AN INTEGRAL OVER FUNGTION SPACE

W. F. EBERLEIN

1. Introduction. Real functions

$$
x(t)=\sum_{0}^{\infty} x_{n} t^{n}(-1 \leqslant t \leqslant 1) \text { with }\|x\|_{1}=\sum_{0}^{\infty}\left|x_{n}\right|<\infty
$$

may be identified with elements $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ of the sequence space l_{1}. Since the unit sphere S_{∞} of l_{1} is compact under the weak ${ }^{*}$ topology ${ }^{1}=$ topology of co-ordinatewise convergence, a countably additive measure on S_{∞} is induced by a positive linear functional E (integral) on $C\left(S_{\infty}\right)$, the weak* continuous real-valued functions on S_{∞}. There exists a natural integral over S_{∞} reducing to

$$
E(f)=\frac{1}{2} \int_{-1}^{1} f\left(x_{0}\right) d x_{0}
$$

when f is a function of x_{0} alone. The partial sums $S_{n}=S_{n}(x)$ of the power series for $x(t)$ then form a martingale and zero-or-one phenomena appear. In particular, if $R(x)$ is the radius of convergence of the series and e is the base of the natural logarithms, it turns out that $R(x)=e$ for almost all x in S_{∞}. Applications of the integral to the theory of numerical integration, the original motivation, will appear in a later paper.
2. The integral. The linear space of real sequences $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ admits as subspaces the Banach spaces C_{0}, l_{1}, m consisting respectively of sequences x such that $\lim x_{n}=0$ and

$$
\|x\|_{\infty}=\sup _{n}\left|x_{n}\right|,\|x\|_{1}=\sum_{0}^{\infty}\left|x_{n}\right|<\infty,
$$

and

$$
\|x\|_{\infty}=\sup _{n}\left|x_{n}\right|<\infty .
$$

We write $\langle x, y\rangle=\sum{ }_{0}{ }^{\infty} x_{n} y_{n}$, whenever the series converges. Then $l_{1}=C_{0}{ }^{*}$, $m=l_{1}{ }^{*}$, where ${ }^{*}$ denotes the conjugate space as usual. Now the unit sphere $S_{\infty}=\left[x:\|x\|_{1} \leq 1\right]$ of l_{1} is compact under the weak* topology of l_{1}. It is well known and readily verified that the weak* topology of S_{∞} may be identified with the topology of co-ordinatewise convergence, which is induced by the metric $\rho(x, y)=\sum_{0}{ }_{0} 2^{-n}\left|x_{n}-y_{n}\right| /\left(1+\left|x_{n}-y_{n}\right|\right)$. Let $C\left(S_{\infty}\right)$ denote the Banach algebra and lattice of weak* continuous real-valued functions on S_{∞} with

[^0]$$
\|f\|_{\infty}=\sup _{x \in S_{\infty}}|f(x)|
$$

Now the elements $e_{j}=\left(\delta_{0 j}, \delta_{1 j}, \delta_{2 j}, \ldots\right)(j=0,1,2, \ldots)$ (Kronecker delta) are just the extreme points of S_{∞} and form a naturally ordered basis for l_{1}. The integral we define in terms of them is similar to one defined by Banach (1) over the unit sphere of the Hilbert space l_{2}, but Banach's integral is unsatisfactory in that Hilbert space admits no distinguished basis; every point on the boundary of the unit sphere is an extreme point.

Definition. If y is a sequence set $P_{n} y=\left(y_{0}, y_{1}, \ldots, y_{n}, 0,0, \ldots\right)$. A function f on a sequence space is a cylinder function of degree n if $f(x)=f\left(P_{n} x\right)$ (all x). Let L_{N} denote the set of cylinder functions of degree N.

The notion of a cylinder function f of degree n is just a precise form of the statement that f "depends on the first $n+1$ variables only." It is clear that $L_{0} \subset L_{1} \subset L_{2} \subset \ldots$ Set $L_{\infty}=\cup_{n} L_{n}$.

Consider now possible integrals on $C\left(S_{\infty}\right)$ which are such that

$$
E(f)=\frac{1}{2} \int_{-1}^{1} f d x_{0}
$$

whenever $f \in L_{0} \cap C\left(S_{\infty}\right)$. Then $E(1)=1$. The simplest way to extend E to $L_{1} \cap C\left(S_{\infty}\right)$ is to set

$$
E(f)=\frac{1}{2^{2}} \iint_{\left|x_{0}\right|+\left|x_{1}\right| \leqslant 1} \frac{f d x_{1} d x_{0}}{1-\left|x_{0}\right|}\left(f \in L_{1} \cap C\left(S_{\infty}\right)\right)
$$

When f is in $L_{0} \cap C\left(S_{\infty}\right)$ this reduces to the previous definition. To extend E to $L_{2} \cap C\left(S_{\infty}\right)$ set

$$
E(f)=\frac{1}{2^{3}} \iint_{\left|x_{0}\right|+\left|x_{1}\right|+\left|x_{2}\right| \leqslant 1} \int_{\left[1-\left|x_{0}\right|\right]\left[1-\left(\left|x_{0}\right|+\left|x_{1}\right|\right)\right]}
$$

This coincides with the previous definition on $L_{1} \cap C\left(S_{\infty}\right)$.
It is clear that for f in the general $L_{n} \cap C\left(S_{\infty}\right)$ we must set

$$
E(f)=\frac{1}{2^{n+1}} \int_{\left|x_{0}\right|+\ldots+\left|x_{n}\right| \leqslant 1} \int_{\left[1-\left|x_{0}\right|\right] \ldots\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{n-1}\right|\right)\right]} .
$$

Then E is well defined for all f in $L_{\infty} \cap C\left(S_{\infty}\right)$, the weak* continuous cylinder functions on S_{∞}. Moreover, it is clear that E is a positive linear functional with $\|E\|=1$.

Let x in S_{∞} be arbitrary. Then

$$
\rho\left(x, P_{n} x\right)=\sum_{j=n+1}^{\infty} 2^{-j}\left|x_{j}\right| /\left(1+\left|x_{j}\right|\right) \leqslant 2^{-n} .
$$

Since a continuous function on a compact metric space is uniformly continuous it follows that for every f in $C\left(S_{\infty}\right)$ the cylinder functions $f_{n}(x)=f\left(P_{n} x\right)$ approach $f(x)$ uniformly in x-that is,

$$
\lim _{n}\left\|f-f_{n}\right\|_{\infty}=0
$$

Since $\|E\|=1$ on $L \cap C\left(S_{\infty}\right)$, it is clear that

$$
\lim _{n} E\left(f_{n}\right)
$$

exists and may be taken as the definition of $E(f)$. It follows that $E(f)$ is properly defined for all f in $C\left(S_{\infty}\right)$ by the formula

$$
E(f)=\lim _{n \rightarrow \infty} \frac{1}{2^{n+1}} \int_{\left|x_{0}\right|+\ldots+\left|x_{n}\right| \leqslant 1} \int \frac{f\left(x_{0}, x_{1}, \ldots, x_{n}, 0,0, \ldots\right) d x_{0} \ldots d x_{n}}{\left[1-\left|x_{0}\right|\right] \ldots\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{n-1}\right|\right)\right]}
$$

It is convenient to introduce the notation $E(f)=\int_{S_{\infty}} f(x) d_{E} x$.
The integral E may now be extended in standard fashion and induces a countably additive measure. It is clear that the above formula serves to define E for bounded Baire functions f on S_{∞}.
3. Some integral formulae. We show first that the measure is concentrated on the (strong) boundary $\left[x:\|x\|_{1}=1\right]$ of S_{∞}. Let

$$
Q_{n}^{K}=\frac{1}{2^{n+1}} \int_{\left|x_{0}\right|+\ldots+\left|x_{n}\right| \leqslant 1} \int_{\ldots} \frac{\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{n}\right|\right]^{K} d x_{0} \ldots d x_{n}\right.}{\left[1-\left|x_{0}\right|\right] \ldots\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{n-1}\right|\right)\right]}(K>-1)
$$

It follows by induction that $Q_{n}{ }^{K}=1 /(K+1)^{n+1}$. For

$$
Q_{0}^{K}=\frac{1}{2} \int_{-1}^{1}\left(1-\left|x_{0}\right|\right)^{K} d x_{0}=\int_{0}^{1}\left(1-x_{0}\right)^{K} d x_{0}=1 /(K+1)
$$

while

$$
\begin{aligned}
Q_{m+1}^{K}= & \frac{1}{2^{m+1}} \int_{\left|x_{0}\right|+\ldots+\left|x_{m}\right| \leqslant 1} \int^{0} \\
& \left\{\int_{0}^{1-\left(\left|x_{0}\right|+\ldots+\left|x_{m}\right|\right)} \frac{\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{m}\right|\right)-x_{m+1}\right]^{K}}{\left[1-\left|x_{0}\right|\right] \ldots\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{m}\right|\right)\right]} d x_{m+1}\right\} \\
= & \frac{1}{K+1} \frac{1}{2^{m+1}} \int_{\left|x_{0}\right|+\ldots+\left|x_{m}\right| \leqslant 1} \int \frac{\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{m}\right|\right)\right]^{K} d x_{0} \ldots d x_{m}}{\left[1-\left|x_{0}\right|\right] \ldots\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{m-1}\right|\right]\right.} \\
= & \frac{1}{K+1} Q_{m}^{K}=\left(\frac{1}{K+1}\right)^{m+2} .
\end{aligned}
$$

Since $\|x\|_{1}$ is a bounded Baire function and

$$
\int_{S_{\infty}}\left[1-\|x\|_{1}\right]^{K} d_{E} x=\lim _{n} Q_{n}^{K}
$$

Theorem.

$$
\int_{S_{\infty}}\left[1-\|x\|_{1}\right]^{K} d_{E} x=0 \quad(K>0)
$$

Now [1-\|x\|$\|_{1}>0$ on the Borel set $\left[x:\|x\|_{1}<1\right]$. It follows that the measure is concentrated on the boundary $\left[x:\|x\|_{1}=1\right]$.

Consider now the projections x_{n}.
Theorem.

$$
\int_{S_{\infty}}\left|x_{n}\right|^{K} d_{E} x=\left(\frac{1}{K+1}\right)^{n+1} \quad(K>-1)
$$

Proof. The verification is direct if $n=0$. If $n \geq 1$,

$$
\begin{aligned}
& \int_{S_{\infty}}\left|x_{n}\right|^{K} d_{E} x=\frac{1}{2^{n+1}} \int_{\left|x_{0}\right|+\ldots+\left|x_{n}\right| \leqslant 1} \int^{\bullet} \frac{\left|x_{n}\right|^{K} d x_{0} \ldots d x_{n-1} d x_{n}}{\left[1-\left|x_{0}\right|\right] \ldots\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{n-1}\right|\right)\right]} \\
& \quad=\frac{1}{K+1} \cdot \frac{1}{2^{n}} \int_{\left|x_{0}\right|+\ldots+\left|x_{n-1}\right| \leqslant 1} \int^{0} \frac{\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{n-1}\right|\right)\right]^{K} d x_{0} \ldots d x_{n-1}}{\left[1-\left|x_{0}\right|\right] \ldots\left[1-\left(\left|x_{0}\right|+\ldots+\left|x_{n-2}\right|\right)\right]} \\
& \quad=\frac{1}{K+1} Q_{n-1}^{K}=\left(\frac{1}{K+1}\right)^{n+1} .
\end{aligned}
$$

It is clear that $\int_{s_{\infty}} x_{n} d_{E} x=0$. Now the expression $\langle x, y\rangle\left(x \in S_{\infty}\right)$ is bounded and in the first Baire class for all $y \in m$. (It is well known that it is continuous in x if and only if $y \in C_{0}$.) Then

Theorem.

$$
\int_{S_{\infty}}\langle x, y\rangle d_{E} x=0 \quad(y \in m)
$$

Consider now

$$
\int_{s_{\infty}}\langle x, y\rangle^{2} d_{E} x
$$

Since clearly

$$
\int_{S_{\infty}} x_{m} x_{n} d_{E} x=0 \quad \text { if } \quad m \neq n
$$

we have

$$
\int_{S_{\infty}}\left[\sum_{0}^{n} x_{m} y_{m}\right]^{2} d_{E} x=\sum_{m, l=0}^{n} y_{m} y_{l} \int_{S_{\infty}} x_{m} x_{l} d_{E} x=\sum_{m=0}^{n} y_{m}^{2} \int_{S_{\infty}} x_{m}^{2} d_{E} x=\sum_{m=0}^{n} \frac{y_{m}^{2}}{3^{m+1}}
$$

Theorem.

$$
\int_{S_{\infty}}\langle x, y\rangle^{2} d_{E} x=\sum_{n=0}^{\infty} \frac{y_{n}^{2}}{3^{n+1}}
$$

(whenever the series converges).
4. A martingale theorem. Now identify the elements $x=\left(x_{0}, x_{0}, x_{1}, \ldots\right)$ of S_{∞} with the power series $x(t)=\sum_{0}{ }^{\infty} x_{n} t^{n}$ converging absolutely on the unit
circle. Then the partial sums $S_{n}=S_{n}(x)$ form a martingale: the defining conditions (cf.2) that

$$
\int_{S_{\infty}} x_{0} d_{E} x=0
$$

and

$$
\int_{S_{\infty}} \varphi\left(x_{0}, x_{1} t, \ldots, x_{n} t^{n}\right) x_{n+1} t^{n+1} d_{E} x=0
$$

for every bounded Baire function φ are clearly satisfied. It is natural to expect the appearance of zero-or-one phenomena. We single out the most striking. Let $R(x)$ be the radius of convergence of the power series for $x(t)$. Then

$$
R(x)=1 / \overline{\lim _{n}}\left|x_{n}\right|^{1 / n}
$$

and $R(x) \geq 1$ by hypothesis.
Theorem. $R(x)=e$ for almost all x in S_{∞}.
Proof.

$$
\begin{aligned}
\int & {\left[\left|x_{n}\right|^{1 / n}-e^{-1}\right]^{2} d_{E} x=\int_{S_{\infty}}\left[\left|x_{n}\right|^{2 / n}-2 e^{-1}\left|x_{n}\right|^{1 / n}+e^{-2}\right] d_{E} x } \\
& =\frac{1}{(1+2 / n)^{n+1}}-\frac{2 e^{-1}}{(1+1 / n)^{n+1}}+e^{-2} \rightarrow e^{-2}-2 e^{-2}+e^{-2}=0(n \rightarrow \infty)
\end{aligned}
$$

Thus

$$
\lim _{n}\left|x_{n}\right|^{1 / n}=e^{-1}
$$

in $L^{2}(E)$. But then there exists a subsequence $\left(n_{j}\right)$ such that

$$
\lim _{n_{j}}\left|x_{n_{j}}\right|^{1 / n_{j}}=e^{-1}
$$

for almost all x in S_{∞}, implying that

$$
\varlimsup_{n}\left|x_{n}\right|^{1 / n} \geqslant e^{-1}
$$

for almost all x. Hence $R(x) \leq e$ for almost all x.
To establish that $R(x) \geqq e$ for almost all x in S_{∞} let $0<r<e$. Since

$$
e=\lim _{n}\left(1+\frac{1}{n}\right)^{n}
$$

there exists an integer M such that

$$
r<\left(1+\frac{1}{M}\right)^{M}
$$

or

$$
r^{1 / M}<\left(1+\frac{1}{M}\right)
$$

Set

$$
f_{n}(x)=\left[\sum_{0}^{n}\left|x_{m}\right| r^{m}\right]^{1 / M} .
$$

Then

$$
\begin{aligned}
\int_{S_{\infty}} f_{n}(x) d_{E} x & =\int_{S_{\infty}}\left[\sum_{0}^{n}\left|x_{m}\right| r^{m}\right]^{1 / M} d_{E} x \\
& \leqslant \int_{s_{\infty}}\left[\sum_{0}^{n}\left|x_{m}\right|^{1 / M} r^{m / M}\right] d_{E} x \\
& =\sum_{0}^{n} \frac{r^{m / M}}{(1+1 / M)^{m+1}}=\frac{1}{(1+1 / M)} \sum_{0}^{n}\left(\frac{r^{1 / M}}{1+1 / M}\right)^{m} \\
& \leqslant \frac{1}{(1+1 / M)} \sum_{0}^{\infty}\left(\frac{r^{1 / M}}{1+1 / M}\right)^{m}=A<\infty .
\end{aligned}
$$

It follows from Fatou's lemma that

$$
\left\{\sum_{0}^{\infty}\left|x_{m}\right| r^{m}\right\}^{1 / M}=\lim _{n} f_{n}(x)
$$

exists for almost all x in S_{∞} and is integrable. Applying the above argument to a sequence $r_{n} \uparrow e$ and discarding a countable number of exceptional sets of measure 0 , one for each r_{n}, we find that $R(x) \geq e$ for almost all x in S_{∞}.

References

1. S. Banach, The Lebesgue integral in abstract spaces, note to S. Saks, Theory of the integral (Warsaw, 1933).
2. J. L. Doob, Stochastic processes (New York, 1953).
3. N. Dunford and J. T. Schwartz, Linear operators (New York, 1958).

University of Rochester

Correction to the Paper

"Submethods of Regular Matrix Summability Methods"**

It has been pointed out to the authors by Dr. F. R. Keogh that the construction for the matrix C in Theorem III is incorrect.

[^1]
[^0]: Received December 1, 1960. This paper was written with financial support from the Office of Naval Research and the Bureau of Ships.
 ${ }^{1}$ For the standard facts on linear spaces and integration employed in th is paper, see (3).

[^1]: *Casper Goffman and G. M. Petersen, Can. J. Math., 8 (1956), 40-46.

