑊af so that 𝑤𝜀𝜆 = 𝑤′𝜀𝜆′ .
(2) Let 𝑤 ∈ 𝑊 and 𝛽 ∈ Φ+

𝐽 . We have to show

𝐽 𝜋(𝑠𝛽𝑤) = (𝑤′, 𝜆 − 𝜆′ +Φ+(−𝛽)𝑤−1𝛽∨).

Put

𝑏 := (𝛽,Φ+(−𝛽)) ∈ Φ+
af .
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By Lemma 3.21, we have 𝑏 ∈ (Φaf)
+
𝐽 . The projection of

𝑟𝑏𝑤𝜀𝜆 = 𝑠𝛽𝑤𝜀𝜆+Φ+ (−𝛽)𝑤−1𝛽∨

∈ 𝑊𝐽 · 𝑤𝜀𝜆

onto 𝐽𝑊af must again be 𝑤′𝜀𝜆′ . We obtain

𝐽 𝜋(𝑠𝛽𝑤) = (𝑤′, 𝜆 +Φ+(−𝛽)𝑤−1𝛽∨ − 𝜆′)

as desired.
For the second claim, it suffices to observe that

𝜀𝑤 (𝜆−𝜆′) = 𝑤𝜀𝜆𝜀−𝜆′

𝑤−1 = 𝑦𝑤′𝜀𝜆′

𝜀−𝜆′

𝑤−1 = 𝑦 𝑤′𝑤−1︸�︷︷�︸
∈𝑊𝐽

∈ 𝑊𝐽 .

The fact that 𝐽 𝜋 is uniquely determined (in particular, independent of the choice of 𝜆) can be seen as
follows: If 𝑤 ∈ 𝐽𝑊 , then 𝐽 𝜋(𝑤) is determined by (1). Otherwise, we find 𝛽 ∈ Φ+

𝐽 with 𝑤−1𝛽 ∈ Φ−. We
multiply w on the left with 𝑠𝛽 , and iterate this process, until we obtain an element in 𝐽𝑊 . This process
will terminate after at most 𝐽 ℓ(𝑤) steps with an element in 𝐽𝑊 . Now, for each of these steps, we can
use property (2) to determine the value of 𝐽 𝜋(𝑤). �

We call the set 𝐽𝑊 a semiaffine quotient of W, as it is a quotient of a finite Weyl group by a set of
affine roots. The map 𝐽 𝜋 is the semiaffine projection. We now introduce the semiaffine weight function.

Lemma 3.25. Let 𝑤1, 𝑤2 ∈ 𝑊 and 𝐽 ⊆ Δ be a spherical subset. Write

𝐽 𝜋(𝑤1) = (𝑤′
1, 𝜇1),

𝐽 𝜋(𝑤2) = (𝑤′
2, 𝜇2).

Then

wt(𝑤′
1 ⇒ 𝑤′

2) − 𝜇1 + 𝜇2 = wt(𝑤′
1 ⇒ 𝑤2) − 𝜇1 ≤ wt(𝑤1 ⇒ 𝑤2).

Proof. We first show the equation

wt(𝑤′
1 ⇒ 𝑤′

2) + 𝜇2 = wt(𝑤′
1 ⇒ 𝑤2).

Induction by 𝐽 ℓ(𝑤2). The statement is trivial if 𝑤2 ∈ 𝐽𝑊 . Otherwise, we find some 𝛼 ∈ cl(𝐽) with
𝑤−1

2 𝛼 ∈ Φ−. Because (𝑤′
1)

−1𝛼 ∈ Φ+, we obtain from Lemma 3.7 that

wt(𝑤′
1 ⇒ 𝑤2) =wt(𝑤′

1 ⇒ 𝑠𝛼𝑤2) −Φ+(−𝛼)𝑤−1
2 𝛼∨.

By Lemma 3.24, we have

𝐽 𝜋(𝑠𝛼𝑤2) = (𝑤′
2, 𝜇2 +Φ+(−𝛼)𝑤−1

2 𝛼∨).

Using the inductive hypothesis, we get

wt(𝑤′
1 ⇒ 𝑤2) = wt(𝑤′

1 ⇒ 𝑠𝛼𝑤2) −Φ+(−𝛼)𝑤−1
2 𝛼∨

= wt(𝑤′
1 ⇒ 𝑤′

2) + 𝜇2 +Φ+(−𝛼)𝑤−1
2 𝛼∨ −Φ+(−𝛼)𝑤−1

2 𝛼∨

= wt(𝑤′
1 ⇒ 𝑤′

2) + 𝜇2.

This finishes the induction.
It remains to prove the inequality

wt(𝑤′
1 ⇒ 𝑤2) − 𝜇1 ≤ wt(𝑤1 ⇒ 𝑤2).
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The argument is entirely analogous, using [28, Lemma 4.3] in place of Lemma 3.7. �

Definition 3.26. Let 𝑤1, 𝑤2 ∈ 𝑊 and 𝐽 ⊆ Δaf be a spherical subset. We write

𝐽 𝜋(𝑤1) = (𝑤′
1, 𝜇1),

𝐽 𝜋(𝑤2) = (𝑤′
2, 𝜇2).

(a) We define the semiaffine weight function by

𝐽 wt(𝑤1 ⇒ 𝑤2) := wt(𝑤′
1 ⇒ 𝑤′

2) − 𝜇1 + 𝜇2 = wt(𝑤′
1 ⇒ 𝑤2) − 𝜇1 ∈ ZΦ∨.

(b) If 𝛽 ∈ Φ𝐽 and (𝛽, 𝑘) ∈ (Φaf)𝐽 is the image of 𝛽 under the bijection of Lemma 3.21, we define
𝜒𝐽 (𝛽) := −𝑘 .

If 𝛽 ∈ Φ \Φ𝐽 , we define 𝜒𝐽 (𝛽) := Φ+(𝛽).
In other words, for 𝛽 ∈ Φ, we have

𝜒𝐽 (𝛽) = Φ+(𝛽) −Φ+
𝐽 (𝛽).

Example 3.27. Suppose that Φ is irreducible of type 𝐴2 with basis 𝛼1, 𝛼2. Let 𝐽 = {(−𝜃, 1)} =
{(−𝛼1 − 𝛼2, 1)} such that Φ+

𝐽 = {−𝜃} = {−𝛼1 − 𝛼2}. We want to compute 𝐽 wt(1 ⇒ 𝑠1𝑠2) (writing
𝑠𝑖 := 𝑠𝛼𝑖 ).

Observe that 𝐽 𝜋(1) = (𝑠𝜃 , 𝜃
∨). Hence,

𝐽 wt(1 ⇒ 𝑠1) = wt(𝑠𝜃 ⇒ 𝑠1𝑠2) − 𝜃∨

= wt(𝑠1𝑠2𝑠1 ⇒ 𝑠1𝑠2) − 𝛼∨
1 − 𝛼∨

2 = −𝛼∨
2 .

Unlike the usual weight function, the value 𝐽 wt(𝑤1 ⇒ 𝑤2) no longer needs to be a sum of positive
coroots. In general for root systems of type 𝐴𝑛, we have

𝐽 wt(𝑤1 ⇒ 𝑤2) = sup
𝛼∈Δaf\𝐽

(𝑤−1
1 𝜔𝑎 − 𝑤−1

2 𝜔𝑎).

Lemma 3.28. Let 𝑤1, 𝑤2, 𝑤3 ∈ 𝑊 , and let 𝐽 ⊆ Δ be a spherical subset.

(a) The semiaffine weight function satisfies the triangle inequality,

𝐽 wt(𝑤1 ⇒ 𝑤3) ≤
𝐽 wt(𝑤1 ⇒ 𝑤2) +

𝐽 wt(𝑤2 ⇒ 𝑤3).

(b) If 𝛼 ∈ Φ𝐽 , we have

𝐽 wt(𝑠𝛼𝑤1 ⇒ 𝑤2) =
𝐽 wt(𝑤1 ⇒ 𝑤2) + 𝜒𝐽 (𝛼)𝑤

−1
1 𝛼∨,

𝐽 wt(𝑤1 ⇒ 𝑠𝛼𝑤2) =
𝐽 wt(𝑤1 ⇒ 𝑤2) − 𝜒𝐽 (𝛼)𝑤

−1
2 𝛼∨.

(c) If 𝛽 ∈ Φ+, we have

𝐽 wt(𝑤1𝑠𝛽 ⇒ 𝑤2) ≤
𝐽 wt(𝑤1 ⇒ 𝑤2) + 𝜒𝐽 (𝑤1𝛽)𝛽

∨,
𝐽 wt(𝑤1 ⇒ 𝑤2𝑠𝛽) ≤

𝐽 wt(𝑤1 ⇒ 𝑤2) + 𝜒𝐽 (−𝑤2𝛽)𝛽
∨.

Proof. Part (a) follows readily from the definition. Let us prove part (b). We focus on the first identity,
as the proof of the second identity is analogous.

Up to replacing 𝛼 by −𝛼, which does not change the reflection 𝑠𝛼 nor the value of

𝜒𝐽 (𝛼)𝑤
−1
1 𝛼∨,
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we may assume 𝛼 ∈ Φ+
𝐽 . Now, write

𝐽 𝜋(𝑤1) = (𝑤′
1, 𝜇1),

𝐽 𝜋(𝑤2) = (𝑤′
2, 𝜇2).

Then 𝐽 𝜋(𝑠𝛼𝑤1) = (𝑤′
1, 𝜇1 +Φ+(−𝛼)𝑤−1

1 𝛼∨). Thus,

𝐽 wt(𝑠𝛼𝑤1 ⇒ 𝑤2) = wt(𝑤′
1 ⇒ 𝑤′

2) − 𝜇1 −Φ+(−𝛼)𝑤−1
1 𝛼∨ + 𝜇2

= 𝐽 wt(𝑤1 ⇒ 𝑤2) −Φ+(−𝛼)𝑤−1
1 𝛼∨

= 𝐽 wt(𝑤1 ⇒ 𝑤2) + 𝜒𝐽 (𝛼)𝑤
−1
1 𝛼∨

as 𝛼 ∈ Φ+
𝐽 .

Now, we prove part (c). Again, we only show the first inequality. If 𝑤1𝛽 ∈ Φ𝐽 , the inequality follows
from part (b). Otherwise, we use (a) and [28, Lemma 4.3] to compute

𝐽 wt(𝑤1𝑠𝛽 ⇒ 𝑤2) ≤
𝐽 wt(𝑤1𝑠𝛼 ⇒ 𝑤1) +

𝐽 wt(𝑤1 ⇒ 𝑤2)

≤
L3.25

wt(𝑤1𝑠𝛼 ⇒ 𝑤1) +
𝐽 wt(𝑤1 ⇒ 𝑤2)

≤ Φ+(𝑤𝛼)𝛼∨ + 𝐽 wt(𝑤1 ⇒ 𝑤2)

= 𝜒𝐽 (𝑤𝛼)𝛼∨ + 𝐽 wt(𝑤1 ⇒ 𝑤2).

This finishes the proof. �

Lemma 3.29. Let 𝑤1, 𝑤2 ∈ 𝑊 and 𝐽 ⊆ Δaf be spherical. Suppose that, for all 𝛼 ∈ Φ+
𝐽 , at least one of

the following conditions is satisfied:

𝑤−1
1 𝛼 ∈ Φ+ or 𝑤−1

2 𝛼 ∈ Φ−.

Then 𝐽 wt(𝑤1 ⇒ 𝑤2) = wt(𝑤1 ⇒ 𝑤2).

Proof. We show the claim via induction on 𝐽 ℓ(𝑤1). If 𝑤1 ∈ 𝐽𝑊 , then the claim follows from Lemma
3.25.

Otherwise, we find some 𝛼 ∈ cl(𝐽) with 𝑤−1
1 𝛼 ∈ Φ−. By assumption, also 𝑤−1

2 𝛼 ∈ Φ−. Using
Lemma 3.7, we get

wt(𝑤1 ⇒ 𝑤2) = wt(𝑠𝛼𝑤1 ⇒ 𝑠𝛼𝑤2) + 𝜒𝐽 (𝛼)𝑤
−1
1 𝛼∨ − 𝜒𝐽 (𝛼)𝑤

−1
2 𝛼∨.

Since 𝐽 ℓ(𝑠𝛼𝑤1) <
𝐽 ℓ(𝑤1) by Lemma 3.23, we want to show that (𝑠𝛼𝑤1, 𝑠𝛼𝑤2) also satisfy the condition

stated in the lemma.
For this, let 𝛽 ∈ Φ+

𝐽 . If 𝛽 = 𝛼, then (𝑠𝛼𝑤1)
−1𝛼 = −𝑤−1

1 𝛼 ∈ Φ+ by choice of 𝛼. Now, assume
that 𝛽 ≠ 𝛼 so that 𝑠𝛼𝛽 ∈ Φ+

𝐽 . By the assumption on 𝑤1 and 𝑤2, we must have 𝑤−1
1 𝑠𝛼 (𝛽) ∈ Φ+ or

𝑤−1
2 𝑠𝛼 (𝛽) ∈ Φ−. In other words, we have

(𝑠𝛼𝑤1)
−1𝛽 ∈ Φ+ or (𝑠𝛼𝑤2)

−1𝛽 ∈ Φ−.

This shows that (𝑠𝛼𝑤1, 𝑠𝛼𝑤2) satisfy the desired properties.
By the inductive hypothesis and Lemma 3.28, we get

wt(𝑠𝛼𝑤1 ⇒ 𝑠𝛼𝑤2) + 𝜒𝐽 (𝛼)𝑤
−1
1 𝛼∨ − 𝜒𝐽 (𝛼)𝑤

−1
2 𝛼∨

= 𝐽 wt(𝑠𝛼𝑤1 ⇒ 𝑠𝛼𝑤2) + 𝜒𝐽 (𝛼)𝑤
−1
1 𝛼∨ − 𝜒𝐽 (𝛼)𝑤

−1
2 𝛼∨

= 𝐽 wt(𝑤1 ⇒ 𝑤2).

This completes the induction and the proof. �
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4. Bruhat order

The Bruhat order on 𝑊 is a fundamental Coxeter-theoretic notion that has been studied with great
interest, for example, [1, 15, 25, 17]. In this section, we present new characterizations of the Bruhat
order on 𝑊 .

The structure of this section is as follows: In Section 4.1, we state our main criterion for the Bruhat
order as Theorem 4.2 and discuss some of its applications. We then prove this criterion in Section 4.2.
Finally, Section 4.3 will cover some consequences of Deodhar’s lemma (cf. [7]) and feature an even
more general criterion.

4.1. A criterion

Definition 4.1. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 . A Bruhat-deciding datum for x is a tuple (𝑣, 𝐽1, . . . , 𝐽𝑚), where
𝑣 ∈ 𝑊 and 𝐽• is a finite collection of arbitrary subsets 𝐽1, . . . , 𝐽𝑚 ⊆ Δ with 𝑚 ≥ 1, satisfying the
following two properties:

(1) The element v is length positive for x, that is, ℓ(𝑥, 𝑣𝛼) ≥ 0 for all 𝛼 ∈ Φ+.
(2) Writing 𝐽 := 𝐽1 ∩ · · · ∩ 𝐽𝑚, we have ℓ(𝑥, 𝑣𝛼) = 0 for all 𝛼 ∈ Φ𝐽 .

The name Bruhat-deciding is justified by the following result.

Theorem 4.2. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 . Fix a Bruhat-deciding datum (𝑣, 𝐽1, . . . , 𝐽𝑚) for x. Then

the following are equivalent:

(1) 𝑥 ≤ 𝑥 ′.
(2) For all 𝑖 = 1, . . . , 𝑚, there exists an element 𝑣′𝑖 ∈ 𝑊 such that

𝑣−1𝜇 + wt(𝑣′𝑖 ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖) ≤ (𝑣′𝑖)
−1𝜇′ (mod Φ∨

𝐽𝑖
).

We again use the shorthand notation 𝜇1 ≤ 𝜇2 (mod Φ∨
𝐽 ) for 𝜇1 − 𝜇2 +ZΦ∨

𝐽 ≤ 0+ZΦ∨
𝐽 in ZΦ∨/ZΦ∨

𝐽 .
This theorem is the main result of this section. We give a proof in Section 4.2.
First, let us remark that the construction of a Bruhat-deciding datum is easy. It suffices to choose any

length positive element v for x, and then (𝑣, ∅) is Bruhat-deciding.
The inequality of Theorem 4.2 is only interesting for 𝑣 ∈ LP(𝑥) and 𝑣′𝑖 ∈ LP(𝑥 ′), as explained by the

following lemma in conjunction with [28, Lemma 2.3].

Lemma 4.3. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 . Suppose we are given elements 𝑣, 𝑣′ ∈ 𝑊 , a subset 𝐽 ⊆ Δ

and a positive root 𝛼 ∈ Φ+.

(a) Assume ℓ(𝑥, 𝑣𝛼) < 0. Then the inequality

(𝑣𝑠𝛼)
−1𝜇 + wt(𝑣′ ⇒ 𝑣𝑠𝛼) + wt(𝑤𝑣𝑠𝛼 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇′ (mod Φ∨

𝐽 )

implies

𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇′ (mod Φ∨
𝐽 ).

(b) Assume ℓ(𝑥 ′, 𝑣𝛼) < 0. Then the inequality

𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇′ (mod Φ∨
𝐽 )

implies

𝑣−1𝜇 + wt(𝑣′𝑠𝛼 ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑠𝛼) ≤ (𝑣′𝑠𝛼)
−1𝜇′ (mod Φ∨

𝐽 ).
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Proof.

(a) We have

(𝑣′)−1𝜇′ ≥ (𝑣𝑠𝛼)
−1𝜇 + wt(𝑣′ ⇒ 𝑣𝑠𝛼) + wt(𝑤𝑣𝑠𝛼 ⇒ 𝑤′𝑣′)

≥ 𝑣−1𝜇 − 〈𝑣−1𝜇, 𝛼〉𝛼∨ + wt(𝑣′ ⇒ 𝑣) − wt(𝑣𝑠𝛼 ⇒ 𝑣)

+ wt(𝑤𝑣 ⇒ 𝑤′𝑣′) − wt(𝑤𝑣 ⇒ 𝑤𝑣𝑠𝛼)

≥
(∗)

𝑣−1𝜇 − 〈𝑣−1𝜇, 𝛼〉𝛼∨ + wt(𝑣′ ⇒ 𝑣) −Φ+(𝑣𝛼)𝛼∨

+ wt(𝑤𝑣 ⇒ 𝑤′𝑣′) −Φ+(−𝑤𝑣𝛼)𝛼∨

= 𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) − (ℓ(𝑥, 𝑣𝛼) + 1)𝛼∨

≥ 𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) (mod Φ∨
𝐽 ).

The inequality (∗) is [28, Lemma 4.3].
(b) The calculation is completely analogous. �

Proof of Theorem 1.1 using Theorem 4.2. We use the notation of Theorem 1.1. In view of Lemma 4.3
and [28, Lemma 2.3], the condition

∃𝑣2 ∈ 𝑊 : 𝑣−1
1 𝜇1 + wt(𝑣2 ⇒ 𝑣1) + wt(𝑤1𝑣1 ⇒ 𝑤2𝑣2) ≤ 𝑣−1

2 𝜇2 (*)

is true for all 𝑣1 ∈ LP(𝑥) iff it is true for all 𝑣1 ∈ 𝑊 . We see that asking condition (∗) for all 𝑣1 ∈ 𝑊 is
equivalent to asking condition (2) of Theorem 4.2 for each Bruhat-deciding datum of the form (𝑣1, ∅)
with 𝑣1 ∈ LP(𝑥1). In this sense, Theorem 4.2 implies Theorem 1.1. �

If 𝑥 ′ is in a shrunken Weyl chamber, there is a canonical choice for 𝑣′.

Corollary 4.4. Let 𝑥 = 𝑤𝜀𝜇 and 𝑥 ′ = 𝑤′𝜀𝜇′ . Assume that 𝑥 ′ is in a shrunken Weyl chamber and that 𝑣′
is the length positive element for 𝑥 ′. Pick any length positive element v for x. Then 𝑥 ≤ 𝑥 ′ if and only if

𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇′.

Proof. (𝑣, ∅) is a Bruhat-deciding datum for x. By Lemma 4.3 and [28, Corollary 2.4], the inequality
in Theorem 4.2 (2) is satisfied by some 𝑣′ ∈ 𝑊 iff it is satisfied by the unique length positive element 𝑣′
for 𝑥 ′. �

We now show how Theorem 4.2 can be used to describe Bruhat covers in𝑊 . The following proposition
generalizes the previous results of Lam–Shimozono [16, Proposition 4.1] and Milićević [20, Proposition
4.2].

Proposition 4.5. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 and 𝑣 ∈ LP(𝑥). Then the following are equivalent:

(a) 𝑥 � 𝑥 ′, that is, 𝑥 < 𝑥 ′ and ℓ(𝑥) = ℓ(𝑥 ′) − 1.
(b) There exists some 𝑣′ ∈ LP(𝑥 ′) such that

(b.1) 𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) = (𝑣′)−1𝜇′ and
(b.2) 𝑑 (𝑣′ ⇒ 𝑣) + 𝑑 (𝑤𝑣 ⇒ 𝑤′𝑣′) = 1.

(c) There is a root 𝛼 ∈ Φ+ satisfying at least one of the following conditions:
(c.1) There exists a Bruhat edge 𝑣′ := 𝑠𝛼𝑣 → 𝑣 in QB(𝑊) with 𝑥 ′ = 𝑥𝑠𝛼 and 𝑣′ ∈ LP(𝑥 ′).
(c.2) There exists a quantum edge 𝑣′ := 𝑠𝛼𝑣 → 𝑣 in QB(𝑊) with 𝑣−1𝛼 ∈ Φ+, 𝑥 ′ = 𝑥𝑟 (−𝛼,1) and

𝑣′ ∈ LP(𝑥 ′).
(c.3) There exists a Bruhat edge 𝑤𝑣 → 𝑠𝛼𝑤𝑣 in QB(𝑊) such that 𝑥 ′ = 𝑠𝛼𝑥 and 𝑣 ∈ LP(𝑥 ′).
(c.4) There exists a quantum edge 𝑤𝑣 → 𝑠𝛼𝑤𝑣 in QB(𝑊) with (𝑤𝑣)−1𝛼 ∈ Φ−, 𝑥 ′ = 𝑟 (−𝛼,1)𝑥 and

𝑣 ∈ LP(𝑥 ′).
(d) There exists a root 𝛼 ∈ Φ+ satisfying at least one of the following conditions:
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(d.1) We have 𝑤′ = 𝑤𝑠𝛼, 𝜇
′ = 𝑠𝛼 (𝜇), ℓ(𝑠𝛼𝑣) = ℓ(𝑣) − 1 and for all 𝛽 ∈ Φ+:

ℓ(𝑥, 𝑣𝛽) +Φ+(𝑠𝛼𝑣𝛽) −Φ+(𝑣𝛽) ≥ 0.

(d.2) We have 𝑤′ = 𝑤𝑠𝛼, 𝜇
′ = 𝑠𝛼 (𝜇) − 𝛼∨, ℓ(𝑠𝛼𝑣) = ℓ(𝑣) − 1 + 〈𝑣−1𝛼∨, 2𝜌〉 and for all 𝛽 ∈ Φ+:

ℓ(𝑥, 𝑣𝛽) + 〈𝛼∨, 𝑣𝛽〉 +Φ+(𝑠𝛼𝑣𝛽) −Φ+(𝑣𝛽) ≥ 0.

(d.3) We have 𝑤′ = 𝑠𝛼𝑤, 𝜇′ = 𝜇, ℓ(𝑠𝛼𝑤𝑣) = ℓ(𝑤𝑣) + 1 and for all 𝛽 ∈ Φ+:

ℓ(𝑥, 𝑣𝛽) +Φ+(𝑤𝑣𝛽) −Φ+(𝑠𝛼𝑤𝑣𝛽) ≥ 0.

(d.4) We have 𝑤′ = 𝑠𝛼𝑤, 𝜇′ = 𝜇 − 𝑤−1𝛼∨, ℓ(𝑠𝛼𝑤𝑣) = ℓ(𝑤𝑣) + 1 + 〈(𝑤𝑣)−1𝛼∨, 2𝜌〉 and for all
𝛽 ∈ Φ+:

ℓ(𝑥, 𝑣𝛽) + 〈𝛼∨, 𝑤𝑣𝛽〉 +Φ+(𝑤𝑣𝛽) −Φ+(𝑠𝛼𝑤𝑣𝛽) ≥ 0.

Proof. (a) ⇐⇒ (b): We start with a key calculation for 𝑣′ ∈ LP(𝑥 ′):

〈(𝑣′)−1𝜇′ − wt(𝑣′ ⇒ 𝑣) − wt(𝑤𝑣 ⇒ 𝑤′𝑣′) − 𝑣−1𝜇, 2𝜌〉
=

L3.5
〈(𝑣′)−1𝜇, 2𝜌〉 − 𝑑 (𝑣′ ⇒ 𝑣) − ℓ(𝑣′) + ℓ(𝑣)

− 𝑑 (𝑤𝑣 ⇒ 𝑤′𝑣′) − ℓ(𝑤𝑣) + ℓ(𝑤′𝑣′) − 〈𝑣−1𝜇, 2𝜌〉
=

L2.3
ℓ(𝑥 ′) − ℓ(𝑥) − 𝑑 (𝑣′ ⇒ 𝑣) − 𝑑 (𝑤𝑣 ⇒ 𝑤′𝑣′).

First, assume that (a) holds, that is, 𝑥�𝑥 ′. By Theorem 4.2 and Lemma 4.3, we find 𝑣′ ∈ LP(𝑥 ′) such that

(𝑣′)−1𝜇′ − wt(𝑣′ ⇒ 𝑣) − wt(𝑤𝑣 ⇒ 𝑤′𝑣′) − 𝑣−1𝜇 ≥ 0.

By the above key calculation, we see that

ℓ(𝑥 ′) ≥ ℓ(𝑥) + 𝑑 (𝑣′ ⇒ 𝑣) + 𝑑 (𝑤𝑣 ⇒ 𝑤′𝑣′),

where equality holds if and only if (b.1) is satisfied. Note that 𝑥 � 𝑥 ′ implies that 𝑥−1𝑥 ′ must be an affine
reflection, thus 𝑤 ≠ 𝑤′. We see that 𝑣 ≠ 𝑣′ or 𝑤𝑣 ≠ 𝑤′𝑣′, thus in particular

ℓ(𝑥) + 1 = ℓ(𝑥 ′) ≥ ℓ(𝑥) + 𝑑 (𝑣′ ⇒ 𝑣) + 𝑑 (𝑤𝑣 ⇒ 𝑤′𝑣′) ≥ ℓ(𝑥) + 1.

Since equality must hold, we get (b.1) and (b.2).
Now, assume conversely that (b) holds. By (b.1) and Theorem 4.2, we see that 𝑥 < 𝑥 ′. Now, using

the key calculation and (b.2), we get ℓ(𝑥 ′) = ℓ(𝑥) + 1.
(b) ⇐⇒ (c): The condition (b.2) means that either 𝑣 = 𝑣′ and 𝑤𝑣 → 𝑤′𝑣′ is an edge in QB(𝑊), or

𝑤𝑣 = 𝑤′𝑣′ and 𝑣′ → 𝑣 is an edge. If we now distinguish between Bruhat and quantum edges, we get
the explicit conditions of (c) (or (d)).

Let us first assume that (b) holds. We distinguish the following cases:

(1) 𝑤𝑣 = 𝑤′𝑣′ and 𝑣′ → 𝑣 is a Bruhat edge: Then we can write 𝑣′ = 𝑠𝛼𝑣 for some 𝛼 ∈ Φ+

with 𝑣−1𝛼 ∈ Φ−. Now, the condition 𝑤𝑣 = 𝑤′𝑣′ implies 𝑤′ = 𝑤𝑠𝛼. Condition (b.1) implies
𝑣−1𝜇 = (𝑣′)−1𝜇′, so 𝜇′ = 𝑠𝛼 (𝜇). We get (c.1).

(2) 𝑤𝑣 = 𝑤′𝑣′ and 𝑣′ → 𝑣 is a quantum edge: Then we can write 𝑣′ = 𝑠𝛼𝑣 for some 𝛼 ∈ Φ+

with 𝑣−1𝛼 ∈ Φ+. Now, the condition 𝑤𝑣 = 𝑤′𝑣′ implies 𝑤′ = 𝑤𝑠𝛼. Condition (b.1) implies
𝑣−1𝜇 + 𝑣−1𝛼∨ = (𝑣′)−1𝜇′, so 𝜇′ = 𝑠𝛼 (𝜇) − 𝛼∨. We get (c.2).
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(3) 𝑣 = 𝑣′ and 𝑤𝑣 → 𝑤′𝑣′ is a Bruhat edge: Then we can write 𝑤′𝑣′ = 𝑠𝛼𝑤𝑣 for some 𝛼 ∈ Φ+

with (𝑤𝑣)−1𝛼 ∈ Φ−. Now, the condition 𝑣 = 𝑣′ implies 𝑤′ = 𝑠𝛼𝑤. Condition (b.1) implies
𝑣−1𝜇 = (𝑣′)−1𝜇, so 𝜇′ = 𝜇. We get (c.3).

(4) 𝑣 = 𝑣′ and 𝑤𝑣 → 𝑤′𝑣′ is a quantum edge: Then we can write 𝑤′𝑣′ = 𝑠𝛼𝑤𝑣 for some 𝛼 ∈ Φ+

with (𝑤𝑣)−1𝛼 ∈ Φ−. Now, the condition 𝑣 = 𝑣′ implies 𝑤′ = 𝑠𝛼𝑤. Condition (b.1) implies
𝑣−1𝜇 − (𝑤𝑣)−1𝛼∨ = (𝑣′)−1𝜇, so 𝜇′ = 𝜇 − 𝑤−1𝛼∨. We get (c.4).

Reversing the calculations above shows that (c) =⇒ (b).
For (c) ⇐⇒ (d), we just explicitly rewrite the conditions for length positivity of 𝑣′, and the definition

of edges in the quantum Bruhat graph. �

Remark 4.6. If the translation part 𝜇 of 𝑥 = 𝑤𝜀𝜇 is sufficiently regular, the estimates for the length
function of x in part (d) of Proposition 4.5 are trivially satisfied. Writing LP(𝑥) = {𝑣}, we get a one-to-
one correspondence

{Bruhat covers of 𝑥} ↔ {edges ? → 𝑣} � {edges 𝑤𝑣 →?}.

We obtain the following useful technical observation from Proposition 4.5:

Corollary 4.7. Let 𝑥 ∈ 𝑊 , 𝑣 ∈ LP(𝑥) and (𝛼, 𝑘) ∈ Δaf with ℓ(𝑥, 𝛼) = 0. If 𝑣−1𝛼 ∈ Φ+, then 𝑠𝛼𝑣 ∈ LP(𝑥).

Proof. Since 𝑥(𝛼, 𝑘) ∈ Φ+ by [28, Lemma 2.9], we have 𝑥 < 𝑥𝑟𝑎. Since a is a simple affine root, we
must have 𝑥 � 𝑥𝑟𝑎. So one of the four possibilities (c.1)–(c.4) of Proposition 4.5 must be satisfied.

If (c.3) or (c.4) are satisfied, we get 𝑣 ∈ LP(𝑥 ′). Since 𝑥 ′ = 𝑥𝑟𝑎 is a length additive product, [28,
Lemma 2.13] shows 𝑠𝛼𝑣 ∈ LP(𝑥), finishing the proof.

Now, assume that (c.1) is satisfied. Then 𝑥 ′ = 𝑥𝑠𝛽 for some 𝛽 ∈ Φ+ means 𝑘 = 0 and 𝛼 = 𝛽. Now,
𝑣−1𝛼 ∈ Φ+ means that ℓ(𝑠𝛼𝑣) > ℓ(𝑣), so 𝑠𝛼𝑣 → 𝑣 cannot be a Bruhat edge.

Finally, assume that (c.2) is satisfied. Then 𝑥 ′ = 𝑥𝑟 (−𝛽,1) for some 𝛽 ∈ Φ+ means that 𝑘 = 1 and
𝛼 = −𝛽 ∈ Φ−. Then 𝑠𝛼𝑣 → 𝑣 cannot be a quantum edge, as ℓ(𝑠𝛼𝑣) < ℓ(𝑣).

We get the desired claim or a contradiction, finishing the proof. �

As a second application, we discuss the semi-infinite order on 𝑊 as introduced by Lusztig [19]. It
plays a role for certain constructions related to the affine Hecke algebra, cf. [19, 22].

Definition 4.8. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 .

(a) We define the semi-infinite length of x as

ℓ
∞
2 (𝑥) := ℓ(𝑤) + 〈𝜇, 2𝜌〉.

(b) We define the semi-infinite order on 𝑊 to be the order < ∞
2 generated by the relations

∀𝑥 ∈ 𝑊, 𝑎 ∈ Φaf : 𝑥 <
∞
2 𝑥𝑟𝑎 if ℓ

∞
2 (𝑥) ≤ ℓ

∞
2 (𝑥𝑟𝑎).

We have the following link between the semi-infinite order and the Bruhat order:

Proposition 4.9 [22, Proposition 2.2.2]. Let 𝑥1, 𝑥2 ∈ 𝑊 . There exists a number 𝐶 > 0 such that for all
𝜆 ∈ ZΦ∨ satisfying the regularity condition 〈𝜆, 𝛼〉 > 𝐶 for every positive root 𝛼, we have

𝑥1 ≤
∞
2 𝑥2 ⇐⇒ 𝑥1𝜀

𝜆 ≤ 𝑥2𝜀
𝜆.

Corollary 4.10. Let 𝑥1 = 𝑤1𝜀
𝜇1 , 𝑥2 = 𝑤2𝜀

𝜇2 ∈ 𝑊 . Then 𝑥1 ≤
∞
2 𝑥2 if and only if

𝜇1 + wt(𝑤1 ⇒ 𝑤2) ≤ 𝜇2.
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Proof. Let 𝜆 be as in Proposition 4.9. Choosing 𝜆 sufficiently large, we may assume that 𝑥1𝜀
𝜆 and 𝑥2𝜀

𝜆

are superregular with LP(𝑥1𝜀
𝜆) = LP(𝑥2𝜀

𝜆) = {1}. Now, 𝑥1𝜀
𝜆 ≤ 𝑥2𝜀

𝜆 if and only if

𝜇1 + wt(𝑤1 ⇒ 𝑤2) ≤ 𝜇2,

by Corollary 4.4. �

We finish this section with another application of our Theorem 4.2, namely a discussion of admissible
and permissible sets in 𝑊 , as introduced by Kottwitz and Rapoport [15].

Definition 4.11. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and 𝜆 ∈ 𝑋∗ a dominant coweight.

(a) We say that x lies in the admissible set defined by 𝜆, denoted 𝑥 ∈ Adm(𝜆), if there exists 𝑢 ∈ 𝑊
such that 𝑥 ≤ 𝜀𝑢𝜆 with respect to the Bruhat order on 𝑊 .

(b) The fundamental coweight associated with 𝑎 = (𝛼, 𝑘) ∈ Δaf is the uniquely determined element
𝜔𝑎 ∈ QΦ∨ such that for each 𝛽 ∈ Δ ,

〈𝜔𝑎, 𝛽〉 =

{
1, 𝑎 = (𝛽, 0),
0, 𝑎 ≠ (𝛽, 0).

In particular, 𝜔𝑎 = 0 iff 𝑘 ≠ 0.
(c) Let 𝑎 = (𝛼, 𝑘) ∈ Δaf , and denote by 𝜃 ∈ Φ+ the longest root of the irreducible component of Φ

containing 𝛼. The normalized coweight associated with a is

𝜔𝑎 =

{
0, 𝑘 ≠ 0,

1
〈𝜔𝑎 , 𝜃 〉𝜔𝑎, 𝑘 = 0.

(d) We say that x lies in the permissible set defined by 𝜆, denoted 𝑥 ∈ Perm(𝜆), if 𝜇 ≡ 𝜆 (mod Φ∨) and
for every simple affine root 𝑎 ∈ Δaf , we have

(𝜇 + 𝜔𝑎 − 𝑤−1𝜔𝑎)
dom ≤ 𝜆 in 𝑋∗ ⊗ Q.

It is shown in [15] that the admissible set is always contained in the permissible set and that equality
holds for the groups GL𝑛 and GSp2𝑛 if 𝜆 is minuscule (i.e., a fundamental coweight of some special
node). It is a result of Haines and Ngô [8] that Adm(𝜆) ≠ Perm(𝜆) in general. We show how the latter
result can be recovered using our methods.

Proposition 4.12 (Cf. [13, Prop. 3.3]). Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and 𝜆 ∈ 𝑋∗ a dominant coweight. Then the
following are equivalent:

(1) 𝑥 ∈ Adm(𝜆).
(2) For all 𝑣 ∈ 𝑊 , we have

𝑣−1𝜇 + wt(𝑤𝑣 ⇒ 𝑣) ≤ 𝜆.

(3) For some 𝑣 ∈ LP(𝑥), we have

𝑣−1𝜇 + wt(𝑤𝑣 ⇒ 𝑣) ≤ 𝜆.

Proof. (1) =⇒ (2): Suppose that 𝑥 ∈ Adm(𝜆), so 𝑥 ≤ 𝜀𝑢𝜆 for some 𝑢 ∈ 𝑊 . Let also 𝑣 ∈ 𝑊 . By Lemma
4.15, we find �̃� ∈ 𝑊 such that

𝑣−1𝜇 + wt(�̃� ⇒ 𝑣) + wt(𝑤𝑣 ⇒ �̃�) ≤ �̃�−1𝑢𝜆.
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Thus,
𝑣−1𝜇 + wt(𝑤𝑣 ⇒ 𝑣) ≤𝑣−1𝜇 + wt(�̃� ⇒ 𝑣) + wt(𝑤𝑣 ⇒ �̃�)

≤�̃�−1𝑢𝜆

≤(�̃�−1𝑢𝜆)dom = 𝜆.

Since (2) =⇒ (3) is trivial, it remains to show (3) =⇒ (1). So let 𝑣 ∈ LP(𝑥) satisfy 𝑣−1𝜇 + wt(𝑤𝑣 ⇒

𝑣) ≤ 𝜆. By Theorem 4.2, we immediately get 𝑥 ≤ 𝜀𝑣𝜆, showing (1). �

Lemma 4.13. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and 𝜆 ∈ 𝑋∗ a dominant coweight. Then the following are equivalent:

(1) 𝑥 ∈ Perm(𝜆).
(2) For all 𝑣 ∈ 𝑊 , we have

𝑣−1𝜇 + sup
𝑎∈Δaf

(
𝑣−1𝜔𝑎 − (𝑤𝑣)−1𝜔𝑎

)
≤ 𝜆.

If moreover x lies in a shrunken Weyl chamber, the conditions are equivalent to

(3) For the uniquely determined 𝑣 ∈ LP(𝑥), we have

𝑣−1𝜇 + sup
𝑎∈Δaf

(
𝑣−1𝜔𝑎 − (𝑤𝑣)−1𝜔𝑎

)
≤ 𝜆.

Proof. We have

(1) ⇐⇒ ∀𝑎 ∈ Δaf :
(
𝜇 + 𝜔𝑎 − 𝑤−1𝜔𝑎

)dom
≤ 𝜆

⇐⇒ ∀𝑎 ∈ Δaf , 𝑣 ∈ 𝑊 : 𝑣−1
(
𝜇 + 𝜔𝑎 − 𝑤−1𝜔𝑎

)
≤ 𝜆

⇐⇒ ∀𝑣 ∈ 𝑊 : sup
𝑎∈Δaf

𝑣−1
(
𝜇 + 𝜔𝑎 − 𝑤−1𝜔𝑎

)
≤ 𝜆

⇐⇒ (2).

Now, assume that x is in a shrunken Weyl chamber, LP(𝑥) = {𝑣} and 𝑎 ∈ Δaf . We claim that(
𝜇 + 𝜔𝑎 − 𝑤−1𝜔𝑎

)dom
= 𝑣−1

(
𝜇 + 𝜔𝑎 − 𝑤−1𝜔𝑎

)
.

Once this claim is proved, the equivalence (1) ⇐⇒ (3) follows.
It remains to show that 𝑣−1 (𝜇 + 𝜔𝑎 − 𝑤−1𝜔𝑎

)
is dominant. Hence, let 𝛼 ∈ Φ+. We obtain〈

𝑣−1
(
𝜇 + 𝜔𝑎 − 𝑤−1𝜔𝑎

)
, 𝛼

〉
= 〈𝜇, 𝑣𝛼〉 + 〈𝜔𝑎, 𝑣𝛼〉 − 〈𝜔𝑎, 𝑤𝑣𝛼〉

≥ 〈𝜇, 𝑣𝛼〉 −Φ+(−𝑣𝛼) −Φ+(𝑤𝑣𝛼)

= ℓ(𝑥, 𝑣𝛼) − 1 ≥ 0. �

Corollary 4.14. For any fixed root system Φ, the following are equivalent:

(1) For all dominant 𝜆 ∈ 𝑋∗, we get the equality Adm(𝜆) = Perm(𝜆).
(2) For all 𝑤1, 𝑤2 ∈ 𝑊 , the element⌈

sup
𝑎∈Δaf

𝑤−1
2 𝜔𝑎 − 𝑤−1

1 𝜔𝑎

⌉
:= min{𝑧 ∈ ZΦ∨ | 𝑧 ≥ sup

𝑎∈Δaf

𝑤−1
2 𝜔𝑎 − 𝑤−1

1 𝜔𝑎 in QΦ∨}

agrees with wt(𝑤1 ⇒ 𝑤2).
(3) Each irreducible component of Φ is of type 𝐴𝑛 (𝑛 ≥ 1), 𝐵2, 𝐶3 or 𝐺2.
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Proof. (1) =⇒ (2): Comparing condition (3) of Proposition 4.12 with condition (3) of Lemma 4.13
for superregular elements 𝑥 ∈ 𝑊 yields the desired claim.

(2) =⇒ (1): We can directly compare condition (2) of Proposition 4.12 with condition (2) of
Lemma 4.13.

(2) ⇐⇒ (3): Call an irreducible root system Φ′ good if condition (2) is satisfied for Φ′, and bad
otherwise. Certainly, Φ is good iff each irreducible component of Φ is good. Moreover, root systems of
type 𝐴𝑛 are good, we saw this in formula (3.1).

If Φ𝐽 ⊆ Φ is bad for some 𝐽 ⊆ Δ , then certainly Φ is bad as well. It remains to show that root
systems of types 𝐶3 and 𝐺2 are good and that root systems of types 𝐵3, 𝐶4 and 𝐷4 are bad. Each of
these claims is easily verified using the Sagemath computer algebra system [30, 29]. �

For irreducible root systems of rank ≥ 4, the equivalence (1) ⇐⇒ (3) is due to [8].

4.2. Proof of the criterion

The goal of this section is to prove Theorem 4.2. We start with the direction (1) =⇒ (2), which is the
easier one.

Lemma 4.15. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 and 𝑣 ∈ 𝑊 . If 𝑥 ≤ 𝑥 ′, then there exists an element 𝑣′ ∈ 𝑊

such that

𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇.

Proof. First, note that the relation

𝑥 � 𝑥 ′ : ⇐⇒ ∀𝑣∃𝑣′ : 𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇

is transitive. Thus, it suffices to show the implication 𝑥 ≤ 𝑥 ′ =⇒ 𝑥 � 𝑥 ′ for generators (𝑥, 𝑥 ′) of the
Bruhat order.

In other words, we may assume that 𝑥 ′ = 𝑥𝑟a for an affine root a = (𝛼, 𝑘) ∈ Φ+
af with

𝑥a = (𝑤𝛼, 𝑘 − 〈𝜇, 𝛼〉) ∈ Φ+
af .

This means that 𝑤′ = 𝑤𝑠𝛼 and 𝜇′ = 𝜇 + (𝑘 − 〈𝜇, 𝛼〉)𝛼∨, where 𝑘 − 〈𝜇, 𝛼〉 ≥ Φ+(−𝑤𝛼). We now do a
case distinction depending on whether the root 𝑣−1𝛼 is positive or negative.

Case 𝑣−1𝛼 ∈ 𝚽−. Put 𝑣′ = 𝑠𝛼𝑣 such that 𝑤𝑣 = 𝑤′𝑣′. Then using [28, Lemma 4.3],

𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′)

= 𝑣−1𝜇 + wt(𝑣𝑠−𝑣−1 𝛼 ⇒ 𝑣) + 0
≤ 𝑣−1𝜇 −Φ+(−𝛼)𝑣−1𝛼∨

≤ 𝑣−1𝜇 − 𝑘𝑣−1𝛼∨

= (𝑠𝛼𝑣)
−1(𝑠𝛼 (𝜇) + 𝑘𝛼∨) = (𝑣′)−1𝜇′.

Case 𝑣−1𝛼 ∈ 𝚽+. Put 𝑣′ = 𝑣 such that 𝑤′𝑣′ = 𝑤𝑣𝑠𝑣−1 𝛼. Then using [28, Lemma 4.3],

𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′)

= 𝑣−1𝜇 + wt(𝑤𝑣 ⇒ 𝑤𝑣𝑠𝑣−1 𝛼)

≤ 𝑣−1𝜇 +Φ+(−𝑤𝛼)𝑣−1𝛼∨

≤ 𝑣−1𝜇 + (𝑘 − 〈𝜇, 𝛼〉)𝛼∨ = (𝑣′)−1𝜇′.

This finishes the proof. �
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The direction (1) =⇒ (2) of Theorem 4.2 follows directly from this lemma. We now start the journey
to prove (2) =⇒ (1).

Lemma 4.16. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 , and suppose that (1, 𝐽1, . . . , 𝐽𝑚) is a Bruhat-deciding

datum for both x and 𝑥 ′. If the inequality

𝜇 + wt(𝑤 ⇒ 𝑤′) ≤ 𝜇′ (mod Φ∨
𝐽𝑖
)

holds for 𝑖 = 1, . . . , 𝑚, then 𝑥 ≤ 𝑥 ′.

Proof. Let 𝐽 = 𝐽1 ∩ · · · ∩ 𝐽𝑚. Then we get

𝜇 + wt(𝑤 ⇒ 𝑤′) ≤ 𝜇′ (mod Φ∨
𝐽 ).

Let 𝐶1 := ℓ(𝑥−1𝑥 ′) and pick 𝐶2 > 0 such that the conclusion of Corollary 3.12 holds true. We can find
an element 𝜆 ∈ ZΦ∨ such that 〈𝜆, 𝛼〉 = 0 for all 𝛼 ∈ 𝐽 and

〈𝜆, 𝛼〉 ≥ 𝐶2

for all 𝛼 ∈ Φ+ \Φ𝐽 . Since 1 ∈ 𝑊 is length positive for both x and 𝑥 ′, it follows from [28, Lemma 2.13]
that

ℓ(𝑥𝜀𝜆) = ℓ(𝑥) + ℓ(𝜀𝜆), ℓ(𝑥 ′𝜀𝜆) = ℓ(𝑥 ′) + ℓ(𝜀𝜆).

So it suffices to show 𝑥𝜀𝜆 ≤ 𝑥 ′𝜀𝜆. Note that 𝑥𝜀𝜆, 𝑥 ′𝜀𝜆 ∈ Ω𝐶2
𝐽 by choice of 𝜆. Moreover, we have

𝜇 + 𝜆 + wt(𝑤 ⇒ 𝑤′) ≤ 𝜇′ + 𝜆 (mod Φ∨
𝐽 )

by assumption. Therefore, the inequality 𝑥𝜀𝜆 ≤ 𝑥 ′𝜀𝜆 follows from Corollary 3.12. �

Lemma 4.17. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 , and suppose that (1, 𝐽1, . . . , 𝐽𝑚) is a Bruhat-deciding

datum for x. If the inequality

𝜇 + wt(𝑤 ⇒ 𝑤′) ≤ 𝜇′ (mod Φ∨
𝐽𝑖
)

holds for 𝑖 = 1, . . . , 𝑚, then 𝑥 ≤ 𝑥 ′.

Proof. Induction on ℓ(𝑥 ′).
If (1, 𝐽, . . . , 𝐽𝑚) is also Bruhat-deciding for 𝑥 ′, we are done by Lemma 4.16. Otherwise, we must have

that 1 ∈ 𝑊 is not length positive for 𝑥 ′ or that 𝐽 := 𝐽1 ∩ · · · ∩ 𝐽𝑚 allows some 𝛼 ∈ Φ𝐽 with ℓ(𝑥 ′, 𝛼) ≠ 0.
First, consider the case that 1 ∈ 𝑊 is not length positive for 𝑥 ′. Then we find a positive root 𝛼 ∈ Φ+

with ℓ(𝑥 ′, 𝛼) < 0. Hence, 𝑎 := (−𝛼, 1) ∈ Φ+
af with 𝑥 ′𝑎 ∈ Φ− so that

𝑥 ′′ := 𝑤′′𝜀𝜇′′

:= 𝑥 ′𝑟𝑎 = 𝑤′𝑠𝛼𝜀
𝜇′−(1+〈𝜇′,𝛼〉)𝛼∨

< 𝑥 ′.

We calculate

𝜇 + wt(𝑤 ⇒ 𝑤′′) ≤ 𝜇 + wt(𝑤 ⇒ 𝑤′) + wt(𝑤′ ⇒ 𝑤′𝑠𝛼)

≤ 𝜇′ +Φ+(−𝑤′𝛼)𝛼∨

= 𝜇′ − (1 + 〈𝜇′, 𝛼〉)𝛼∨ + (〈𝜇′, 𝛼〉 + 1 +Φ+(−𝑤′𝛼))𝛼∨

= 𝜇′′ + (ℓ(𝑥 ′, 𝛼) + 1)𝛼∨ ≤ 𝜇′′ (mod Φ∨
𝐽 ).

By induction, 𝑥 ≤ 𝑥 ′′. Since 𝑥 ′′ < 𝑥 ′, we conclude 𝑥 < 𝑥 ′ and are done.
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Next, consider the case that 1 ∈ 𝑊 is indeed length positive for 𝑥 ′, but we find some 𝛼 ∈ Φ𝐽 with
ℓ(𝑥 ′, 𝛼) ≠ 0. We may assume 𝛼 ∈ Φ+, and then ℓ(𝑥 ′, 𝛼) > 0 by length positivity. Then 𝑎 = (𝛼, 0) ∈ Φ+

af
with 𝑥 ′𝑎 ∈ Φ−. We conclude that

𝑥 ′′ := 𝑤′′𝜀𝜇′′

:= 𝑥 ′𝑟𝑎 = 𝑤′𝑠𝛼𝜀
𝜇′−〈𝜇′,𝛼〉𝛼∨

< 𝑥 ′.

We calculate

𝜇 + wt(𝑤 ⇒ 𝑤′′) ≤ 𝜇 + wt(𝑤 ⇒ 𝑤′) + wt(𝑤′ ⇒ 𝑤′𝑠𝛼)

≤ 𝜇′ +Φ+(−𝑤′𝛼)𝛼∨

= 𝜇′′ + (Φ+(−𝑤′𝛼) + 〈𝜇′, 𝛼〉)𝛼∨

≡ 𝜇′′ (mod Φ∨
𝐽 ),

as 𝛼∨ ∈ Φ∨
𝐽 . So as in the previous case, we get 𝑥 ≤ 𝑥 ′′ < 𝑥 ′ and are done.

This completes the induction and the proof. �

Before we can continue the series of incremental generalizations, we need a technical lemma.

Lemma 4.18. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 . Let 𝐽 ⊆ Δ and 𝑣′ ∈ 𝑊 be given such that

𝜇 + wt(𝑣′ ⇒ 1) + wt(𝑤 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇′ (mod Φ∨
𝐽 ).

Then there exists an element 𝑣′′ ∈ 𝑊 satisfying the same inequality as 𝑣′ above, and satisfying moreover
the condition ℓ(𝑥 ′, 𝛾) < 0 for all 𝛾 ∈ max inv(𝑣′′).

Proof. Among all 𝑣′ ∈ 𝑊 satisfying the inequality

𝜇 + wt(𝑣′ ⇒ 1) + wt(𝑤 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇′ (mod Φ∨
𝐽 ),

pick one of minimal length in W. We prove that ℓ(𝑥 ′, 𝛾) < 0 for all 𝛾 ∈ max inv(𝑣′).
Suppose that this was not the case, so ℓ(𝑥 ′, 𝛾) ≥ 0 for some 𝛾 ∈ max inv(𝑣′). The condition

𝛾 ∈ inv(𝑣′) implies ℓ(𝑠𝛾𝑣
′) < ℓ(𝑣′). Moreover, wt(𝑣′ ⇒ 1) = wt(𝑠𝛾𝑣

′ ⇒ 1) − (𝑣′)−1𝛾∨ by Proposition
3.18. We calculate

𝜇 + wt(𝑠𝛾𝑣
′ ⇒ 1) + wt(𝑤 ⇒ 𝑤′𝑠𝛾𝑣

′)

= 𝜇 + wt(𝑣′ ⇒ 1) + (𝑣′)−1𝛾∨ + wt(𝑤 ⇒ 𝑤′𝑠𝛾𝑣
′)

≤ 𝜇 + wt(𝑣′ ⇒ 1) + (𝑣′)−1𝛾∨ + wt(𝑤 ⇒ 𝑤′𝑣′) + wt(𝑤′𝑣′ ⇒ 𝑤′𝑠𝛾𝑣
′)

≤ (𝑣′)−1𝜇′ + (𝑣′)−1𝛾∨ + wt(𝑤′𝑣′ ⇒ 𝑤′𝑠𝛾𝑣
′)

= (𝑣′)−1𝜇′ + (𝑣′)−1𝛾∨ + wt(𝑤′𝑠𝛾𝑣
′𝑠−(𝑣′)−1 (𝛾) ⇒ 𝑤′𝑠𝛾𝑣

′)

≤ (𝑣′)−1𝜇′ + (𝑣′)−1𝛾∨ −Φ+(𝑤′𝛾) (𝑣′)−1𝛾∨

= (𝑠𝛾𝑣
′)−1𝜇′ + 〈𝜇′, 𝛾〉(𝑣′)−1𝛾∨ + (𝑣′)−1𝛾∨ −Φ+(𝑤′𝛾) (𝑣′)−1𝛾∨

= (𝑠𝛾𝑣
′)−1𝜇′ + ℓ(𝑥 ′, 𝛾) (𝑣′)−1𝛾∨ ≤ (𝑠𝛾𝑣

′)−1𝜇′ (mod Φ∨
𝐽 ).

This is a contradiction to the choice of 𝑣′, so we get the desired claim. �

Lemma 4.19. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 , and suppose that (1, 𝐽1, . . . , 𝐽𝑚) is a Bruhat-deciding

datum for x. If for each 𝑖 = 1, . . . , 𝑚, there exists some 𝑣′𝑖 ∈ 𝑊 with

𝜇 + wt(𝑣′𝑖 ⇒ 1) + wt(𝑤 ⇒ 𝑤′𝑣′𝑖) ≤ (𝑣′𝑖)
−1𝜇′ (mod Φ∨

𝐽𝑖
),

then 𝑥 ≤ 𝑥 ′.
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Proof. Induction on ℓ(𝑥 ′).
By Lemma 4.18, we may assume that for each 𝑖 ∈ {1, . . . , 𝑚} and 𝛾 ∈ max inv(𝑣′𝑖), we have

ℓ(𝑥 ′, 𝛾) < 0.
If 1 ∈ 𝑊 is length positive for 𝑥 ′, that is, ℓ(𝑥 ′, 𝛼) ≥ 0 for all 𝛼 ∈ Φ+, then we get max inv(𝑣′𝑖) = ∅

for all 𝑖 = 1, . . . , 𝑚, that is, 𝑣′𝑖 = 1. Now, the claim follows from Lemma 4.17.
Thus, suppose that the set

{𝛼 ∈ Φ+ | ℓ(𝑥 ′, 𝛼) < 0}

is nonempty. We fix a root 𝛼 that is maximal within this set. Now, a = (−𝛼, 1) ∈ Φ+
af satisfies 𝑥 ′a ∈ Φ−

af ,
as ℓ(𝑥 ′, 𝛼) < 0. Consider

𝑥 ′′ := 𝑤′′𝜀𝜇′′

:= 𝑥 ′𝑟a = 𝑤′𝑠𝛼𝜀
𝜇′−(1+〈𝜇′,𝛼〉)𝛼∨

< 𝑥 ′.

We want to show 𝑥 ≤ 𝑥 ′′ using the inductive assumption. So pick an index 𝑖 ∈ {1, . . . , 𝑚}. We do a case
distinction based on whether the root (𝑣′𝑖)

−1𝛼 is positive or negative.
Case (𝑣′𝑖)

−1𝛼 ∈ 𝚽−. Then 𝛼 ∈ inv(𝑣′𝑖), so there exists some 𝛾 ∈ max inv(𝑣′𝑖) with 𝛼 ≤ 𝛾. By choice
of 𝑣′𝑖 , we get ℓ(𝑥 ′, 𝛾) < 0. By maximality of 𝛼 and 𝛼 ≤ 𝛾, we get 𝛼 = 𝛾. In other words, 𝛼 ∈ max inv(𝑣′𝑖).

Define 𝑣′′𝑖 := 𝑠𝛼𝑣
′
𝑖 . Then by Proposition 3.18, wt(𝑣′𝑖 ⇒ 1) = wt(𝑣′′𝑖 ⇒ 1) − (𝑣′𝑖)

−1𝛼∨. We compute

𝜇 + wt(𝑣′′𝑖 ⇒ 1) + wt(𝑤 ⇒ 𝑤′′𝑣′′𝑖 )

= 𝜇 + wt(𝑣′𝑖 ⇒ 1) + (𝑣′𝑖)
−1𝛼∨ + wt(𝑤 ⇒ 𝑤′𝑣′𝑖)

≤ (𝑣′𝑖)
−1𝜇′ + (𝑣′𝑖)

−1𝛼∨

= (𝑠𝛼𝑣
′
𝑖)
−1(𝜇′ − (1 + 〈𝜇′, 𝛼〉)𝛼∨) = (𝑣′′𝑖 )

−1𝜇′′ (mod Φ∨
𝐽𝑖
).

Case (𝑣′𝑖)
−1𝛼 ∈ 𝚽+. We define 𝑣′′𝑖 := 𝑣′𝑖 and use [28, Lemma 4.3] to compute

𝜇 + wt(𝑣′′𝑖 ⇒ 1) + wt(𝑤 ⇒ 𝑤′′𝑣′′𝑖 )

≤ 𝜇 + wt(𝑣′𝑖 ⇒ 1) + wt(𝑤 ⇒ 𝑤′𝑣′𝑖) + wt(𝑤′𝑣′𝑖 ⇒ 𝑤′𝑣′𝑖𝑠 (𝑣′
𝑖 )

−1 𝛼)

≤ (𝑣′𝑖)
−1𝜇′ +Φ+(−𝑤′𝛼) (𝑣′𝑖)

−1𝛼∨

= (𝑣′𝑖)
−1(𝜇′ − (1 + 〈𝜇′, 𝛼〉)𝛼∨) + (〈𝜇′, 𝛼〉 + 1 +Φ+(−𝑤′𝛼)) (𝑣′𝑖)

−1𝛼∨

= (𝑣′𝑖)
−1𝜇′′ + (ℓ(𝑥 ′, 𝛼) + 1) (𝑣′𝑖)

−1𝛼∨ ≤ (𝑣′′𝑖 )
−1𝜇′′ (mod Φ∨

𝐽𝑖
).

In any case, we get the desired inequality

𝜇 + wt(𝑣′′𝑖 ⇒ 1) + wt(𝑤 ⇒ 𝑤′′𝑣′′𝑖 ) ≤ (𝑣′′𝑖 )
−1𝜇′′ (mod Φ∨

𝐽𝑖
).

By induction, 𝑥 ≤ 𝑥 ′′ < 𝑥 ′, completing the induction and the proof. �

Lemma 4.20. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 , and suppose that (𝑣, 𝐽1, . . . , 𝐽𝑚) is a Bruhat-deciding

datum for x. If for each 𝑖 = 1, . . . , 𝑚, there exists some 𝑣′𝑖 ∈ 𝑊 with

𝑣−1𝜇 + wt(𝑣′𝑖 ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖) ≤ (𝑣′𝑖)
−1𝜇′ (mod Φ∨

𝐽𝑖
),

then 𝑥 ≤ 𝑥 ′.

Proof. Induction on ℓ(𝑣). If 𝑣 = 1, this follows from Lemma 4.19.
Let 𝐽 := 𝐽1 ∩ · · · ∩ 𝐽𝑚. If 𝛼 ∈ 𝐽, then 𝑣𝑠𝛼 trivially satisfies the same condition as v. So we may

assume that 𝑣 ∈ 𝑊 𝐽 .
Since 𝑣 ≠ 1, we find a simple root 𝛼 ∈ Δ with 𝑣−1𝛼 ∈ Φ−. In particular, ℓ(𝑥, 𝛼) ≤ 0 such that

𝑥 < 𝑥𝑠𝛼.
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We claim that (𝑠𝛼𝑣, 𝐽1, . . . , 𝐽𝑚) is a Bruhat-deciding datum for 𝑥𝑠𝛼. Indeed, for 𝛽 ∈ Φ, we use [28,
Lemma 2.12] to compute

ℓ(𝑥𝑠𝛼, 𝑠𝛼𝑣𝛽) = ℓ(𝑥, 𝑣𝛽) + ℓ(𝑠𝛼, 𝑠𝛼𝑣𝛽)

= ℓ(𝑥, 𝑣𝛽) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑣𝛽 = −𝛼,

−1, 𝑣𝛽 = 𝛼,

0, 𝑣𝛽 ≠ ±𝛼.

If 𝛽 ∈ Φ+, the condition 𝑣−1𝛼 ∈ Φ− forces 𝑣𝛽 ≠ 𝛼, showing

ℓ(𝑥𝑠𝛼, 𝑠𝛼𝑣𝛽) ≥ ℓ(𝑥, 𝑣𝛽) ≥ 0.

Now, consider the case 𝛽 ∈ Φ+
𝐽 . Then ℓ(𝑥, 𝑣𝛽) = 0 by assumption. Moreover, 𝑣𝛽 ∈ Φ+ as 𝑣 ∈ 𝑊 𝐽 so

that 𝑣𝛽 ≠ −𝛼. We conclude ℓ(𝑥𝑠𝛼, 𝑠𝛼𝑣𝛽) = ℓ(𝑥, 𝑣𝛽) = 0 in this case.
This shows that (𝑠𝛼𝑣, 𝐽1, . . . , 𝐽𝑚) is Bruhat-deciding for 𝑥𝑠𝛼. Since ℓ(𝑠𝛼𝑣) < ℓ(𝑣), we may apply

the inductive hypothesis to 𝑥𝑠𝛼 to prove 𝑥𝑠𝛼 ≤ max(𝑥 ′, 𝑥 ′𝑠𝛼). We distinguish two cases.
Case ℓ(𝑥 ′, 𝛼) ≤ 0. This means 𝑥 ′ < 𝑥 ′𝑠𝛼, so we wish to prove 𝑥𝑠𝛼 < 𝑥 ′𝑠𝛼, using the inductive

hypothesis. So let 𝑖 ∈ {1, . . . , 𝑚}. By Lemma 4.3, we may assume that 𝑣′𝑖 is length positive for 𝑥 ′.
First, assume that (𝑣′𝑖)

−1𝛼 ∈ Φ−. By Lemma 3.7, we get

wt(𝑣′𝑖 ⇒ 𝑣) = wt(𝑠𝛼𝑣
′
𝑖 ⇒ 𝑠𝛼𝑣).

Define 𝑣′′𝑖 := 𝑠𝛼𝑣
′
𝑖 . Then

(𝑠𝛼𝑣)
−1(𝑠𝛼𝜇) + wt(𝑣′′𝑖 ⇒ 𝑠𝛼𝑣) + wt(𝑤𝑠𝛼𝑠𝛼𝑣 ⇒ 𝑤′𝑠𝛼𝑣

′′
𝑖 )

= 𝑣−1𝜇 + wt(𝑣′𝑖 ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖)

≤ (𝑣′𝑖)
−1𝜇′ = (𝑣′′𝑖 ) (𝑠𝛼𝜇

′) (mod Φ∨
𝐽𝑖
).

Next, assume that (𝑣′𝑖)
−1𝛼 ∈ Φ+. By length positivity, we must have ℓ(𝑥 ′, 𝛼) = 0. By Lemma 3.7,

we get

wt(𝑣′𝑖 ⇒ 𝑣) = wt(𝑣′𝑖 ⇒ 𝑠𝛼𝑣).

Define 𝑣′′𝑖 := 𝑣′𝑖 . Then using [28, Lemma 4.3],

(𝑠𝛼𝑣)
−1(𝑠𝛼𝜇) + wt(𝑣′′𝑖 ⇒ 𝑠𝛼𝑣) + wt(𝑤𝑠𝛼𝑠𝛼𝑣 ⇒ 𝑤′𝑠𝛼𝑣

′′
𝑖 )

= 𝑣−1𝜇 + wt(𝑣′𝑖 ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑠𝛼𝑣
′
𝑖)

≤ 𝑣−1𝜇 + wt(𝑣′𝑖 ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖) + wt(𝑤′𝑣′𝑖 ⇒ 𝑤′𝑣′𝑖𝑠 (𝑣′
𝑖 )

−1 𝛼)

≤ (𝑣′𝑖)
−1𝜇′ +Φ+(−𝑤′𝛼) (𝑣′𝑖)

−1𝛼

= (𝑣′𝑖)
−1𝑠𝛼𝜇

′ + (〈𝜇′, 𝛼〉 +Φ+(−𝑤′𝛼)) (𝑣′𝑖)
−1𝛼

= (𝑣′′𝑖 )
−1𝑠𝛼𝜇

′ + ℓ(𝑥 ′, 𝛼) (𝑣′𝑖)
−1𝛼 = (𝑣′′𝑖 )

−1𝑠𝛼𝜇. (mod Φ∨
𝐽𝑖
).

We see that the inequality

(𝑠𝛼𝑣)
−1(𝑠𝛼𝜇) + wt(𝑣′′𝑖 ⇒ 𝑠𝛼𝑣) + wt(𝑤𝑠𝛼𝑠𝛼𝑣 ⇒ 𝑤′𝑠𝛼𝑣

′′
𝑖 ) ≤ (𝑣′′𝑖 )

−1𝑠𝛼𝜇 (mod Φ∨
𝐽𝑖
)

always holds, proving 𝑥𝑠𝛼 ≤ 𝑥 ′𝑠𝛼. Since 𝑠𝛼 is a simple reflection in 𝑊 , 𝑥 < 𝑥𝑠𝛼 and 𝑥 ′ < 𝑥 ′𝑠𝛼, we
conclude that 𝑥 ≤ 𝑥 ′ must hold as well.
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Case ℓ(𝑥 ′, 𝛼) > 0. We now wish to show 𝑥𝑠𝛼 ≤ 𝑥 ′, as 𝑥 ′ > 𝑥 ′𝑠𝛼. We prove this using the inductive
assumption, so let 𝑖 ∈ {1, . . . , 𝑚}. As in the previous case, we assume that 𝑣′𝑖 is length positive for 𝑥 ′.
In particular, (𝑣′𝑖)

−1𝛼 ∈ Φ+.
By Lemma 3.7, we get

wt(𝑣′𝑖 ⇒ 𝑣) = wt(𝑣′𝑖 ⇒ 𝑠𝛼𝑣).

Define 𝑣′′𝑖 := 𝑣′𝑖 . Then

(𝑠𝛼𝑣)
−1(𝑠𝛼𝜇) + wt(𝑣′′𝑖 ⇒ 𝑠𝛼𝑣) + wt(𝑤𝑠𝛼𝑠𝛼𝑣 ⇒ 𝑤′𝑣′′𝑖 )

= 𝑣−1𝜇 + wt(𝑣′𝑖 ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖)

≤ (𝑣′𝑖)
−1𝜇′ = (𝑣′′𝑖 )

−1𝜇′.

By the inductive assumption, we get 𝑥𝑠𝛼 ≤ 𝑥 ′. Thus, 𝑥 < 𝑥𝑠𝛼 ≤ 𝑥 ′.
This completes the induction and the proof. �

Proof of Theorem 4.2. The implication (1) ⇒ (2) follows from Lemma 4.15.
The implication (2) ⇒ (1) follows from Lemma 4.20. �

4.3. Deodhar’s lemma

In this section, we apply Deodhar’s lemma [7] to our Theorem 4.2. We need the semiaffine weight
functions and related notions as introduced in Section 3.4. We moreover need a two-sided version of
Deodhar’s lemma, which seems to be well known for experts, yet our standard reference [2, Theorem
2.6.1] only provides a one-sided version. We thus introduce the two-sided theory briefly. For convenience,
we state it for the extended affine Weyl group 𝑊 , even though it holds true in a more general Coxeter
theoretic context.

Definition 4.21. Let 𝐿, 𝑅 ⊆ Φaf be any sets of affine roots (we will mostly be interested in sets of simple
affine roots).

(a) By 𝑊𝐿 , we denote the subgroup of 𝑊 generated by the affine reflections 𝑟𝑎 for 𝑎 ∈ 𝐿.
(b) We define

𝐿𝑊𝑅 := {𝑥 ∈ 𝑊 : 𝑥−1𝐿 ⊆ Φ+
af and 𝑥𝑅 ⊆ Φ+

af}.

Recall that we called a subset 𝐿 ⊆ Δaf spherical if 𝑊𝐿 is finite.

Proposition 4.22. Let 𝑥, 𝑦 ∈ 𝑊 and 𝐿, 𝑅 ⊆ Δaf be spherical.

(a) The double coset 𝑊𝐿𝑥𝑊𝑅 contains a unique element of minimal length, denoted 𝐿𝑥𝑅, and a unique
element of maximal length, denoted −𝐿𝑥−𝑅. We have

𝐿𝑊𝑅 ∩
(
𝑊𝐿𝑥𝑊𝑅

)
=
{

𝐿𝑥𝑅
}
,

−𝐿𝑊−𝑅 ∩
(
𝑊𝐿𝑥𝑊𝑅

)
=
{
−𝐿𝑥−𝑅

}
.

(b) We have

𝐿𝑥𝑅 ≤ 𝑥 ≤ −𝐿𝑥−𝑅
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in the Bruhat order, and there exist (nonunique) elements 𝑥𝐿 , 𝑥
′
𝐿 ∈ 𝑊𝐿 and 𝑥𝑅, 𝑥

′
𝑅 ∈ 𝑊𝑅 such that

𝑥 = 𝑥𝐿 · 𝐿𝑥𝑅 · 𝑥𝑅 and ℓ(𝑥) = ℓ(𝑥𝐿) + ℓ
(
𝐿𝑥𝑅

)
+ ℓ(𝑥𝑅),

−𝐿𝑥−𝑅 = 𝑥 ′𝐿 · 𝑥 · 𝑥 ′𝑅 and ℓ
(
−𝐿𝑥−𝑅

)
= ℓ(𝑥 ′𝐿) + ℓ(𝑥) + ℓ(𝑥 ′𝑅).

(c) If 𝑥 ≤ 𝑦, then

𝐿𝑥𝑅 ≤ 𝐿𝑦𝑅 and −𝐿𝑥−𝑅 ≤ −𝐿𝑦−𝑅 .

(d) Suppose 𝐿1, . . . , 𝐿ℓ , 𝑅1, . . . , 𝑅𝑟 ⊆ Δaf are spherical subsets such that 𝐿 = 𝐿1 ∩ · · · ∩ 𝐿ℓ and
𝑅 = 𝑅1 ∩ · · · ∩ 𝑅𝑟 . Then

𝐿𝑥𝑅 ≤ 𝐿𝑦𝑅 ⇐⇒ ∀𝑖, 𝑗 : 𝐿𝑖𝑥𝑅 𝑗 ≤ 𝐿𝑖 𝑦𝑅 𝑗 .

Proof.

(a) We only show the claim for 𝐿𝑥𝑅, as the proof for −𝐿𝑥−𝑅 is analogous.
Let 𝑥1 ∈ 𝑊𝐿𝑥𝑊𝑅 an element of minimal length. It is clear that each such element must lie in

𝐿𝑊𝑅.
Let now 𝑥0 ∈ 𝐿𝑊𝑅 ∩

(
𝑊𝐿𝑥𝑊𝑅

)
be any element. It suffices to show that 𝑥0 = 𝑥1.

Since 𝑥1 ∈ 𝑊𝐿𝑥0𝑊𝑅, we find 𝑥𝐿 ∈ 𝑊𝐿 , 𝑥𝑅 ∈ 𝑊𝑅 such that 𝑥1 = 𝑥𝐿𝑥0𝑥𝑅. We show 𝑥1 = 𝑥0 via
induction on ℓ(𝑥𝐿). If 𝑥𝐿 = 1, the claim is evident.

As 𝑥0 ∈ 𝐿𝑊𝑅 and 𝑥𝑅 ∈ 𝑊𝑅, it follows that ℓ(𝑥0𝑥𝑅) = ℓ(𝑥0) + ℓ(𝑥𝑅), cf. [28, Lemma 2.13] or [2,
Proposition 2.4.4]. Now,

ℓ(𝑥0) ≥ ℓ(𝑥1) = ℓ(𝑥𝐿𝑥0𝑥𝑅) ≥ ℓ(𝑥0𝑥𝑅) − ℓ(𝑥𝐿) = ℓ(𝑥0) + ℓ(𝑥𝑅) − ℓ(𝑥𝐿).

We conclude that ℓ(𝑥𝐿) ≥ ℓ(𝑥𝑅). By an analogous argument, we get ℓ(𝑥𝐿) ≤ ℓ(𝑥𝑅) such that
ℓ(𝑥𝐿) = ℓ(𝑥𝑅). It follows that

ℓ(𝑥0) = ℓ(𝑥1) = ℓ(𝑥𝐿𝑥0𝑥𝑅) = ℓ(𝑥0𝑥𝑅) − ℓ(𝑥𝐿).

Since we may assume 𝑥𝐿 ≠ 1, we find a simple affine root 𝑎 ∈ 𝐿 with 𝑥𝐿 (𝑎) ∈ Φ−
af so that

(𝑥0𝑥𝑅)
−1(𝑎) ∈ Φ−

af . Since 𝑥0 ∈ 𝐿𝑊𝑅, we have 𝑥−1
0 (𝑎) ∈ Φ+

af , so 𝑟𝑥−1
0 (𝑎)𝑥𝑅 < 𝑥𝑅.

We see that we can write

𝑥1 = 𝑥𝐿𝑥0𝑥𝑅 = (𝑥𝐿𝑟𝑎)︸�︷︷�︸
<𝑥𝐿

𝑥0 (𝑟𝑥−1
0 (𝑎)𝑥𝑅)︸�������︷︷�������︸
<𝑥𝑅

,

finishing the induction and thus the proof.
(b) The claims on the Bruhat order are implied by the claimed existences of length additive products,

so it suffices to show the latter. We again focus on 𝐿𝑥𝑅.
Among all elements in

{𝑥 ∈ 𝑊 | ∃𝑥𝐿 ∈ 𝑊𝐿 , 𝑥𝑅 ∈ 𝑊𝑅 : 𝑥 = 𝑥𝐿𝑥𝑥𝑅 and ℓ(𝑥) = ℓ(𝑥𝐿) + ℓ(𝑥) + ℓ(𝑥𝑅)},

choose an element 𝑥0 of minimal length. As in (a), one shows easily that 𝑥0 ∈ 𝐿𝑊𝑅. By (a), we get
𝑥0 = 𝐿𝑥𝑅, so the claim follows.

(c) This is [2, Proposition 2.5.1].

https://doi.org/10.1017/fms.2024.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.33


34 F. Schremmer

(d) If 𝐿𝑥𝑅 ≤ 𝐿𝑦𝑅 and 𝑖 ∈ {1, . . . , ℓ}, 𝑗 ∈ {1, . . . , 𝑟}, we get 𝐿 ⊆ 𝐿𝑖 , 𝑅 ⊆ 𝑅𝑖 such that

𝐿𝑖𝑥𝑅 𝑗 = 𝐿𝑖

(
𝐿𝑥𝑅

)
𝑅 𝑗 ≤

(c)
𝐿𝑖

(
𝐿𝑦𝑅

)
𝑅 𝑗 = 𝐿𝑖 𝑦𝑅 𝑗 .

It remains to show the converse.
In case 𝑅 = ∅ and 𝑟 = 0, this is exactly [2, Theorem 2.6.1]. Similarly, the claim follows if

𝐿 = ∅ and ℓ = 0. Writing 𝐿𝑥𝑅 = 𝐿
(
𝑥𝑅

)
, etc. one reduces the claim to applying [2, Theorem 2.6.1]

twice. �

We first describe a replacement for the length functional ℓ(𝑥, ·) that is well behaved with passing to
𝐿𝑥𝑅.

Definition 4.23. Let 𝐿, 𝑅 ⊆ Δaf be spherical. Then we define for each 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 the coset length
functional

𝐿ℓ𝑅 (𝑥, ·) : Φ → Z, 𝛼 ↦→ 𝐿ℓ𝑅 (𝑥, 𝛼),
𝐿ℓ𝑅 (𝑥, 𝛼) := 〈𝜇, 𝛼〉 + 𝜒𝑅 (𝛼) − 𝜒𝐿 (𝑤𝛼).

We refer to Definition 3.26 for the definition of 𝜒𝐿 , 𝜒𝑅.

Lemma 4.24. Let 𝐾, 𝐿, 𝑅 ⊆ Δaf be spherical subsets, and let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 .

(a) For 𝛼 ∈ Φ, we have

𝜒𝐾 (𝛼) + 𝜒𝐾 (−𝛼) =

{
1, 𝛼 ∈ Φ \Φ𝐾 ,

0, 𝛼 ∈ Φ𝐾 .

If 𝛼, 𝛽 ∈ Φ satisfy 𝛼 + 𝛽 ∈ Φ, then

𝜒𝐾 (𝛼) + 𝜒𝐾 (𝛽) − 𝜒𝐾 (𝛼 + 𝛽) ∈ {0, 1}.

(b) 𝐿ℓ𝑅 (𝑥, ·) is a root functional, as studied in [28, Section 2.13].

Proof.

(a) We have

𝜒𝐾 (𝛼) + 𝜒𝐾 (−𝛼) = 1 −Φ+
𝐾 (𝛼) −Φ+

𝐾 (−𝛼) =

{
1, 𝛼 ∈ Φ \Φ𝐾 ,

0, 𝛼 ∈ Φ𝐾 .

Now, suppose 𝛼 + 𝛽 ∈ Φ. Observe that the set

𝑅 := Φ−
af ∪ (Φaf)𝐾 ⊆ Φaf

is closed under addition, in the sense that for 𝑎, 𝑏 ∈ 𝑅 with 𝑎 + 𝑏 ∈ Φaf , we have 𝑎 + 𝑏 ∈ 𝑅.
By definition, (𝛼,−𝜒𝐾 (𝛼)), (𝛽,−𝜒𝐾 (𝛽)) ∈ 𝑅. Thus,

𝑐 := (𝛼 + 𝛽,−𝜒𝐾 (𝛼) − 𝜒𝐾 (𝛽)) ∈ 𝑅.

If 𝑐 ∈ (Φaf)𝐾 , then 𝜒𝐾 (𝛼 + 𝛽) = 𝜒𝐾 (𝛼) + 𝜒𝐾 (𝛽) by definition of 𝜒𝐾 (𝛼 + 𝛽). Hence, let us assume
that 𝑐 ∈ Φ−

af \ (Φaf)𝐾 .
The condition 𝑐 ∈ Φ−

af means that

−𝜒𝐾 (𝛼) − 𝜒𝐾 (𝛽) ≤ −Φ+(𝛼 + 𝛽) ≤ −𝜒𝐾 (𝛼 + 𝛽).
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This shows 𝜒𝐾 (𝛼) + 𝜒𝐾 (𝛽) − 𝜒𝐾 (𝛼 + 𝛽) ≥ 0. We want to show it lies in {0, 1}, so suppose that

𝜒𝐾 (𝛼) + 𝜒𝐾 (𝛽) − 𝜒𝐾 (𝛼 + 𝛽) ≥ 2.

We observe that

(𝛼, 1 − 𝜒𝐾 (𝛼))︸�������������︷︷�������������︸
∈Φaf\𝑅

+ (𝛽, 1 − 𝜒𝐾 (𝛽))︸�������������︷︷�������������︸
∈Φaf\𝑅

= (𝛼 + 𝛽, 2 − 𝜒𝐾 (𝛼) − 𝜒𝐾 (𝛽))︸��������������������������������︷︷��������������������������������︸
∈𝑅

.

Since also the set Φaf \ 𝑅 is closed under addition, this is impossible. The contradiction shows the
claim.

(b) This is immediate from (a):

𝐿ℓ𝑅 (𝑥, 𝛼) + 𝐿ℓ𝑅 (𝑥,−𝛼) = 〈𝜇, 𝛼〉 + 〈𝜇,−𝛼〉 + 𝜒𝑅 (𝛼) + 𝜒𝑅 (−𝛼)︸����������������︷︷����������������︸
∈{0,1}

− (𝜒𝐿 (𝑤𝛼) + 𝜒𝐿 (−𝑤𝛼))︸�����������������������︷︷�����������������������︸
∈{0,1}

∈{−1, 0, 1}.

Now, if 𝛼 + 𝛽 ∈ Φ, we get

𝐿ℓ𝑅 (𝑥, 𝛼) + 𝐿ℓ𝑅 (𝑥, 𝛽) − 𝐿ℓ𝑅 (𝑥, 𝛼 + 𝛽)

= 〈𝜇, 𝛼〉 + 〈𝜇, 𝛽〉 − 〈𝜇, 𝛼 + 𝛽〉 + 𝜒𝑅 (𝛼) + 𝜒𝑅 (𝛽) − 𝜒𝑅 (𝛼 + 𝛽)︸��������������������������������︷︷��������������������������������︸
∈{0,1}

− (𝜒𝐿 (𝑤𝛼) + 𝜒𝐿 (𝑤𝛽) − 𝜒𝐿 (𝑤𝛼 + 𝑤𝛽))︸��������������������������������������������︷︷��������������������������������������������︸
∈{0,1}

∈{−1, 0, 1}. �

We are ready to state our main result for this subsection:
Proposition 4.25. Let 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′

∈ 𝑊; let 𝐿, 𝑅 ⊆ Δaf be spherical subsets and 𝑣 ∈ 𝑊 be
positive for 𝐿ℓ𝑅 (𝑥, ·). Moreover, fix subsets 𝐽1, . . . , 𝐽𝑚 ⊆ Δ such that 𝐽 := 𝐽1 ∩ · · · ∩ 𝐽𝑚 satisfies

∀𝛼 ∈ Φ𝐽 : 𝐿ℓ𝑅 (𝑥, 𝑣𝛼) ≥ 0.

We have 𝐿𝑥𝑅 ≤ 𝐿 (𝑥 ′)𝑅 if and only if, for each 𝑖 = 1, . . . , 𝑚, there exists some 𝑣′𝑖 ∈ 𝑊 with

𝑣−1𝜇 + 𝑅wt(𝑣′𝑖 ⇒ 𝑣) + 𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖) ≤ (𝑣′𝑖)
−1𝜇′ (mod Φ∨

𝐽𝑖
).

We remark that this recovers Theorem 4.2 in case 𝐿 = 𝑅 = ∅.
We now start the work towards proving Proposition 4.25.

Lemma 4.26. Let 𝐾 ⊆ Δaf be spherical, 𝛼 ∈ Φ𝐾 and 𝛽 ∈ Φ. Then

𝜒𝐾 (𝑠𝛼 (𝛽)) = 𝜒𝐾 (𝛽) − 〈𝛼∨, 𝛽〉𝜒𝐾 (𝛼).

Proof. Consider the affine roots 𝑎 = (𝛼,−𝜒𝐾 (𝛼)) ∈ (Φaf)𝐾 and 𝑏 = (𝛽,−𝜒𝐾 (𝛽)) ∈ Φaf .
If 𝛽 ∈ Φ𝐾 , then 𝑏 ∈ (Φaf)𝐾 such that 𝑟𝑎 (𝑏) ∈ (Φaf)𝐾 . Explicitly,

𝑟𝑎 (𝑏) =
(
𝑠𝛼 (𝛽),−𝜒𝐾 (𝛽) + 〈𝛼∨, 𝛽〉𝜒𝐾 (𝛼)

)
such that the claim follows from the definition of 𝜒𝐾 (𝑠𝛼 (𝛽)).
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Next, assume that 𝛽 ∉ Φ𝐾 such that 𝑏 ∈ (Φaf)
− \ (Φaf)𝐾 . Since 𝑟𝑎 stabilizes the set (Φaf)

− \ (Φaf)𝐾 ,
we get 𝑟𝑎 (𝑏) ∈ (Φaf)

− \ (Φaf)𝐾 . This proves (together with the above calculation) that

−𝜒𝐾 (𝛽) + 〈𝛼∨, 𝛽〉𝜒𝐾 (𝛼) ≤ −Φ+(𝑠𝛼 (𝛽)) = −𝜒𝐾 (𝑠𝛼 (𝛽)).

If the inequality above was strict, we would get

𝑏′ :=
(
𝑠𝛼 (𝛽),−𝜒𝐾 (𝛽) + 〈𝛼∨, 𝛽〉𝜒𝐾 (𝛼) + 1

)
∈ Φ−

af \ (Φaf)𝐾

with

𝑟𝑎 (𝑏
′) = (𝛽, 1 − 𝜒𝐾 (𝛽)) ∈ Φ+

af ,

contradiction. �

Lemma 4.27. Let 𝑥 ∈ 𝑊, 𝑥𝐿 ∈ 𝑊𝐿 and 𝑥𝑅 ∈ 𝑊𝑅 where 𝐿, 𝑅 ⊆ Δaf are spherical subsets. Denoting the
image of 𝑥𝑅 in W by cl(𝑥𝑅), we have the following identity for every 𝛼 ∈ Φ:

𝐿ℓ𝑅 (𝑥𝐿𝑥𝑥𝑅, 𝛼) =
𝐿ℓ𝑅 (𝑥, cl(𝑥𝑅) (𝛼)).

Proof. We start with two special cases:
In case 𝑥𝐿 = 𝑟𝑎 and 𝑥𝑅 = 1 for some (𝛽, 𝑘) := 𝑎 ∈ 𝐿, we obtain

𝐿ℓ𝑅 (𝑥𝐿𝑥𝑥𝑅, 𝛼) =
𝐿ℓ𝑅

(
𝑠𝛽𝑤𝜀𝜇+𝑘𝑤−1𝛽∨

, 𝛼
)

= 〈𝜇 + 𝑘𝑤−1𝛽∨, 𝛼〉 + 𝜒𝑅 (𝛼) − 𝜒𝐿 (𝑠𝛽𝑤𝛼)

= 〈𝜇, 𝛼〉 − 𝜒𝐿 (𝛽)〈𝛽
∨, 𝑤𝛼〉 + 𝜒𝑅 (𝛼) − 𝜒𝐿 (𝑠𝛽𝑤𝛼)

=
L4.26

〈𝜇, 𝛼〉 + 𝜒𝑅 (𝛼) − 𝜒𝐿 (𝑤𝛼) = 𝐿ℓ𝑅 (𝑥, 𝛼).

In case 𝑥𝐿 = 1 and 𝑥𝑅 = 𝑟𝑎 for some (𝛽, 𝑘) := 𝑎 ∈ 𝑅, we obtain

𝐿ℓ𝑅 (𝑥𝐿𝑥𝑥𝑅, 𝛼) =
𝐿ℓ𝑅

(
𝑤𝑠𝛽𝜀

𝑠𝛽 (𝜇)+𝑘𝛽∨

, 𝛼
)

= 〈𝑠𝛽 (𝜇) + 𝑘𝛽∨, 𝛼〉 + 𝜒𝑅 (𝛼) − 𝜒𝐿 (𝑤𝑠𝛽𝛼)

= 〈𝜇, 𝑠𝛽 (𝛼)〉 − 𝜒𝑅 (𝛽)〈𝛽
∨, 𝛼〉 + 𝜒𝑅 (𝛼) − 𝜒𝐿 (𝑤𝑠𝛽𝛼)

=
L4.26

〈𝜇, 𝑠𝛽 (𝛼)〉 + 𝜒𝑅 (𝑠𝛽𝛼) − 𝜒𝐿 (𝑤𝑠𝛽𝛼)

= 𝐿ℓ𝑅 (𝑥, 𝑠𝛽𝛼).

Now, in the general case, pick reduced decompositions for 𝑥𝐿 ∈ 𝑊𝐿 and 𝑥𝑅 ∈ 𝑊𝑅 and iterate the
previous arguments. �

Definition 4.28. By a valid tuple, we mean a seven tuple

(𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′

, 𝑣, 𝑣′, 𝐿, 𝑅, 𝐽)

consisting of

◦ elements 𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 ,

◦ elements 𝑣, 𝑣′ ∈ 𝑊 ,
◦ spherical subsets 𝐿, 𝑅 ⊆ Δaf and
◦ a subset 𝐽 ⊆ Δ ,
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satisfying the condition

𝑣−1𝜇 + 𝑅wt(𝑣′ ⇒ 𝑣) + 𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇′ (mod Φ∨
𝐽 ).

The tuple is called strict if v is positive for 𝐿ℓ𝑅 (𝑥, ·) and 𝑣′ is positive for 𝐿ℓ𝑅 (𝑥 ′, ·).

We have the following analogue of Lemma 4.3:

Lemma 4.29. Let (𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
, 𝑣, 𝑣′, 𝐿, 𝑅, 𝐽) be a valid tuple. If 𝑣′ is not positive for 𝐿ℓ𝑅 (𝑥 ′, ·)

and 𝑣′′ is an adjustment in the sense of [28, Definition 2.2], then (𝑥, 𝑥 ′, 𝑣, 𝑣′′, 𝐿, 𝑅, 𝐽) is also a valid
tuple.

Proof. This means that there is a root 𝛼 ∈ Φ+ such that 𝑣′′ = 𝑣′𝑠𝛼 and either

𝐿ℓ𝑅 (𝑥 ′, 𝑣′𝛼) < 0 or 𝐿ℓ𝑅 (𝑥 ′,−𝑣′𝛼) > 0.

We abbreviate this condition to ± 𝐿ℓ𝑅 (𝑥 ′,±𝑣′𝛼) < 0 and calculate

𝑣−1𝜇 + 𝑅wt(𝑣′′ ⇒ 𝑣) + 𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′′)

= 𝑣−1𝜇 + 𝑅wt(𝑣′𝑠𝛼 ⇒ 𝑣) + 𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑠𝛼)

≤
L3.28

𝑣−1𝜇 + 𝑅wt(𝑣′ ⇒ 𝑣) + 𝜒𝑅 (𝑣
′𝛼)𝛼∨ + 𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′) + 𝜒𝐿 (−𝑤

′𝑣′𝛼)𝛼∨

≤ (𝑣′)−1𝜇 + (𝜒𝑅 (𝑣
′𝛼) + 𝜒𝐿 (−𝑤

′𝑣′𝛼))𝛼∨

= (𝑣′′)−1𝜇 + (〈𝜇, 𝛼〉 + 𝜒𝑅 (𝑣
′𝛼) + 𝜒𝐿 (−𝑤

′𝑣′𝛼))𝛼∨ (mod Φ∨
𝐽 ).

In case 𝐿ℓ𝑅 (𝑥 ′, 𝑣′𝛼) < 0, we use the fact 𝜒𝐿 (−𝑤
′𝑣′𝛼) ≤ 1 − 𝜒𝐿 (𝑤

′𝑣′𝛼) (cf. Lemma 4.24) to show

〈𝜇, 𝛼〉 + 𝜒𝑅 (𝑣
′𝛼) + 𝜒𝐿 (−𝑤

′𝑣′𝛼)

≤ 〈𝜇, 𝛼〉 + 𝜒𝑅 (𝑣
′𝛼) + 1 − 𝜒𝐿 (𝑤

′𝑣′𝛼)

= 𝐿ℓ𝑅 (𝑥 ′, 𝛼) + 1 ≤ 0.

Similarly if 𝐿ℓ𝑅 (𝑥 ′,−𝑣′𝛼) > 0, we get

〈𝜇, 𝛼〉 + 𝜒𝑅 (𝑣
′𝛼) + 𝜒𝐿 (−𝑤

′𝑣′𝛼)

≤ 〈𝜇, 𝛼〉 + 1 − 𝜒𝑅 (−𝑣
′𝛼) + 𝜒𝐿 (−𝑤

′𝑣′𝛼)

= 1 − 𝐿ℓ𝑅 (𝑥 ′,−𝛼) ≤ 0.

In any case, we see that

〈𝜇, 𝛼〉 + 𝜒𝑅 (𝑣
′𝛼) + 𝜒𝐿 (−𝑤

′𝑣′𝛼) ≤ 0,

from where the desired claim is immediate. �

Lemma 4.30. Let (𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
, 𝑣, 𝑣′, 𝐿, 𝑅, 𝐽) be a (strict) valid tuple. Let moreover 𝑥𝐿 , 𝑥

′
𝐿 ∈

𝑊𝐿 and 𝑥𝑅, 𝑥
′
𝑅 ∈ 𝑊𝑅 be any elements. Then

(𝑥𝐿𝑥𝑥𝑅, 𝑥
′
𝐿𝑥

′𝑥 ′𝑅, cl(𝑥𝑅)𝑣, cl(𝑥 ′𝑅)𝑣
′, 𝐿, 𝑅, 𝐽)

is a (strict) valid tuple as well.
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Proof. Similar to the proof of Lemma 4.27, it suffices to show the claim in case three of the four
elements 𝑥𝐿 , 𝑥

′
𝐿 , 𝑥𝑅, 𝑥

′
𝑅 are trivial and the remaining one is a simple affine reflection.

We just explain the argument in case 𝑥𝐿 = 𝑟𝑎, 𝑥
′
𝐿 = 𝑥𝑅 = 𝑥 ′𝑅 = 1 for some 𝑎 ∈ 𝐿, as the remaining

arguments are very similar. Write 𝑎 = (𝛼, 𝑘) so that 𝜒𝐿 (𝛼) = −𝑘 . Then 𝑥𝐿𝑥 = 𝑠𝛼𝑤𝜀𝜇+𝑘𝑤−1 𝛼∨
. We

calculate

𝑣−1
(
𝜇 + 𝑘𝑤−1𝛼∨

)
+ 𝑅wt(𝑣′ ⇒ 𝑣) + 𝐿wt(𝑠𝛼𝑤𝑣 ⇒ 𝑤′𝑣′)

=
L3.28

𝑣−1𝜇 + 𝑘 (𝑤𝑣)−1𝛼∨ + 𝑅wt(𝑣′ ⇒ 𝑣) + 𝜒𝐿 (𝛼) (𝑤𝑣)−1𝛼∨ + 𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′)

= 𝑣−1𝜇 + 𝑅wt(𝑣′ ⇒ 𝑣) + 𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′).

It follows that (𝑥𝐿𝑥, 𝑥
′, 𝑣, 𝑣′, 𝐿, 𝑅, 𝐽) is a valid tuple. The strictness assertion follows from

Lemma 4.27. �

Using Lemma 4.30, it will suffice to show Proposition 4.25 only in the case 𝑥 ∈ 𝐿𝑊𝑅 and 𝑥 ′ ∈ −𝐿𝑊−𝑅.

Lemma 4.31. Let (𝑥 = 𝑤𝜀𝜇, 𝑥 ′ = 𝑤′𝜀𝜇′
, 𝑣, 𝑣′, 𝐿, 𝑅, 𝐽) be a strict valid tuple.

(a) If 𝑥 ∈ 𝐿𝑊𝑅 and 𝛼 ∈ Φ satisfies 𝐿ℓ𝑅 (𝑥, 𝛼) ≥ 0, then ℓ(𝑥, 𝛼) ≥ 0.
(b) If 𝑥 ∈ 𝐿𝑊𝑅 and 𝛼 ∈ Φ+

𝐿 satisfies (𝑤𝑣)−1𝛼 ∈ Φ−, then

(𝑥, 𝑥 ′, 𝑠𝑤−1 𝛼𝑣, 𝑣
′, 𝐿, 𝑅, 𝐽)

is a strict valid tuple as well.
(c) If 𝑥 ′ ∈ −𝐿𝑊−𝑅 and 𝛼 ∈ Φ+

𝑅 satisfies 𝑣−1𝛼 ∈ Φ−, then

(𝑥, 𝑥 ′, 𝑣, 𝑠𝛼𝑣
′, 𝐿, 𝑅, 𝐽)

is a strict valid tuple as well.

Proof. We write

𝐿ℓ𝑅 (𝑥, 𝛼) = 〈𝜇, 𝛼〉 + 𝜒𝑅 (𝛼) − 𝜒𝐿 (𝑤𝛼)

= 〈𝜇, 𝛼〉 +Φ+(𝛼) −Φ+
𝑅 (𝛼) −Φ+(𝑤𝛼) +Φ+

𝐿 (𝑤𝛼)

= ℓ(𝑥, 𝛼) −Φ+
𝑅 (𝛼) +Φ+

𝐿 (𝑤𝛼)

(a) If 𝑤𝛼 ∉ Φ+
𝐿 , then

ℓ(𝑥, 𝛼) = 𝐿ℓ𝑅 (𝑥, 𝛼) +Φ+
𝑅 (𝛼) ≥ 0.

If 𝑤𝛼 ∈ Φ+
𝐿 , then the condition 𝑥 ∈ 𝐿𝑊𝑅 already implies ℓ(𝑥, 𝛼) ≥ 0.

(b) The condition 𝛼 ∈ Φ+
𝐿 together with 𝑥 ∈ 𝐿𝑊𝑅 yields ℓ(𝑥, 𝑤−1𝛼) ≥ 0. We have

𝐿ℓ𝑅 (𝑥,−𝑤−1𝛼) = 𝐿ℓ𝑅 (𝑥, 𝑣(−(𝑤𝑣)−1𝛼)) ≥ 0

by the positivity assertion on v. By (a), we conclude ℓ(𝑥,−𝑤−1𝛼) ≥ 0, so altogether we get
ℓ(𝑥, 𝑤−1𝛼) = 0.

By the above computation, we get

𝐿ℓ𝑅 (𝑥, 𝑤−1𝛼) = −Φ+
𝑅 (𝑤

−1𝛼) +Φ+
𝐿 (𝛼) = 1 −Φ+

𝑅 (𝑤
−1𝛼).
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On the other hand, we have

𝐿ℓ𝑅 (𝑥, 𝑤−1𝛼) = 𝐿ℓ𝑅 (𝑥, 𝑣(𝑤𝑣)−1𝛼) ≤ 0

by the positivity assertion on v. Thus, 𝐿ℓ𝑅 (𝑥, 𝑤−1𝛼) = 0 and 𝑤−1𝛼 ∈ Φ+
𝑅.

Consider the elements 𝑎 = (𝛼,Φ+(−𝛼)) ∈ (Φaf)
+
𝐿 and 𝑏 = (𝑤−1𝛼,Φ+(−𝑤−1𝛼)) ∈ (Φaf)

+
𝑅. We

have

𝑥(𝑏) = (𝛼,Φ+(−𝑤−1𝛼) − 〈𝜇, 𝑤−1𝛼〉)

= (𝛼,Φ+(−𝛼) + ℓ(𝑥,−𝑤−1𝛼)〉) = (𝛼,Φ+(−𝛼)) = 𝑎.

We see that 𝑥 = 𝑟𝑎𝑥𝑟𝑏 . Now, the claim follows from Lemma 4.30.
(c) The proof is analogous to (b). �

Proof of Proposition 4.25. Let us fix 𝐿, 𝑅, 𝐽1, . . . , 𝐽𝑚, 𝐽 for the entire proof. To keep our notation
concise, we make the following convention: We call a triple (𝑥, 𝑥 ′, 𝑣) valid if, for each 𝑖 = 1, . . . , 𝑚,
there exists 𝑣′𝑖 ∈ 𝑊 such that (𝑥, 𝑥 ′, 𝑣, 𝑣′𝑖 , 𝐿, 𝑅, 𝐽𝑖) is a strict valid tuple.

First, assume that 𝐿𝑥𝑅 ≤ 𝐿𝑥 ′𝑅. We want to show that (𝑥, 𝑥 ′, 𝑣) is valid. Write 𝑥 = 𝑥𝐿 · 𝐿𝑥𝑅 · 𝑥𝑅 with
𝑥𝐿 ∈ 𝑊𝐿 , 𝑥𝑅 ∈ 𝑊𝑅. It suffices to show that

(
𝐿𝑥𝑅, 𝑥 ′, cl(𝑥𝑅)

−1𝑣
)

is valid by Lemma 4.30.
In other words, we may assume that 𝑥 ∈ 𝐿𝑊𝑅 and 𝑥 ≤ 𝑥 ′ for proving that (𝑥, 𝑥 ′, 𝑣) is valid. By

Lemma 4.15, we find 𝑣′ ∈ 𝑊 such that

𝑣−1𝜇 + wt(𝑣′ ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) ≤ (𝑣′)−1𝜇′.

Now, recall from Lemma 3.25 that

𝑅wt(𝑣′ ⇒ 𝑣) ≤ wt(𝑣′ ⇒ 𝑣),
𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′) ≤ wt(𝑤𝑣 ⇒ 𝑤′𝑣′).

We conclude that (𝑥, 𝑥 ′, 𝑣, 𝑣′, 𝐿, 𝑅, 𝐽𝑖) is valid for all 𝑖 = 1, . . . , 𝑚. Up to iteratively choosing adjustments
for 𝑣′, we may assume that the tuple is strict valid, so (𝑥, 𝑥 ′, 𝑣) is indeed valid.

For the converse direction, let us assume that (𝑥, 𝑥 ′, 𝑣) is valid. We have to show 𝐿𝑥𝑅 ≤ 𝐿 (𝑥 ′)𝑅.
Again, we can use Lemma 4.30 and Lemma 4.27 to reduce this to any other elements in 𝑊𝐿𝑥𝑊𝑅 resp.
𝑊𝐿𝑥

′𝑊𝑅.
Thus, we may and will assume that 𝑥 ∈ 𝐿𝑊𝑅 and 𝑥 ′ ∈ −𝐿𝑊−𝑅. We then have to show 𝑥 ≤ 𝑥 ′ using

the fact that (𝑥, 𝑥 ′, 𝑣) is valid for some 𝑣 ∈ 𝑊 .
Among all 𝑣 ∈ 𝑊 such that (𝑥, 𝑥 ′, 𝑣) is valid, choose one such that 𝐿ℓ(𝑤𝑣) is as small as possible. If

𝑤𝑣 ∉ 𝐿𝑊 , then we find some 𝛼 ∈ Φ+
𝐿 with (𝑤𝑣)−1 ∈ Φ−. By Lemma 4.31, also (𝑥, 𝑥 ′, 𝑠𝑤−1 𝛼𝑣) is valid

and by Lemma 3.23, 𝐿ℓ(𝑠𝛼𝑤𝑣) < 𝐿ℓ(𝑤𝑣). This is a contradiction to the minimality of 𝐿ℓ(𝑤𝑣).
We see that we always find some 𝑣 ∈ 𝑊 such that (𝑥, 𝑥 ′, 𝑣) is valid and 𝑤𝑣 ∈ 𝐿𝑊 .
We now prove that 𝑥 ≤ 𝑥 ′ using Theorem 4.2.
By Lemma 4.31 (a), it follows that 𝑣 ∈ 𝑊 is length positive for x and that ℓ(𝑥, 𝑣𝛼) ≥ 0 for all 𝛼 ∈ Φ𝐽 .

Since Φ𝐽 = −Φ𝐽 and ℓ(𝑥,−𝑣𝛼) = −ℓ(𝑥, 𝑣𝛼), this is only possible if ℓ(𝑥, 𝑣𝛼) = 0 for all 𝛼 ∈ Φ𝐽 . We
conclude that (𝑣, 𝐽1, . . . , 𝐽𝑚) is a Bruhat-deciding datum for x.

Now, for each 𝑖 = 1, . . . , 𝑚, by assumption, there exists some 𝑣𝑖 ∈ 𝑊 such that (𝑥, 𝑥 ′, 𝑣, 𝑣′𝑖 , 𝐿, 𝑅, 𝐽𝑖)

is a strict valid tuple. Minimizing 𝑅ℓ(𝑣′𝑖) as before, we may assume that 𝑣′𝑖 ∈
𝑅𝑊 by Lemma 4.31.

We see that (𝑥, 𝑥 ′, 𝑣, 𝑣′𝑖 , 𝐿, 𝑅, 𝐽𝑖) is a strict valid tuple with 𝑤𝑣 ∈ 𝐿𝑊 and 𝑣′𝑖 ∈
𝑅𝑊 . By definition of

the semiaffine weight function, we get

𝑅wt(𝑣′𝑖 ⇒ 𝑣) = wt(𝑣′𝑖 ⇒ 𝑣),
𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖) = wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖).

https://doi.org/10.1017/fms.2024.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.33


40 F. Schremmer

We conclude

𝑣−1𝜇 + wt(𝑣′𝑖 ⇒ 𝑣) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖)

= 𝑣−1𝜇 + 𝑅wt(𝑣′𝑖 ⇒ 𝑣) + 𝐿wt(𝑤𝑣 ⇒ 𝑤′𝑣′𝑖)

≤
valid

(𝑣′)−1𝜇′ (mod Φ∨
𝐽𝑖
).

This is exactly the inequality we had to check in order to apply Theorem 4.2. So we conclude 𝑥 ≤ 𝑥 ′,
finishing the proof. �

As an application, we present our most general criterion for the Bruhat order on affine Weyl groups.

Definition 4.32. Let 𝑥 ∈ 𝑊 . A Deodhar datum for x consists of the following:

◦ Spherical subsets 𝐿1, . . . , 𝐿ℓ , 𝑅1, . . . , 𝑅𝑟 ⊆ Δaf with ℓ, 𝑟 ≥ 1 such that 𝐿 := 𝐿1 ∩ · · · ∩ 𝐿ℓ and
𝑅 := 𝑅1 ∩ · · · ∩ 𝑅𝑟 satisfy 𝑥 ∈ 𝐿𝑊𝑅.

◦ For each 𝑖 ∈ {1, . . . , ℓ} and 𝑗 ∈ {1, . . . , 𝑟} an element 𝑣𝑖, 𝑗 ∈ 𝑊 that is positive for 𝐿𝑖ℓ𝑅 𝑗 (𝑥, ·).
◦ For each 𝑖 ∈ {1, . . . , ℓ} and 𝑗 ∈ {1, . . . , 𝑟} a collection of subsets

𝐽 (𝑖, 𝑗)1, . . . , 𝐽 (𝑖, 𝑗)𝑚(𝑖, 𝑗) ⊆ Δ

such that 𝑚(𝑖, 𝑗) ≥ 1 and 𝐽 (𝑖, 𝑗) := 𝐽 (𝑖, 𝑗)1 ∩ · · · ∩ 𝐽 (𝑖, 𝑗)𝑚(𝑖, 𝑗) satisfies

∀𝛼 ∈ Φ𝐽 (𝑖, 𝑗) : 𝐿𝑖ℓ𝑅 𝑗 (𝑥, 𝑣𝑖, 𝑗𝛼) ≥ 0.

Theorem 4.33. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and fix a Deodhar datum

𝐿1, . . . , 𝐿ℓ , 𝑅1, . . . , 𝑅𝑟 , (𝑣•,•), (𝐽 (•, •)•).

Let 𝑥 ′ = 𝑤′𝜀𝜇′
∈ 𝑊 . Then 𝑥 ≤ 𝑥 ′ if and only if for each 𝑖 ∈ {1, . . . , ℓ}, 𝑗 ∈ {1, . . . , 𝑟} and 𝑘 ∈

{1, . . . , 𝑚(𝑖, 𝑗)}, there exists some 𝑣′𝑖, 𝑗 ,𝑘 ∈ 𝑊 such that

𝑣−1
𝑖, 𝑗𝜇 + 𝑅 𝑗 wt(𝑣′𝑖, 𝑗 ,𝑘 ⇒ 𝑣𝑖, 𝑗 ) +

𝐿𝑖wt(𝑤𝑣𝑖, 𝑗 ⇒ 𝑤′𝑣′𝑖, 𝑗 ,𝑘 ) ≤ (𝑣′𝑖, 𝑗 ,𝑘 )
−1𝜇′ (mod Φ∨

𝐽 (𝑖, 𝑗)𝑘
).

Proof. In view of Proposition 4.25, the existence of the 𝑣′𝑖, 𝑗 ,𝑘 for fixed 𝑖, 𝑗 means precisely

𝐿𝑖𝑥𝑅 𝑗 ≤ 𝐿𝑖 (𝑥 ′)𝑅 𝑗 .

By Deodhar’s lemma, that is, Proposition 4.22, this is equivalent to 𝑥 = 𝐿𝑥𝑅 ≤ 𝑥 ′. �

Lemma 4.34. Let 𝑤1, 𝑤2 ∈ 𝑊 . Let moreover 𝑅1, . . . , 𝑅𝑘 ⊆ Δaf be spherical subsets with 𝑘 ≥ 1 and
𝑅 := 𝑅1 ∩ · · · ∩ 𝑅𝑘 . Then we have the following equality in ZΦ∨:

𝑅wt(𝑤1 ⇒ 𝑤2) = sup
𝑖=1,...,𝑘

𝑅𝑖wt(𝑤1 ⇒ 𝑤2).

Proof. Consider Proposition 4.25 for 𝜇 and 𝜇′ sufficiently regular, with 𝐿 = ∅ and (𝐽1, . . . , 𝐽𝑚) = (∅).
Then by Proposition 4.22,

𝑥𝑅 ≤ (𝑥 ′)𝑅 ⇐⇒ ∀𝑖 ∈ {1, . . . , 𝑘} : 𝑥𝑅𝑖 ≤ (𝑥 ′)𝑅𝑖 .

The claim follows from Proposition 4.25 with little effort. �

Together with Lemma 3.29, this result allows us to express the weight function of the quantum Bruhat
graph wt : 𝑊 ×𝑊 → ZΦ∨ as a supremum of semiaffine weight functions.
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As our final application of Proposition 4.25, we generalize Proposition 4.12 to the admissible subsets
considered in [25].
Proposition 4.35. Let 𝐾 ⊆ Δaf be spherical, 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and 𝜆 ∈ 𝑋∗ dominant. Then the following
are equivalent:

(i) 𝑥 ∈ 𝑊𝐾 Adm(𝜆)𝑊𝐾 .
(ii) For every 𝑣 ∈ 𝑊 , we have

𝑣−1𝜇 + 𝐾 wt(𝑤𝑣 ⇒ 𝑣) ≤ 𝜆.

(iii) There exists some 𝑣 ∈ 𝑊 that is positive for 𝐾 ℓ𝐾 (𝑥, ·) and satisfies

𝑣−1𝜇 + 𝐾 wt(𝑤𝑣 ⇒ 𝑣) ≤ 𝜆.

Proof. By definition, (i) means that there exists 𝑢 ∈ 𝑊 such that

𝐾 𝑥𝐾 ≤ 𝐾 (𝜀𝑢𝜆)𝐾 .

By Proposition 4.25, we get condition (ii) for every 𝑣 ∈ 𝑊 that is positive for 𝐾 ℓ𝐾 (𝑥, ·). Now, a simple
adjustment argument, similar to Lemma 4.29, shows that (ii) holds for every 𝑣 ∈ 𝑊 .

(ii) =⇒ (iii) is clear, as we always find a positive element for each root functional [28, Corollary 2.4].
(iii) =⇒ (i): It suffices to show that 𝐾 𝑥𝐾 ≤ 𝜀𝑣𝜆. This follows immediately from Proposition 4.25. �

5. Demazure product

The Demazure product ∗ is another operation on the extended affine Weyl group 𝑊 . In the context of
the Iwahori–Bruhat decomposition of a reductive group, the Demazure product describes the closure
of the product of two Iwahori double cosets, cf. [12, Section 2.2]. In a more Coxeter-theoretic style, we
can define the Demazure product of 𝑊 as follows:
Proposition 5.1 [9, Lemma 1]. Let 𝑥1, 𝑥2 ∈ 𝑊 . Then each of the following three sets contains a unique
maximum (with respect to the Bruhat order), and the maxima agree:

{𝑥1𝑥
′
2 | 𝑥 ′2 ≤ 𝑥2}, {𝑥 ′1𝑥2 | 𝑥 ′1 ≤ 𝑥1}, {𝑥 ′1𝑥

′
2 | 𝑥 ′1 ≤ 𝑥1, 𝑥

′
2 ≤ 𝑥2}.

The common maximum is denoted 𝑥1 ∗ 𝑥2. If we write 𝑥1 ∗ 𝑥2 = 𝑥1𝑥
′
2 = 𝑥 ′1𝑥2, then

ℓ(𝑥1 ∗ 𝑥2) = ℓ(𝑥1) + ℓ(𝑥 ′2) = ℓ(𝑥 ′1) + ℓ(𝑥2).

Demazure products have recently been studied in the context of affine Deligne–Lusztig varieties
[26, 11, 12]. While the Demazure product is a somewhat simple Coxeter-theoretic notion, it is connected
to the question of generic Newton points of elements in 𝑊 . He [11] shows how to compute generic
Newton points in terms of iterated Demazure products, a method that we will review in Section 5.3.
Conversely, He and Nie [12] use the Milićević’s formula for generic Newton points [20] to show new
properties of the Demazure product.

In this chapter, we prove a new description of Demazure products in 𝑊 , generalizing the aforemen-
tioned results of [12]. As applications, we obtain new results on the quantum Bruhat graph that shed
some light on our previous results on the Bruhat order. Moreover, we give a new description of generic
Newton points.

5.1. Computation of Demazure products

If one plays a bit with our Theorem 4.2 or [12, Proposition 3.3], one will soon get an idea of how
Demazure products should roughly look like. We capture the occurring formulas as follows.
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Construction 5.2. Let 𝑥1 = 𝑤1𝜀
𝜇1 , 𝑥2 = 𝑤2𝜀

𝜇2 ∈ 𝑊 . Let 𝑣1, 𝑣2 ∈ 𝑊 , and define

𝑥 ′1 : = 𝑤′
1𝜀

𝜇′
1 := (𝑤1𝑣1) (𝑤2𝑣2)

−1𝜀𝑤2𝑣2𝑣−1
1 𝜇1−𝑤2𝑣2wt(𝑣1⇒𝑤2𝑣2) ,

𝑥 ′2 : = 𝑤′
2𝜀

𝜇′
2 := 𝑣1𝑣

−1
2 𝜀𝜇2−𝑣2wt(𝑣1⇒𝑤2𝑣2) ,

𝑥∗ : = 𝑤∗𝜀
𝜇∗ := 𝑤1𝑣1𝑣

−1
2 𝜀𝑣2𝑣−1

1 𝜇1+𝜇2−𝑣2wt(𝑣1⇒𝑤2𝑣2) = 𝑥 ′1𝑥2 = 𝑥1𝑥
′
2.

In this situation, we want to compute the Demazure product 𝑥1∗𝑥2, knowing that 𝑥1∗𝑥2 can be written
as 𝑥1𝑥2 = 𝑥1𝑥2 for some 𝑥1 ≤ 𝑥1 and 𝑥2 ≤ 𝑥2. If 𝑥1 is in a shrunken Weyl chamber with LP(𝑥1) = 𝑣1, and
𝑥2 is shrunken with LP(𝑥2) = {𝑣2}, then 𝑥∗ = 𝑥1 ∗ 𝑥2 by [12, Proposition 3.3], so 𝑥1 = 𝑥 ′1 and 𝑥2 = 𝑥 ′2.

In the general case, our goal is to find conditions on 𝑣1, 𝑣2 ∈ 𝑊 to ensure that 𝑥∗ = 𝑥1 ∗ 𝑥2.
Before examining this situation further, it will be very convenient for our proofs to see that the

property

(𝑥1 ∗ 𝑥2)
−1 = 𝑥−1

2 ∗ 𝑥−1
1

is reflected by Construction 5.2.

Lemma 5.3. Use the notation from Construction 5.2. Let us write 𝑦1 := 𝑥−1
2 and 𝑦2 := 𝑥−1

1 . Define
𝑣′1 := 𝑤2𝑣2𝑤0 resp. 𝑣′2 := 𝑤1𝑣1𝑤0.

Construct 𝑦′1, 𝑦
′
2, 𝑦∗ associated with (𝑦1, 𝑦2, 𝑣

′
1, 𝑣

′
2) as in Construction 5.2. Then

𝑦′1 = (𝑥 ′2)
−1, 𝑦′2 = (𝑥 ′1)

−1, 𝑦∗ = 𝑥−1
∗ .

Moreover,

◦ 𝑣1 ∈ LP(𝑥1) iff 𝑣′2 ∈ LP(𝑦1).
◦ 𝑣2 ∈ LP(𝑥2) iff 𝑣′1 ∈ LP(𝑦2).
◦ 𝑑QB(𝑊 ) (𝑣1 ⇒ 𝑤2𝑣2) = 𝑑QB(𝑊 ) (𝑣

′
1 ⇒ 𝑤−1

1 𝑣′2) and wt(𝑣1 ⇒ 𝑤2𝑣2) = −𝑤0wt(𝑣′1 ⇒ 𝑤−1
1 𝑣2).

Proof. Write

𝑦1 = 𝑤−1
2 𝜀−𝑤2 𝜇2 , 𝑦2 = 𝑤−1

1 𝜀−𝑤1 𝜇1 ,

and compute

𝑦′2 = (𝑤2𝑣2𝑤0) (𝑤1𝑣1𝑤0)
−1𝜀−𝑤1 𝜇1−𝑤1𝑣1𝑤0wt(𝑤2𝑣2𝑤0⇒(𝑤1)

−1𝑤1𝑣1𝑤0)

= (𝑤2𝑣2) (𝑤1𝑣1)
−1𝜀−𝑤1 𝜇1+𝑤1𝑣1wt(𝑣1⇒𝑤2𝑣2) = (𝑥 ′1)

−1.

A similar computation, or a repetition of this argument for 𝑥1 = (𝑦2)
−1, 𝑥2 = (𝑦1)

−1, shows that
𝑦′1 = (𝑥 ′2)

−1. Then the conclusion 𝑦∗ = 𝑥−1
∗ is immediate.

For the ‘Moreover’ statements, recall that

LP(𝑦1) = LP(𝑥−1
2 ) =

[28,Lemma 2.12]]
𝑤2LP(𝑥2)𝑤0.

The same holds for 𝑦2 = 𝑥−1
1 . The final statement is due to the fact that 𝑣′1 = 𝑤2𝑣2𝑤0 and 𝑤−1

1 𝑣′2 = 𝑣1𝑤0
using the duality antiautomorphism of the quantum Bruhat graph, cf. Lemma 3.8. �

The first step towards proving 𝑥1 ∗ 𝑥2 = 𝑥∗ is the following estimate:

Lemma 5.4. Let 𝑥1, 𝑥2 ∈ 𝑊 and 𝑣2 ∈ LP(𝑥1 ∗ 𝑥2). There exists 𝑣1 ∈ LP(𝑥1) such that

ℓ(𝑥1 ∗ 𝑥2) ≤ ℓ(𝑥1) + ℓ(𝑥2) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2).
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Proof. Write 𝑥1 ∗ 𝑥2 = 𝑦𝑥2 for some element 𝑦 = 𝑤′𝜀𝜇′
≤ 𝑥1. Observe that ℓ(𝑦𝑥2) = ℓ(𝑦) + ℓ(𝑥2) so

that 𝑣2 must be length positive for 𝑥2 and 𝑤2𝑣2 must be length positive for y.
Since 𝑦 ≤ 𝑥1, using Lemma 4.15, we find a length positive element 𝑣1 for 𝑥1 such that

(𝑤2𝑣2)
−1𝜇′ + wt(𝑣1 ⇒ 𝑤2𝑣2) + wt(𝑤′𝑤2𝑣2 ⇒ 𝑤1𝑣1) ≤ (𝑣1)

−1𝜇1.

Pairing with 2𝜌 and using Lemma 3.5, we compute

〈2𝜌, (𝑤2𝑣2)
−1𝜇′〉 + ℓ(𝑣1) − ℓ(𝑤2𝑣2)

+ 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) + ℓ(𝑤′𝑤2𝑣2) − ℓ(𝑤1𝑣1) + 𝑑 (𝑤′𝑤2𝑣2 ⇒ 𝑤1𝑣1)

≤ 〈2𝜌, (𝑣1)
−1𝜇1〉.

Using the length positivity of 𝑤2𝑣2 for y and 𝑣1 for 𝑥1 (Lemma 2.3), we conclude

ℓ(𝑦) + 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) + 𝑑 (𝑤′𝑤2𝑣2 ⇒ 𝑤1𝑣1) ≤ ℓ(𝑥2).

Thus,

ℓ(𝑥1 ∗ 𝑥2) = ℓ(𝑦) + ℓ(𝑥2) ≤ ℓ(𝑥1) + ℓ(𝑥2) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) − 𝑑 (𝑤′𝑤2𝑣2 ⇒ 𝑤1𝑣1).

We obtain the desired conclusion. �

We now study the Construction 5.2 further.

Lemma 5.5. Use the notation from Construction 5.2, and assume that 𝑣1 ∈ LP(𝑥1). Then we always
have the estimate

ℓ(𝑥 ′1) ≥ ℓ(𝑥1) − 𝑑QB(𝑊 ) (𝑣1 ⇒ 𝑤2𝑣2).

The following are equivalent:

(i) Equality holds above:

ℓ(𝑥 ′1) = ℓ(𝑥1) − 𝑑QB(𝑊 ) (𝑣1 ⇒ 𝑤2𝑣2).

(ii) 𝑤2𝑣2 is length positive for 𝑥 ′1.
(iii) For any positive root 𝛼, we have

ℓ(𝑥1, 𝑣1𝛼) − 〈wt(𝑣1 ⇒ 𝑤2𝑣2), 𝛼〉 +Φ+(𝑤2𝑣2𝛼) −Φ+(𝑣1𝛼) ≥ 0.

In that case, 𝑥 ′1 ≤ 𝑥1 so that 𝑥∗ ≤ 𝑥1 ∗ 𝑥2.

Proof. Consider the calculation

ℓ(𝑥 ′1) ≥
L2.3

〈
(𝑤2𝑣2)

−1
(
𝑤2𝑣2𝑣

−1
1 𝜇1 − 𝑤2𝑣2wt(𝑣1 ⇒ 𝑤2𝑣2)

)
, 2𝜌

〉
− ℓ(𝑤2𝑣2) + ℓ(𝑤1𝑣1)

=
L3.5

〈𝑣−1
1 𝜇, 2𝜌〉 − ℓ(𝑣1) + ℓ(𝑤2𝑣2) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) − ℓ(𝑤2𝑣2) + ℓ(𝑤1𝑣1)

=
L2.3

ℓ(𝑥1) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2).

This shows the estimate and (i) ⇐⇒ (ii). In order to show (ii) ⇐⇒ (iii), we compute

ℓ(𝑥 ′1, 𝑤2𝑣2𝛼) = 〈𝑤2𝑣2𝛼, 𝑤2𝑣2𝑣
−1
1 𝜇1 − 𝑤2𝑣2wt(𝑣1 ⇒ 𝑤2𝑣2), 𝛼〉 +Φ+(𝑤2𝑣2𝛼) − wt(𝑤1𝑣1𝛼)

= ℓ(𝑥1, 𝑣1𝛼) −Φ+(𝑣1𝛼) − 〈wt(𝑣1 ⇒ 𝑤2𝑣2), 𝛼〉 +Φ+(𝑤2𝑣2𝛼).
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Finally, assume that (i)–(iii) are satisfied. We have to show 𝑥 ′1 ≤ 𝑥1. For this, we calculate

(𝑤2𝑣2)
−1
(
𝑤2𝑣2𝑣

−1
1 𝜇1 − 𝑤2𝑣2wt(𝑣1 ⇒ 𝑤2𝑣2)

)
+ wt(𝑣1 ⇒ 𝑤2𝑣2)

+ wt(𝑤1𝑣1 ⇒ 𝑤1𝑣1)

= 𝑣−1
1 𝜇1.

Since we assumed 𝑤2𝑣2 ∈ LP(𝑥 ′1), we conclude 𝑥 ′1 ≤ 𝑥1 by Theorem 4.2. Now, by definition of the
Demazure product, we get 𝑥∗ = 𝑥 ′1𝑥2 ≤ 𝑥1 ∗ 𝑥2. �

By the duality presented in Lemma 5.3, we obtain the following:

Lemma 5.6. Use the notation from Construction 5.2, and assume that 𝑣2 ∈ LP(𝑥2). Then we always
have the estimate

ℓ(𝑥 ′2) ≥ ℓ(𝑥2) − 𝑑QB(𝑊 ) (𝑣1 ⇒ 𝑤2𝑣2).

The following are equivalent:

(i) Equality holds above:

ℓ(𝑥 ′2) = ℓ(𝑥2) − 𝑑QB(𝑊 ) (𝑣1 ⇒ 𝑤2𝑣2).

(ii) 𝑣2 is length positive for 𝑥 ′2.
(iii) For any positive root 𝛼, we have

ℓ(𝑥2, 𝑣2𝛼) − 〈wt(𝑣1 ⇒ 𝑤2𝑣2), 𝛼〉 +Φ+(𝑤2𝑣2𝛼) −Φ+(𝑣1𝛼) ≥ 0.

In that case, 𝑥 ′2 ≤ 𝑥2 so that 𝑥∗ ≤ 𝑥1 ∗ 𝑥2.

Proof. Under Lemma 5.3, this is precisely Lemma 5.5. �

Lemma 5.7. Use the notation from Construction 5.2, and assume that 𝑣1 ∈ LP(𝑥1) and 𝑣2 ∈ LP(𝑥2).
We have the estimate

ℓ(𝑥∗) ≥ ℓ(𝑥1) + ℓ(𝑥2) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2).

Equality holds if and only if 𝑣2 ∈ LP(𝑥∗).

Proof. Using again Lemma 2.3 and Lemma 3.5, we calculate

ℓ(𝑥∗) ≥
〈
𝑣−1

2

(
𝑣2𝑣

−1
1 𝜇1 + 𝜇2 − 𝑣2wt(𝑣1 ⇒ 𝑤2𝑣2)

)
, 2𝜌

〉
− ℓ(𝑣2) + ℓ(𝑤1𝑣1)

= 〈𝑣−1
1 𝜇1, 2𝜌〉 + 〈𝑣−1

2 𝜇2, 2𝜌〉 − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) − ℓ(𝑣1) + ℓ(𝑤2𝑣2) + ℓ(𝑣2) + ℓ(𝑤1𝑣1)

= ℓ(𝑥1) + ℓ(𝑥2) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2).

Both claims follow from this calculation. �

Lemma 5.8. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and 𝑢 ∈ 𝑊 . Among all 𝑣 ∈ LP(𝑥), there is a unique one such that
𝑑 (𝑣 ⇒ 𝑢) becomes minimal. For this particular v, we have

∀𝛼 ∈ Φ+ : ℓ(𝑥, 𝑣𝛼) − 〈wt(𝑣 ⇒ 𝑢), 𝛼〉 +Φ+(𝑢𝛼) −Φ+(𝑣𝛼) ≥ 0.

Proof. Let 𝑥2 = 𝑡𝑢𝜆 with 𝜆 ∈ 𝑋∗ superregular and dominant. Let 𝑣 = 𝑣1 ∈ LP(𝑥) such that 𝑑 (𝑣 ⇒ 𝑢)
becomes minimal. Set 𝑣2 = 𝑢.

Consider Construction 5.2 for 𝑥1 = 𝑥 and 𝑥2 as above. Now, the condition (iii) of Lemma 5.6 is
satisfied by superregularity of 𝜆. We conclude that 𝑥 ′2 ≤ 𝑥2 so that 𝑥∗ ≤ 𝑥 ∗ 𝑥2.
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Combining Lemma 5.4 with Lemma 5.7 shows

ℓ(𝑥) + ℓ(𝑥2) − 𝑑 (𝑣 ⇒ 𝑢) ≥ ℓ(𝑥1 ∗ 𝑥2) ≥ ℓ(𝑥∗) ≥ ℓ(𝑥) + ℓ(𝑥2) − 𝑑 (𝑣 ⇒ 𝑢).

In particular, we get 𝑥1 ∗ 𝑥2 = 𝑥∗.
The above argument works whenever 𝑣 ∈ LP(𝑥) is chosen such that 𝑑 (𝑣 ⇒ 𝑢) becomes minimal.

Since the value of 𝑥1 ∗ 𝑥2 does not depend on the choice of such an element v nor does 𝑥∗ = 𝑥1 ∗ 𝑥2. In
particular, the classical part cl(𝑥∗) = 𝑤𝑣𝑢−1 does not depend on v, hence v is uniquely determined.

The formula 𝑥∗ = 𝑥1 ∗ 𝑥2 = 𝑥 ′1𝑥2 implies that ℓ(𝑥∗) = ℓ(𝑥 ′1) + ℓ(𝑥2). Using the previously computed
length of 𝑥∗, we conclude ℓ(𝑥 ′1) = ℓ(𝑥1) − 𝑑 (𝑣 ⇒ 𝑢). Now, the estimate follows from Lemma 5.5. �

Considering Lemma 5.8 for the inverse 𝑥−1, we obtain the following:

Lemma 5.9. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and 𝑢 ∈ 𝑊 . Among all 𝑣 ∈ LP(𝑥), there is a unique one such that
𝑑 (𝑢 ⇒ 𝑤𝑣) becomes minimal. For this particular v, we have

∀𝛼 ∈ Φ+ : ℓ(𝑥, 𝑣𝛼) − 〈wt(𝑢 ⇒ 𝑤𝑣), 𝛼〉 −Φ+(𝑢𝛼) +Φ+(𝑤𝑣𝛼) ≥ 0.

Definition 5.10. Let 𝑥 ∈ 𝑊 and 𝑢 ∈ 𝑊 . The uniquely determined 𝑣 ∈ LP(𝑥) such that 𝑑 (𝑣 ⇒ 𝑢) is
minimal will be denoted by 𝑣 = 𝜌∨𝑥 (𝑢). The uniquely determined 𝑣 ∈ LP(𝑥) such that 𝑑 (𝑢 ⇒ 𝑤𝑣) is
minimal will be denoted by 𝑣 = 𝜌𝑥 (𝑢) = 𝑤−1𝜌∨

𝑥−1 (𝑢𝑤0)𝑤0.

The functions 𝜌𝑥 and 𝜌∨𝑥 will be studied in Section 5.2. For now, we state our announced description
of Demazure products in 𝑊 .

Theorem 5.11. Let 𝑥1 = 𝑤1𝜀
𝜇1 , 𝑥2 = 𝑤2𝜀

𝜇2 ∈ 𝑊 . Among all pairs (𝑣1, 𝑣2) ∈ LP(𝑥1) × LP(𝑥2), pick
one such that the distance 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) becomes minimal.

Construct 𝑥∗ as in Construction 5.2. Then

𝑥1 ∗ 𝑥2 = 𝑥∗ = 𝑤1𝑣1𝜀
𝑣−1

1 𝜇1+𝑣−1
2 𝜇2−wt(𝑣1⇒𝑤2𝑣2)𝑣−1

2 ,

ℓ(𝑥1 ∗ 𝑥2) = ℓ(𝑥1) + ℓ(𝑥2) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2),

𝑣2 ∈ LP(𝑥1 ∗ 𝑥2).

Proof. We have 𝑥∗ ≤ 𝑥1 ∗𝑥2 by Lemmas 5.8 and 5.5. By Lemma 5.4, we find (𝑣′1, 𝑣
′
2) ∈ LP(𝑥1)×LP(𝑥2)

such that

ℓ(𝑥1) + ℓ(𝑥2) − 𝑑 (𝑣′1 ⇒ 𝑤2𝑣
′
2) ≥ ℓ(𝑥1 ∗ 𝑥2) ≥ ℓ(𝑥∗) ≥ ℓ(𝑥1) + ℓ(𝑥2) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2).

By choice of (𝑣1, 𝑣2), the result follows. �

We note the following consequences of Theorem 5.11.

Proposition 5.12. Let 𝑥1 = 𝑤1𝜀
𝜇1 , 𝑥2 = 𝑤2𝜀

𝜇2 ∈ 𝑊 . Write

𝑀 = 𝑀 (𝑥1, 𝑥2) := {(𝑣1, 𝑣2) ∈ LP(𝑥1) × LP(𝑥2) |

∀(𝑣′1, 𝑣
′
2) ∈ LP(𝑥1) × LP(𝑥2) : 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) ≤ 𝑑 (𝑣′1 ⇒ 𝑤2𝑣

′
2)}

for the set of all pairs (𝑣1, 𝑣2) such that the theorem’s condition is satisfied.

(a) The following two functions on M are both constant:

𝜑1 : 𝑀 → 𝑊, (𝑣1, 𝑣2) ↦→ 𝑣1𝑣
−1
2 ,

𝜑2 : 𝑀 → ZΦ∨, (𝑣1, 𝑣2) ↦→ 𝑣2wt(𝑣1 ⇒ 𝑤2𝑣2).
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(b) The following is a well-defined bijective map:

𝑀 → LP(𝑥1 ∗ 𝑥2), (𝑣1, 𝑣2) ↦→ 𝑣2.

Proof.

(a) From the Theorem, we get that the function

𝑀 → 𝑊, (𝑣1, 𝑣2) ↦→𝑤1𝑣1𝑣
−1
2 𝜀𝑣2𝑣−1

1 𝜇1+𝜇2−𝑣2wt(𝑣1⇒𝑤2𝑣2)

= 𝑤1𝜑1(𝑣1, 𝑣2)𝜀
𝜑1 (𝑣1 ,𝑣2)

−1 𝜇1+𝜇2−𝜑2 (𝑣1 ,𝑣2)

is constant with image {𝑥1 ∗ 𝑥2}. This proves that 𝜑1 and 𝜑2 are constant.
(b) Injectivity follows from (a). Well-definedness follows from the theorem. For surjectivity, let 𝑣2 ∈

LP(𝑥1 ∗ 𝑥2). Then certainly 𝑣2 ∈ LP(𝑥2). By Lemma 5.4, we find 𝑣1 ∈ 𝑊 such that ℓ(𝑥1 ∗ 𝑥2) ≤

ℓ(𝑥1) + ℓ(𝑥2) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2). By the theorem, we find (𝑣′1, 𝑣
′
2) ∈ 𝑀 with ℓ(𝑥1 ∗ 𝑥2) = ℓ(𝑥1) +

ℓ(𝑥2) − 𝑑 (𝑣′1 ⇒ 𝑤2𝑣
′
2) such that 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) ≤ 𝑑 (𝑣′1 ⇒ 𝑤2𝑣

′
2). It follows that (𝑣1, 𝑣2) ∈ 𝑀 ,

finishing the proof of surjectivity. �

Remark 5.13. In case ℓ(𝑥1𝑥2) = ℓ(𝑥1) + ℓ(𝑥2), we get 𝑥1𝑥2 = 𝑥1 ∗ 𝑥2. In this case, we recover [28,
Lemma 2.13].

5.2. Generic action

Studying the Demazure product where one of the factors is superregular induces actions of (𝑊, ∗) on
W, that we denoted by 𝜌𝑥 resp. 𝜌∨𝑥 in Definition 5.10. In this section, we study these actions and the
consequences for the quantum Bruhat graph.

Lemma 5.14. Let 𝑥1 = 𝑤1𝜀
𝜇1 , 𝑥2 = 𝑤2𝜀

𝜇2 ∈ 𝑊 . Then

𝜌𝑥1∗𝑥2 = 𝜌𝑥2 ◦ 𝜌𝑥1 .

Proof. Note that if 𝑧 ∈ 𝑊 is in a shrunken Weyl chamber with LP(𝑧) = {𝑢} and 𝑥 ∈ 𝑊 , then by
Proposition 5.12,

LP(𝑧 ∗ 𝑥) = {𝜌𝑥 (𝑢)}.

Hence, we have

{𝜌𝑥2 (𝜌𝑥1 (𝑢))} = LP((𝑧 ∗ 𝑥1) ∗ 𝑥2) = LP(𝑧 ∗ (𝑥1 ∗ 𝑥2)) = {𝜌𝑥1∗𝑥2 (𝑢)}.

This shows the desired claim. �

Remark 5.15.

(a) There is a dual, albeit more complicated statement for the dual generic action 𝜌∨.
(b) If 𝑥 = 𝜔𝑟𝑎1 · · · 𝑟𝑎𝑛 is a reduced decomposition with simple affine roots 𝑎1, . . . , 𝑎𝑛 ∈ Δaf and 𝜔 ∈ Ω

of length zero, then

𝜌𝑥 = 𝜌𝜔∗𝑟𝑎1∗···∗𝑟𝑎𝑛
= 𝜌𝑟𝑎𝑛 ◦ · · · ◦ 𝜌𝑟𝑎1

◦ 𝜌𝜔 .

The map 𝜌𝜔 is simply given by 𝜌𝜔 (𝑣) = cl(𝜔)𝑣, as LP(𝜔) = 𝑊 . We now describe the 𝜌𝑟𝑎𝑖
as

follows:
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For a simple affine root (𝛼, 𝑘) ∈ Δaf , we have

ℓ(𝑟 (𝛼,𝑘) , 𝛽) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝛽 = 𝛼,

−1, 𝛽 = −𝛼,

0, 𝛽 ≠ ±𝛼.

Thus,

LP(𝑟 (𝛼,𝑘) ) = {𝑣 ∈ 𝑊 | 𝑣−1𝛼 ∈ Φ+}.

Let 𝑣 ∈ 𝑊 . If 𝑣−1𝛼 ∈ Φ−, then 𝑠𝛼𝑣 ∈ LP(𝑟 (𝛼,𝑘) ) with 𝑑 (𝑣 ⇒ 𝑠𝛼 (𝑠𝛼𝑣)) = 0. Hence, 𝜌𝑟(𝛼,𝑘) (𝑣) =
𝑠𝛼𝑣.

If 𝑣−1𝛼 ∈ Φ+, then 𝑣 ∈ LP(𝑟 (𝛼,𝑘) ) with 𝑑 (𝑣 ⇒ 𝑠𝛼𝑣) = 1 by Lemma 3.7. Since there exists no
𝑢 ∈ LP(𝑟 (𝛼,𝑘) ) with 𝑑 (𝑣 ⇒ 𝑠𝛼𝑢) = 0, a distance of 1 is already minimal. We see that 𝜌𝑟(𝛼,𝑘) (𝑣) = 𝑣.
Summarizing:

𝜌𝑟(𝛼,𝑘) (𝑣) =

{
𝑣, 𝑣−1𝛼 ∈ Φ+,

𝑠𝛼𝑣, 𝑣−1𝛼 ∈ Φ−.

This gives an alternative method to compute 𝜌𝑥 . One easily obtains a dual method to compute 𝜌∨𝑥
in a similar fashion.

Lemma 5.16. Let 𝑥 ∈ 𝑊 and 𝑣, 𝑣′ ∈ LP(𝑥) be two length positive elements. There exists a shortest path
p from v to 𝑣′ in the quantum Bruhat graph such that each vertex in p lies in LP(𝑥).

Proof. Let us first study the case 𝑣′ = 1.
We do induction on ℓ(𝑣). If ℓ(𝑣) = 0, the statement is clear.
Otherwise, there exists a quantum edge 𝑣 → 𝑣𝑠𝛼 for some quantum root 𝛼 ∈ Φ+ such that

𝑑 (𝑣 ⇒ 𝑣′) = 𝑑 (𝑣𝑠𝛼 ⇒ 𝑣′) + 1 (Lemma 3.13). In this case, it suffices to show that 𝑣𝑠𝛼 ∈ LP(𝑥).
The quantum edge condition means that ℓ(𝑣𝑠𝛼) = ℓ(𝑣) − ℓ(𝑠𝛼). In other words, every positive root

𝛽 ∈ Φ+ with 𝑠𝛼 (𝛽) ∈ Φ− satisfies 𝑣(𝛽) ∈ Φ−.
Let 𝛽 ∈ Φ+, we want to show that ℓ(𝑥, 𝑣𝑠𝛼 (𝛽)) ≥ 0. This follows from length positivity of v if

𝑠𝛼 (𝛽) ∈ Φ+. So let us assume that 𝑠𝛼 (𝛽) ∈ Φ−. Then 𝑣𝑠𝛼 (𝛽) ∈ Φ+, applying the above observation to
−𝑠𝛼 (𝛽). Hence, ℓ(𝑥, 𝑣𝑠𝛼 (𝛽)) ≥ 0, as 1 ∈ LP(𝑥). This finishes the induction, so the claim is established
whenever 𝑣′ = 1.

For the general case, we do induction on ℓ(𝑣′). If 𝑣′ = 1, we have proved the claim, so let us assume
that ℓ(𝑣′) > 0. Then we find a simple root 𝛼 ∈ Δ with 𝑠𝛼𝑣

′ < 𝑣′. In particular, (𝑣′)−1𝛼 ∈ Φ− so that
ℓ(𝑥, 𝛼) ≤ 0. Consider the element 𝑥 ′ := 𝑥𝑠𝛼 � 𝑥. We observe that for any 𝑢 ∈ 𝑊 and 𝛽 ∈ Φ,

ℓ(𝑥 ′, 𝑠𝛼𝑢𝛽) = ℓ(𝑥, 𝑢𝛽) + ℓ(𝑠𝛼,−𝑢𝛽) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ℓ(𝑥, 𝑢𝛽), 𝑢𝛽 ≠ ±𝛼,

−ℓ(𝑥, 𝛼) + 1 > 0, 𝑢𝛽 = −𝛼,

ℓ(𝑥, 𝛼) − 1 < 0, 𝑢𝛽 = 𝛼.

It follows that

LP(𝑥 ′) = {𝑠𝛼𝑢 | 𝑢 ∈ LP(𝑥) and 𝑢−1𝛼 ∈ Φ−}.

In particular, 𝑠𝛼𝑣
′ ∈ LP(𝑥 ′). Now, suppose that 𝑣−1𝛼 ∈ Φ−. Then also 𝑠𝛼𝑣 ∈ LP(𝑥 ′). We may apply

the inductive assumption to get a path 𝑝′ from 𝑠𝛼𝑣 to 𝑠𝛼𝑣
′ in LP(𝑥 ′). Multiplying each vertex by 𝑠𝛼 on

the left, we obtain the desired path p in LP(𝑥).
Finally, assume that 𝑣−1𝛼 ∈ Φ+. Then 𝑠𝛼𝑣 ∈ LP(𝑥) by Corollary 4.7.
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By Lemma 3.7, 𝑣 → 𝑠𝛼𝑣 is an edge in QB(𝑊) and

𝑑QB(𝑊 ) (𝑣 ⇒ 𝑣′) = 𝑑QB(𝑊 ) (𝑣 ⇒ 𝑠𝛼𝑣
′) = 𝑑QB(𝑊 ) (𝑠𝛼𝑣 ⇒ 𝑣′) + 1.

We get a path from 𝑠𝛼𝑣 to 𝑣′ in LP(𝑥) by repeating the above argument, then concatenate it with
𝑣 → 𝑠𝛼𝑣.

This finishes the induction and the proof. �

Corollary 5.17. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and 𝑣, 𝑣′ ∈ LP(𝑥). Then

𝑣−1𝜇 − (𝑣′)−1𝜇 − wt(𝑣 ⇒ 𝑣′) + wt(𝑤𝑣 ⇒ 𝑤𝑣′) = 0.

In particular, 𝑑 (𝑣 ⇒ 𝑣′) = 𝑑 (𝑤𝑣 ⇒ 𝑤𝑣′).

Proof. Let

𝑝 : 𝑣 = 𝑣1
𝛼1
−−→ 𝑣2

𝛼2
−−→ · · ·

𝛼𝑛−1
−−−−→ 𝑣𝑛 = 𝑣′

be a path in LP(𝑥) of weight wt(𝑣 ⇒ 𝑣′). Now, for 𝑖 = 1, . . . , 𝑛 − 1, observe that both 𝑣𝑖 and 𝑣𝑖𝑠𝛼𝑖 are
in LP(𝑥). Thus, ℓ(𝑥, 𝑣𝑖𝛼𝑖) = 0. We conclude that

(𝑣𝑖)
−1𝜇 − (𝑣𝑖+1)

−1𝜇 − wt(𝑣𝑖 ⇒ 𝑣𝑖+1) + wt(𝑤𝑣𝑖 ⇒ 𝑤𝑣𝑖+1)

= 〈𝑣𝑖𝛼𝑖 , 𝜇〉𝛼
∨
𝑖 −Φ+(−𝑣𝑖𝛼𝑖)𝛼

∨
𝑖 + wt(𝑤𝑣𝑖 ⇒ 𝑤𝑣𝑖𝑠𝛼𝑖 )

≤ 〈𝑣𝑖𝛼𝑖 , 𝜇〉𝛼
∨
𝑖 −Φ+(−𝑣𝑖𝛼𝑖)𝛼

∨
𝑖 +Φ+(𝑤𝑣𝑖𝛼𝑖)𝛼

∨
𝑖

= ℓ(𝑥, 𝑣𝑖𝛼𝑖)𝛼
∨
𝑖 = 0.

Summing these estimates for 𝑖 = 1, . . . , 𝑛 − 1, we conclude

𝑣−1𝜇 − (𝑣′)−1𝜇 − wt(𝑣 ⇒ 𝑣′) + wt(𝑤𝑣 ⇒ 𝑤′𝑣′) ≤ 0.

Considering the same argument for 𝑥−1, 𝑤𝑣𝑤0, 𝑤𝑣′𝑤0, we get the other inequality.
The ‘in particular’ part follows from inspecting the argument given. Alternatively, pair the identity

just proved with 2𝜌, then apply Lemma 3.5 and Lemma 2.3. �

Remark 5.18. The corollary can be shown directly by evaluating the Demazure product

𝜀𝑤𝑣′2𝜌 ∗ 𝑥 ∗ 𝜀𝑣2𝜌

in two different ways, using the associativity property of Demazure products.

Proposition 5.19. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 , 𝑣 ∈ LP(𝑥) and 𝑢 ∈ 𝑊 . Then

𝑑 (𝑢 ⇒ 𝑤𝑣) = 𝑑 (𝑢 ⇒ 𝑤𝜌𝑥 (𝑢)) + 𝑑 (𝑤𝜌𝑥 (𝑢) ⇒ 𝑤𝑣).

Proof. Let 𝜆 be superregular and 𝑦 := 𝜀𝑢𝜆. Define the element

𝑧 := 𝑦 ∗ 𝑥 = 𝑢𝜌𝑥 (𝑢)
−1𝜀𝜌𝑥 (𝑢)𝜆+𝜇−𝜌𝑥 (𝑢)wt(𝑢⇒𝑤𝜌𝑥 (𝑢)) .

Then z is superregular with LP(𝑧) = {𝜌𝑥 (𝑢)}. Consider the element

�̃�′ := 𝑢(𝑤𝑣)−1𝜀𝑤𝑣𝜆−𝑤𝑣wt(𝑢⇒𝑤𝑣) .

This is superregular with LP( �̃�′) = {𝑤𝑣}. Note that Theorem 4.2 implies �̃�′ ≤ 𝑦, as

(𝑤𝑣)−1(𝑤𝑣𝜆 − 𝑤𝑣wt(𝑢 ⇒ 𝑤𝑣)) + wt(𝑢 ⇒ 𝑤𝑣) + wt(𝑢 ⇒ 𝑢) = 𝜆.
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Thus, 𝑧 ≤ 𝑧, where

𝑧 = �̃�𝑥 = 𝑢𝑣−1𝜀𝑣𝜆+𝜇−𝑣wt(𝑢⇒𝑤𝑣) .

Note that 𝑧 is superregular with LP(𝑧) = {𝑣}. In light of Theorem 4.2, the inequality 𝑧 ≤ 𝑧 means

𝑣−1(𝑣𝜆 + 𝜇 − 𝑣wt(𝑢 ⇒ 𝑤𝑣))+wt(𝜌𝑥 (𝑢) ⇒ 𝑣) + wt(𝑢 ⇒ 𝑢)

≤ 𝜌𝑥 (𝑢)
−1(𝜌𝑥 (𝑢)𝜆 + 𝜇 − 𝜌𝑥 (𝑢)wt(𝑢 ⇒ 𝑤𝜌𝑥 (𝑢))).

Rewriting this, we get

𝑣−1𝜇 − wt(𝑢 ⇒ 𝑤𝑣) + wt(𝜌𝑥 (𝑢) ⇒ 𝑣) ≤ 𝜌𝑥 (𝑢)
−1𝜇 − wt(𝑢 ⇒ 𝑤𝜌𝑥 (𝑢)).

Corollary 5.17 yields the equation

𝑣−1𝜇 − 𝜌𝑥 (𝑢)
−1𝜇 + wt(𝜌𝑥 (𝑢) ⇒ 𝑣) = wt(𝑤𝜌𝑥 (𝑢) ⇒ 𝑤𝑣).

We conclude

wt(𝑢 ⇒ 𝑤𝑣) ≥ wt(𝑢 ⇒ 𝑤𝜌𝑥 (𝑢)) + wt(𝑤𝜌𝑥 (𝑢) ⇒ 𝑤𝑣).

This implies the desired claim. �

By the duality from Lemma 5.3, we obtain the following.

Corollary 5.20. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 , 𝑣 ∈ LP(𝑥) and 𝑢 ∈ 𝑊 . Then

𝑑 (𝑣 ⇒ 𝑢) = 𝑑 (𝑣 ⇒ 𝜌∨𝑥 (𝑢)) + 𝑑 (𝜌∨𝑥 (𝑢) ⇒ 𝑢).

Remark 5.21. In the language of [4, Section 6], this means that the set 𝑤LP(𝑥) contains a unique
minimal element with respect to the tilted Bruhat order �𝑢 . Since 𝑤LP(𝑥) = LP(𝑥−1)𝑤0, it follows that
the set LP(𝑥) contains a unique maximal element with respect to �𝑢 . If 𝑥 = 𝜀𝜇 is a pure translation
element, this recovers [17, Theorem 7.1].

The converse statements are generally false, that is, LP(𝑥) will in general not contain tilted Bruhat
minima, and 𝑤LP(𝑥) will not contain maxima. For a concrete example, choose x to be a simple affine
reflection of type 𝐴2.

The set LP(𝑥) satisfies a number of interesting structural properties with respect to the quantum
Bruhat graph, namely containing shortest paths for any pair of elements (Lemma 5.16) and the existence
of tilted Bruhat maxima. One may ask the question which subsets of W occur as the set LP(𝑥) for some
𝑥 ∈ 𝑊 .

Corollary 5.22. Let 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 and 𝑢1, 𝑢2 ∈ 𝑊 . Then the function

𝜑 : 𝑊 → 𝑋∗, 𝑣 ↦→ 𝑣−1𝜇 − wt(𝑢1 ⇒ 𝑤𝑣) − wt(𝑣 ⇒ 𝑢2)

has a global maximum at 𝜌𝑥 (𝑢1), and another global maximum at 𝜌∨𝑥 (𝑢2).

Proof. If 𝑣 ∈ 𝑊 is not length positive for x, and 𝑣𝑠𝛼 is an adjustment, it is easy to see that 𝜑(𝑣) ≤ 𝜑(𝑣𝑠𝛼).
So we may focus on 𝜑|LP(𝑥) .
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Let 𝑣 ∈ LP(𝑥) and 𝑣′ = 𝜌𝑥 (𝑢1) so that

𝜑(𝑣) = 𝑣−1𝜇 − wt(𝑢1 ⇒ 𝑤𝑣) − wt(𝑣 ⇒ 𝑢2)

= 𝑣−1𝜇 − wt(𝑢1 ⇒ 𝑤𝑣′) − wt(𝑤𝑣′ ⇒ 𝑤𝑣) − wt(𝑣 ⇒ 𝑢2)

=
C5.17

(𝑣′)−1𝜇 − wt(𝑣′ ⇒ 𝑣) − wt(𝑢1 ⇒ 𝑤𝑣′) − wt(𝑣 ⇒ 𝑢2)

≤ (𝑣′)−1𝜇 − wt(𝑢1 ⇒ 𝑤𝑣′) − wt(𝑣′ ⇒ 𝑢2) = 𝜑(𝑣′).

This shows the first maximality claim. The second one follows from the duality of Lemma 5.3. �

Remark 5.23. Let 𝑥1 = 𝑤1𝜀
𝜇1 , 𝑥2 = 𝑤2𝜀

𝜇2 ∈ 𝑊 and 𝑣1 ∈ LP(𝑥1). Theorem 4.2 states that 𝑥1 ≤ 𝑥2 in
the Bruhat order if and only if there is some 𝑣2 ∈ 𝑊 with

𝑣−1
1 𝜇1 + wt(𝑣2 ⇒ 𝑣1) + wt(𝑤1𝑣1 ⇒ 𝑤2𝑣2) ≤ 𝑣−1

2 𝜇2.

By the above corollary, it is equivalent to require this inequality for 𝑣2 = 𝜌𝑥2 (𝑤1𝑣1). One can alternatively
require it for 𝑣2 = 𝜌∨𝑥2 (𝑣1).

Lemma 5.24. Let 𝑥1 = 𝑤1𝜀
𝜇1 , 𝑥2 = 𝑤2𝜀

𝜇2 ∈ 𝑊 and 𝑣1 ∈ LP(𝑥1), 𝑣2 ∈ LP(𝑥2). The following are
equivalent:

(i) The distance 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) is minimal for all pairs in LP(𝑥1) ×LP(𝑥2), that is, (𝑣1, 𝑣2) ∈

𝑀 (𝑥1, 𝑥2).
(ii) 𝑣1 = 𝜌∨𝑥1 (𝑤2𝑣2) and 𝑣2 = 𝜌𝑥2 (𝑣1).

Proof. (i) ⇒ (ii): Certainly, 𝑣1 minimizes the function 𝑑 (· ⇒ 𝑤2𝑣2) on LP(𝑥1), showing the first claim.
The second claim is analogous.

(ii) ⇒ (i): Consider Construction 5.2. By Lemmas 5.5 and 5.8, we conclude that 𝑤2𝑣2 must be length
positive for 𝑥 ′1. It follows that 𝑥∗ ≤ 𝑥1 ∗ 𝑥2 and

ℓ(𝑥∗) = ℓ(𝑥 ′1) + ℓ(𝑥2) = ℓ(𝑥1) + ℓ(𝑥2) − 𝑑 (𝑣1 ⇒ 𝑤2𝑣2).

By Lemma 5.7, 𝑣2 is length positive for 𝑥∗. Write 𝑥1 ∗ 𝑥2 as �̃�𝜀 �̃�. Using Lemma 4.15 with Lemma 4.3,
the condition 𝑥∗ ≤ 𝑥1 ∗ 𝑥2 yields some 𝑣′2 ∈ LP(𝑥1 ∗ 𝑥2) with

𝑣−1
1 𝜇1 + 𝑣−1

2 𝜇2 − wt(𝑣1 ⇒ 𝑤2𝑣2) + wt(𝑣′2 ⇒ 𝑣2) + wt(𝑤1𝑣1 ⇒ �̃�𝑣′2) ≤ (𝑣′2)
−1 �̃�.

By Proposition 5.12, we find 𝑣′1 such that (𝑣′1, 𝑣
′
2) ∈ 𝑀 (𝑥1, 𝑥2). By Theorem 5.11, we can express 𝑥1 ∗𝑥2

in terms of (𝑣′1, 𝑣
′
2). Then the above inequality becomes

𝑣−1
1 𝜇1 + 𝑣−1

2 𝜇2 − wt(𝑣1 ⇒ 𝑤2𝑣2) + wt(𝑣′2 ⇒ 𝑣2) + wt(𝑤1𝑣1 ⇒ 𝑤1𝑣
′
1)

≤ (𝑣′1)
−1𝜇1 + (𝑣′2)

−1𝜇2 − wt(𝑣′1 ⇒ 𝑤2𝑣
′
2).

Since 𝑣1, 𝑣
′
1 ∈ LP(𝑥1) and 𝑣2, 𝑣

′
2 ∈ LP(𝑥2), we can apply Corollary 5.17 twice to obtain

wt(𝑣1 ⇒ 𝑣′1) + wt(𝑤2𝑣
′
2 ⇒ 𝑤2𝑣2) − wt(𝑣1 ⇒ 𝑤2𝑣2) ≤ −wt(𝑣′1 ⇒ 𝑤2𝑣

′
2).

Rewriting, we get

wt(𝑣1 ⇒ 𝑣′1) + wt(𝑣′1 ⇒ 𝑤2𝑣
′
2) + wt(𝑤2𝑣

′
2 ⇒ 𝑤2𝑣2) ≤ wt(𝑣1 ⇒ 𝑤2𝑣2).

In other words, there is a shortest path from 𝑣1 to 𝑤2𝑣2 that passes through 𝑣′1 and 𝑤2𝑣
′
2. By condition

(ii), this is only possible if 𝑣1 = 𝑣′1 and 𝑣2 = 𝑣′2, showing (i). �
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Corollary 5.25. Consider Construction 5.2 with 𝑣1 ∈ LP(𝑥1), 𝑣2 ∈ LP(𝑥2). There exists (𝑣′1, 𝑣
′
2) ∈

𝑀 (𝑥1, 𝑥2) such that

𝑑 (𝑣1 ⇒ 𝑤2𝑣2) = 𝑑 (𝑣1 ⇒ 𝑣′1) + 𝑑 (𝑣′1 ⇒ 𝑤2𝑣
′
2) + 𝑑 (𝑤2𝑣

′
2 ⇒ 𝑤2𝑣2).

Proof. For convenience, we define a set of admissible pairs by

𝐴 := {(𝑣′1, 𝑣
′
2) ∈ LP(𝑥1) × LP(𝑥2) |

𝑑 (𝑣1 ⇒ 𝑤2𝑣2) = 𝑑 (𝑣1 ⇒ 𝑣′1) + 𝑑 (𝑣′1 ⇒ 𝑤2𝑣
′
2) + 𝑑 (𝑤2𝑣

′
2 ⇒ 𝑤2𝑣2)}.

Then (𝑣1, 𝑣2) ∈ 𝐴 so that A is nonempty. Choose (𝑣′1, 𝑣
′
2) ∈ 𝐴 such that 𝑑 (𝑣′1 ⇒ 𝑤2𝑣

′
2) becomes minimal

among all pairs in A. We claim that (𝑣′1, 𝑣
′
2) ∈ 𝑀 (𝑥1, 𝑥2). For this, we use Lemma 5.24. It remains to

show that 𝑣′1 = 𝜌∨𝑥1 (𝑤2𝑣
′
2) and 𝑣′2 = 𝜌𝑥2 (𝑣1). By Proposition 5.19 and Corollary 5.20, we obtain

𝑑 (𝑣′1 ⇒ 𝑤2𝑣
′
2) = 𝑑 (𝑣′1 ⇒ 𝜌∨𝑥1 (𝑤2𝑣

′
2)) + 𝑑 (𝜌∨𝑥1 (𝑤2𝑣

′
2) ⇒ 𝑤2𝑣

′
2),

𝑑 (𝑣′1 ⇒ 𝑤2𝑣
′
2) = 𝑑 (𝑣′1 ⇒ 𝑤2𝜌𝑥2 (𝑣1)) + 𝑑 (𝑤2𝜌𝑥2 (𝑣1) ⇒ 𝑤2𝑣

′
2).

It follows that (𝜌∨𝑥1 (𝑤2𝑣
′
2), 𝑣

′
2) ∈ 𝐴 and (𝑣′1, 𝜌𝑥2 (𝑣

′
1)) ∈ 𝐴. By choice of (𝑣′1, 𝑣

′
2) and the above

computation, we get that 𝑣′1 = 𝜌∨𝑥1 (𝑤2𝑣
′
2) and 𝑣′2 = 𝜌𝑥2 (𝑣

′
1). This finishes the proof. �

Corollary 5.26. For 𝑥1, 𝑥2 ∈ 𝑊 , we have LP(𝑥1 ∗ 𝑥2) = 𝜌𝑥2 (LP(𝑥1)) = 𝜌∨𝑥1 (𝑤2LP(𝑥2)), where 𝑤2 ∈ 𝑊
is the classical part of 𝑥2.

Proof. We only show LP(𝑥1 ∗ 𝑥2) = 𝜌𝑥2 (LP(𝑥1)), the other claim is completely dual.
If 𝑣2 ∈ LP(𝑥1 ∗ 𝑥2), we find 𝑣1 ∈ LP(𝑥1) such that (𝑣1, 𝑣2) ∈ 𝑀 (𝑥1, 𝑥2). By Lemma 5.24, 𝑣2 =

𝜌𝑥2 (𝑣1) ∈ 𝜌𝑥2 (LP(𝑥1)).
Now, let 𝑣2 ∈ 𝜌𝑥2 (LP(𝑥1)), and write 𝑣2 = 𝜌𝑥2 (𝑣1) for some 𝑣1 ∈ LP(𝑥1). By Corollary 5.25, we

find (𝑣′1, 𝑣
′
2) ∈ 𝑀 (𝑥1, 𝑥2) such that

𝑑 (𝑣1 ⇒ 𝑤2𝑣2) = 𝑑 (𝑣1 ⇒ 𝑤2𝑣
′
2) + 𝑑 (𝑤2𝑣

′
2 ⇒ 𝑤2𝑣2).

Since 𝑣2 = 𝜌𝑥2 (𝑣1), we use Proposition 5.19 to obtain

𝑑 (𝑣1 ⇒ 𝑤2𝑣
′
2) = 𝑑 (𝑣1 ⇒ 𝑤2𝑣2) + 𝑑 (𝑤2𝑣2 ⇒ 𝑤2𝑣

′
2).

This is only possible if 𝑣2 = 𝑣′2. Since 𝑣′2 ∈ LP(𝑥1 ∗ 𝑥2) by Proposition 5.12, we obtain the desired claim
𝑣2 ∈ LP(𝑥1 ∗ 𝑥2). �

5.3. Generic 𝜎-conjugacy class

To conclude the paper, we apply our results to the notion of generic 𝜎-conjugacy classes. For this, we
have to assume that our affine Weyl group actually comes from a quasi-split reductive group G over a
non-Archimedian local field F, as described in [28, Section 2.1]. This means that W is the finite Weyl
group of G, and 𝑋∗ are the Gal(�̆�/�̆�)-coinvariants of the cocharacter group of a maximal torus. Denote
by 𝐵(𝐺) the set of 𝜎-conjugacy classes in 𝐺 (�̆�). For 𝑥 ∈ 𝑊 , we write [𝑥] ∈ 𝐵(𝐺) for the 𝜎-conjugacy
classes associated with any representative of x in 𝐺 (�̆�), and [𝑏𝑥] for the generic 𝜎-conjugacy class of
the Iwahori double coset indexed by x.

The Frobenius action on W and 𝑊 will be denoted 𝜎 (·), so the Frobenius image of x is 𝜎𝑥.
Throughout this section, we fix an element 𝑥 = 𝑤𝜀𝜇 ∈ 𝑊 . Following He [11], we consider twisted

Demazure powers of x.

https://doi.org/10.1017/fms.2024.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.33


52 F. Schremmer

Definition 5.27. Let 𝑛 ≥ 1. We define the n-th 𝜎-twisted Demazure power of x as

𝑥∗,𝜎,𝑛 := 𝑥 ∗ (𝜎𝑥) ∗ · · · ∗
(
𝜎𝑛−1

𝑥
)
∈ 𝑊.

For 𝑛 ≥ 2, let us write

𝑥𝑛 := 𝜎1−𝑛
((
𝑥∗,𝜎,𝑛−1

)−1
𝑥∗,𝜎,𝑛

)
such that

𝑥∗,𝜎,𝑛 = 𝑥∗,𝜎,𝑛−1 ∗
(
𝜎𝑛−1

𝑥
)
= 𝑥∗,𝜎,𝑛−1 ·

(
𝜎𝑛−1

𝑥𝑛

)
.

We can calculate 𝑥𝑛 in terms of x and 𝜎1−𝑛LP(𝑥∗,𝜎,𝑛−1) using Theorem 5.11. By Corollary 5.26, we have

LP(𝑥∗,𝜎,𝑛) = 𝜌𝜎𝑛−1
𝑥

(
LP(𝑥∗,𝜎,𝑛−1)

)
= · · · = 𝜌𝜎𝑛−1

𝑥
◦ · · · ◦ 𝜌𝜎 𝑥 (LP(𝑥)).

Observe that by definition of the generic action 𝜌𝑥 , we may write

𝜌𝜎𝑛
𝑥 (

𝜎𝑛
(𝑢)) = 𝜎𝑛

(𝜌𝑥 (𝑢)).

Let us define the map 𝜌𝑥,𝜎 := 𝜌𝑥 ◦
𝜎−1

(·) : 𝑊 → 𝑊 by

𝜌𝑥,𝜎 (𝑢) := 𝜌𝑥 (
𝜎−1

(𝑢)).

Then

LP(𝑥∗,𝜎,𝑛) = 𝜌𝜎𝑛−1
𝑥
◦ · · · ◦ 𝜌𝜎 𝑥 (LP(𝑥)).

=
(
𝜎𝑛−1

(·) ◦ 𝜌𝑥 ◦
𝜎1−𝑛

(·)
)
◦ · · · ◦

(
𝜎1

(·) ◦ 𝜌𝑥 ◦
𝜎−1

(·)
)
(LP(𝑥))

= 𝜎𝑛−1
(·) ◦ 𝜌𝑥,𝜎 ◦ · · · ◦ 𝜌𝑥,𝜎 (LP(𝑥))

= 𝜎𝑛−1
(
𝜌𝑛−1

𝑥,𝜎 (LP(𝑥))
)
.

Lemma 5.28.

(a) There exists an integer 𝑁 > 1 such that for each 𝑛 ≥ 𝑁 ,

𝑥𝑁 = 𝑥𝑛 and 𝜌𝑁
𝑥,𝜎 (LP(𝑥)) = 𝜌𝑛

𝑥,𝜎 (LP(𝑥)).

Denote the eventual values by 𝑥∞ := 𝑥𝑁 resp. 𝜌∞𝑥,𝜎 (LP(𝑥)) := 𝜌𝑁
𝑥,𝜎 (LP(𝑥)).

(b) We have

𝜌∞𝑥,𝜎 (LP(𝑥)) = {𝑣 ∈ LP(𝑥) | ∃𝑛 ≥ 1 : 𝑣 = 𝜌𝑛
𝑥,𝜎 (𝑣)}.

lim
𝑛→∞

ℓ(𝑥∗,𝜎,𝑛)

𝑛
=ℓ(𝑥∞).

(c) The element 𝑥∞ is fundamental. For each 𝑣 ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)), it can be written as

𝑥∞ = (𝜎−1
𝑣)𝜌𝑥,𝜎 (𝑣)−1𝜀

𝜇−𝜌𝑥,𝜎 (𝑣)wt
(
𝜎−1

𝑣⇒𝑤𝜌𝑥,𝜎 (𝑣)
)
.
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Proof.

(a) Observe that 𝜌𝑛
𝑥,𝜎 induces an endomorphism LP(𝑥) → LP(𝑥). We obtain a weakly decreasing

sequence of subsets of W

LP(𝑥) ⊇ 𝜌𝑥,𝜎 (LP(𝑥)) ⊇ 𝜌2
𝑥,𝜎 (LP(𝑥)) ⊇ · · · .

Since W is finite, this sequence must stabilize eventually.
Because 𝑥𝑛 only depends on the values of 𝜌𝑛−1

𝑥,𝜎 (LP(𝑥)) and x, the result follows.
(b) Both claims follow immediately from (a).
(c) Let N be as in (a), and let 𝑛 ≥ 1. Then

𝑥∗,𝜎,𝑁+𝑛 = 𝑥∗,𝜎,𝑁 · 𝜎𝑁
𝑥∞ · · · 𝜎𝑁+𝑛−1

𝑥∞

is a length additive product. In particular,

ℓ(𝑥∞ · · · 𝜎𝑛−1
𝑥∞) = 𝑛ℓ(𝑥∞).

By [23, Theorem 1.3] or [28, Proposition 3.11], 𝑥∞ is fundamental.
Next, let 𝑣 ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)). Then also 𝜌𝑥,𝜎 (𝑣) ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)), and we get

𝜎𝑁
𝜌𝑥,𝜎 (𝑣) ∈ LP(𝑥∗,𝜎,𝑁+1) = LP(𝑥∗,𝜎,𝑁 ∗ 𝜎𝑁

𝑥) = LP(𝑥∗,𝜎,𝑁 · 𝜎𝑁
(𝑥∞)).

In view of Proposition 5.12, we find a uniquely determined element 𝜎𝑁
𝑣′ ∈ LP(𝑥∗,𝜎,𝑁 ) such that

(𝜎𝑁
𝑣′, 𝜎𝑁

𝜌𝑥,𝜎 (𝑣)) ∈ 𝑀 (𝑥∗,𝜎,𝑁 , 𝜎𝑁
𝑥).

Then by Theorem 5.11,

𝑥∞ = 𝑣′𝜌𝑥,𝜎 (𝑣)−1𝜀𝜇−𝜌𝑥,𝜎 (𝑣)wt(𝑣′⇒𝑤𝜌𝑥,𝜎 (𝑣)) .

Note that 𝜎𝑣′ ∈ 𝜎1−𝑁 LP(𝑥∗,𝜎,𝑁 ) = 𝜌∞𝑥,𝜎 (LP(𝑥)). The minimality condition on the tuple
(𝜎𝑁

𝑣′, 𝜎𝑁
𝜌𝑥,𝜎 (𝑣)) moreover implies that 𝜌𝑥 (𝑣

′) = 𝜌𝑥,𝜎 (𝜎𝑣′) = 𝜌𝑥,𝜎 (𝑣) (Lemma 5.24).
The map 𝜌𝑥,𝜎 : 𝜌∞𝑥,𝜎 (LP(𝑥)) → 𝜌∞𝑥,𝜎 (LP(𝑥)) is a surjective, and the set 𝜌∞𝑥,𝜎 (LP(𝑥)) is

finite. It follows that the restriction of 𝜌𝑥,𝜎 to 𝜌∞𝑥,𝜎 (LP(𝑥)) is bijective. Recall that v and 𝜎𝑣′ are
two elements of 𝜌∞𝑥,𝜎 (LP(𝑥)) whose images under 𝜌𝑥,𝜎 coincide. Thus, 𝑣 = 𝜎𝑣′, finishing the
proof. �

Theorem 5.29.

(a) The 𝜎-conjugacy class [𝑥∞] ∈ 𝐵(𝐺) is the generic 𝜎-conjugacy class of x.
(b) For any 𝑣 ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)), we have ℓ(𝑥∞) = ℓ(𝑥) − 𝑑 (𝑣 ⇒ 𝜎 (𝑤𝜌𝑥,𝜎 (𝑣))).
(c) Fix 𝑣 ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)), and define 𝐽 = supp𝜎 (𝜌𝑥,𝜎 (𝑣)−1𝑣), so 𝐽 ⊆ Δ consists of all 𝜎-orbits

of simple roots whose corresponding simple reflections occur in some reduced decomposition of
𝜌𝑥,𝜎 (𝑣)−1𝑣 ∈ 𝑊 .

We can express the generic Newton point of x as

𝜈𝑥 = 𝜋𝐽

(
𝑣−1𝜇 − wt(𝑣 ⇒ 𝜎 (𝑤𝑣))

)
.

Here, 𝜋𝐽 denotes the projection function as defined in [6, Definition 3.2].
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Proof.

(a) By a result of Viehmann [31, Corollary 5.6], we can express the generic 𝜎-conjugacy class of x as

[𝑏𝑥] = max{[𝑦] | 𝑦 ≤ 𝑥} = max{[𝑦] | 𝑦 ≤ 𝑥 and 𝑦 is fundamental}.

In particular, [𝑏𝑥] ≥ [𝑥∞]. For the converse inequality, pick some 𝑦 ≤ 𝑥 fundamental with
[𝑏𝑥] = [𝑦] ∈ 𝐵(𝐺).

By definition of the Demazure product, we get

𝑥∗,𝜎,𝑛 = 𝑥 ∗ (𝜎𝑥) · · · ∗
(
𝜎𝑛−1

𝑥
)
≥ 𝑦(𝜎𝑦) · · ·

(
𝜎𝑛−1

𝑦
)
.

Thus, using the fact that y and 𝑥∞ are fundamental, we get

〈𝜈(𝑥∞), 2𝜌〉 = ℓ(𝑥∞) = lim
𝑛→∞

ℓ(𝑥∗,𝜎,𝑛)

𝑛

≥ lim
𝑛→∞

ℓ(𝑦 𝜎𝑦 · · · 𝜎𝑛−1
𝑦)

𝑛
= lim

𝑛→∞
ℓ(𝑦) = 〈𝜈(𝑦), 2𝜌〉 = 〈𝜈(𝑏𝑥), 2𝜌〉.

This estimate shows that [𝑥∞] = [𝑏𝑥].
(b) This follows from the explicit description of 𝑥∞ in Lemma 5.28 together with Lemma 2.3 and the

simple observation 𝜌𝑥,𝜎 (𝑣) ∈ LP(𝑥∞).
(c) Let us write 𝑥∞ = 𝑤∞𝜀𝜇∞ . The generic Newton point of x is the Newton point of 𝑥∞, which we

express using [28, Lemma 3.7].
Let 𝑁 ≥ 1 such that the action of (𝜎 ◦ 𝑤∞) on 𝑋∗ becomes trivial. We want to show for each

𝑣 ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)) that

𝑣−1
𝑁∑

𝑘=1
(𝜎 ◦ 𝑤∞)

𝑘𝜇∞ ∈ 𝑋∗ ⊗ Q

is dominant.
Note each 𝑣 ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)) may be written as 𝑣 = 𝜌𝑥,𝜎 (𝑢) for some 𝑢 ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)). By

Lemma 5.28, it follows that 𝑤∞ = (𝜎−1
𝑢)𝑣−1. Thus, 𝑢 = 𝜎 (𝑤∞𝑣) ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)). This shows

𝜎 (𝑤∞𝑣) ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)) for each 𝑣 ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)). It follows for each 𝛼 ∈ Φ+ that

〈
𝑣−1

𝑁∑
𝑘=1

(𝜎 ◦ 𝑤∞)
𝑘𝜇∞, 𝛼

〉
=

𝑁∑
𝑘=1

〈𝜇∞, (𝜎 ◦ 𝑤∞)
𝑘𝑣𝛼〉

=
𝑁∑

𝑘=1

(
〈𝜇∞, (𝜎 ◦ 𝑤∞)

𝑘𝑣𝛼〉 +Φ+((𝜎 ◦ 𝑤∞)
𝑘𝑣𝛼) −Φ+((𝜎 ◦ 𝑤∞)

𝑘+1𝑣𝛼)
)

=
𝑁∑

𝑘=1
ℓ(𝑥∞, (𝜎 ◦ 𝑤∞)

𝑘𝑣𝛼) ≥ 0.

This shows the above dominance claim. As 𝑣 ∈ 𝜌∞𝑥,𝜎 (LP(𝑥)) was arbitrary, the same claim holds
for 𝜌𝑥,𝜎 (𝑣). With

𝐽 := supp𝜎 (𝜌𝑥,𝜎 (𝑣)−1 𝜎 (𝑤∞𝜌𝑥,𝜎 (𝑣))) = supp𝜎 (𝜌𝑥,𝜎 (𝑣)−1𝑣),

https://doi.org/10.1017/fms.2024.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.33


Forum of Mathematics, Sigma 55

[28, Lemma 3.7] proves that

𝜈(𝑥∞) = 𝜋𝐽 (𝜌𝑥,𝜎 (𝑣)−1𝜇∞) =
L5.28

𝜋𝐽 (𝜌𝑥,𝜎 (𝑣)−1𝜇 − wt(𝜎−1
𝑣 ⇒ 𝑤𝜌𝑥,𝜎 (𝑣)))

=
Def. 𝜋𝐽

𝜋𝐽 (𝜌𝑥,𝜎 (𝑣)−1𝜇 − wt(𝑣 ⇒ 𝜎 (𝑤𝜌𝑥,𝜎 (𝑣)))).

Now, the condition 𝐽 = supp𝜎 (𝜌𝑥,𝜎 (𝑣)−1𝑣) implies

𝜌𝑥,𝜎 (𝑣)−1𝜇 ≡ 𝑣−1𝜇 (mod QΦ∨
𝐽 ),

wt(𝑣 ⇒ 𝜎 (𝑤𝜌𝑥,𝜎 (𝑣))) ≡wt(𝑣 ⇒ 𝜎 (𝑤𝑣)) (mod QΦ∨
𝐽 ). �

Part (a) of the above Theorem readily implies [11, Theorem 0.1]. Our previous result [28, Corollary
4.5] expresses the generic Newton point 𝜈𝑥 as a formula similar to part (c) of the above Theorem, but
the allowed elements 𝑣 ∈ LP(𝑥) in the cited result are usually different ones. If x is in a shrunken Weyl
chamber, this formula for the generic Newton point coincides with [12, Proposition 3.1].
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