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Abstract. We prove the pointwise inequality 0 > p + pL — 1 involving the normalized
scalar curvature p and normal scalar curvature p1 of a totally real 3-dimensional sub-
manifold of the nearly Kaehler 6-sphere. Further we classify submanifolds realizing the
equality in this inequality.

1. Introduction. Let M" be an n-dimensional (immersed) submanifold of an
m-dimensional real is space form N"'(c). If R1 is the curvature tensor of the normal connec-
tion, [e\,...,en] an orthonormal basis of tangent vector fields and {£i,..., £,„_„) an ortho-
normal basis of normal vector fields, then the (normalized) normal scalar curvature px is
defined in [7] by

For n = 2, this definition is the same as the definition of "normal curvature", given in [11].
The following was conjectured in [7].

CONJECTURE. Let </>: M" ->• N"'(c) be an isometric immersion. Then at every point p, we
have

\H\2>p + p±-c,

where p is the normalized scalar curvature, and H is the mean curvature vector of M".

This conjecture was proved for n = 2, m = 4 and c = 0 by Wintgen [13]; for n = 2 and
m > 4 by Guadalupe and Rodriguez [11]; for n > 2 and m = n + 2 by the authors in [7]. For
n > 2 and m = m + 1, in which case p1 is trivially zero, the conjecture follows from a more
general result of Chen in [4] stating that for arbitrary submanifolds of real space forms,
\H\2 >p-c.

In this paper, we prove the conjecture for 3-dimensional totally real submanifolds of S6.
Note that such submanifolds are always minimal [10]. In particular, we prove the following
theorem.
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THEOREM 1. Let x : M 3 -> S6(l) be a totally real isometric immersion. Then

0>p + p±-\. (1.1)

If we define, following Chen [3], a Riemannian invariant 8M by

where inf K is the function assigning to each p e M the infimum of K(n), n running over all
planes in TpM, then it is proved in [3] that any minimal submanifold of a unit sphere satisfies
8M <{(n+ 1)(A? — 2). For totally real 3-dimensional submanifolds of S6(\), this becomes
&M<2.

THEOREM 2. Let X: M 3 -> 56(1) be a totally real isometric immersion, and let p e M.
Then the following statements are equivalent.

(1) p + p-1 = l at P,
(2) 8M = 2at p,
(3) There exists an orthonormal basis {e\,ei, e^} at p such that

h{e\, e\) = kJe\ h{e2, e2) = —XJe\ h{e\, e{) = -
h(e2, ei) = 0 h(e\, e3) = 0 h(eit e3) = 0.

Totally real immersions with 8M = 2 at every point are completely classified, see [5], [6]
and [9]. The classification is summarized in the following theorems from [9].

THEOREM 3. Let <j>: N\ ->• CP2(4) be a holomorphic curve in C/>2(4). Let PN\ be the cir-
cle bundle over N\ induced by the Hopffibration p : S 5( 1) -»• CP 2(4) and let $ be the isometric
immersion such that the following diagram commutes.

-U 55(1)

AT, - ! • CP\A)

Then there exists a totally geodesic embedding i of S5(\) into the nearly Kdhler 6-sphere
such that the immersion iof: PN\ -> 56(1) is a 3-dimensional totally real immersion in S6(l)
with 8PN, — 2. Conversely let F: M 3 ->• 56(1) be a totally real immersion which is in linearly
full in 56(1). Then M3 automatically satisfies 8M = 2 and there exists a totally geodesic 55(1)
and a holomorphic curve <p : N\ —> CP2(4) such that F is congruent to \jr, which is obtained from
<p as above.

THEOREM 4. Let <j>: A^ -> S6(\) be an almost complex curve (with second fundamental
form a) without totally geodesic points. Denote by UNj the unit tangent bundle over Nj and
define a map

\\a(v, v)
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Then i/r is a (possibly branched) totally real immersion into 56(1) satisfying SUN2 — 2- More-
over, the immersion is linearly full in 56(1). Conversely let F: M 3 —*• S6(l) be a linearly full
totally real immersion of a 3-dimensional manifold satisfying 8M = 2. Let p be a non totally
geodesic point of M2. Then there exists a (possibly branched) almost complex curve
<j): #2 -> S6(\) such that, around p, F is congruent to ifr, which is obtained from <p as above.

So the following corollary follows immediately from the previous theorems.

COROLLARY 1. If f: M 3 —> S6(l) is a totally real isometric immersion, satisfying
p + p1- = 1, then f is one of the immersions given in Theorem 3 or Theorem 4 above.

2. The nearly Kaehler structure on S6. We briefly describe how the standard nearly
Kahler structure on S6(l) arises in a natural manner from Cayley multiplication. The mul-
tiplication on the Cayley numbers O may be used to define a vector cross product x on the
purely imaginary Cayley numbers R1'. The standard nearly Kahler structure on 5*(1) C R1 is
then obtained as follows.

Ju = xxu, we TXS6(\), x e S6(\).

Then / is an orthogonal almost complex structure on 56(1). In fact J is a nearly Kahler
structure in the sense that the (2,l)-tensor field G on S6(l), defined by G(X, Y) = (VXJ)(Y),
where V is the Levi-Civita connection on 56(1), is skew-symmetric. For more information
on the properties of x, J and G, we refer to [2], [1] and [8].

3. Totally real immersions with 8M = 2. An immersion F: M 3 ->• 5'6(1) is called totally
real if the almost complex structure J maps the tangent space into the normal space. In [10]
Ejiri proved that a 3-dimensional totally real submanifold of 56(1) is orientable and minimal
and that G(X, Y) is orthogonal to M, for tangent vectors X and Y. We denote that Levi-
Civita connection of M by V. The formulas of Gauss and Weingarten are then respectively
given by

) , (3.1)

x (3.2)

for tangent vector fields X and Y and normal vector field ?y. The second fundamental form h
is related to An by (h(X, Y), rj) = {AnX, Y). From (3.1) and (3.2), we find that

G(F,X, Ft Y), (3.3)

= -JKX, Y). (3.4)

The above formulas immediately imply that (h(X, Y),JF*Z) is totally symmetric.
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The fundamental equations of Gauss, Codazzi and Ricci then respectively state that

(R{X, Y)Z, W) = (Y,Z)(X, W) - {X,Z)(Y, W)
+ (h(Y, Z), h(X, W)) - (h(X, Z), h{Y, W)),

Y,Z) = (yh)(Y, X, Z),

where X, Y, Z, W are tangent vector fields and £ and r\ are normal vector fields. From these
equations, one obtains easily that

(R^X, Y)JZ,JW) = {R(X, Y)Z, W) - {Y,Z){X, W) + (X,Z){Y, W). (3.5)

4. Proofs. Let F: M3 -*• S6 be a totally real immersion. We identify A/3 with its image
in S6. Let p e M and assume that p is not a totally geodesic point. Following [10], see also
[12], there exists an orthonormal basis [e\,e2,ei\ at the point p such that G(e\,e2) —
Je}, G(e2, e3) = Jex, G(e3, <?i) = -42' a n d

h(e\, e\) = (a + b)Je\, h{ei, £2) = —aJe\ +
Ke\,ei) = -aJei, /i(<?2> £3) = -dJei -
h(e\, e{) = -bJe-i, h(ey, e{) = —bJe\ — cJej

where a + b > 0. A straightforward computation using the Gauss equation gives that

K{ex Ae2)= 1 -2a2 - ab,

K{ex A e3) = 1 - 2b2 - ab,

K(e2Ae3) = \+ab-2(c2 + d2).

Hence we obtain that

3p = Y^ K(e< A ej) = 3-(2a2 + 2b2 + 2c2 + 2d2 + ab). (4.
> < j

Since a + b > 0, we have — 2ab < a2 + b2 and from the Ricci equation we find

2(c2 + d2)(a - bf + a2(2a + b)2 + b2(a + 2bf + {ab - 2(c2 + d2))2,

4a4 + 4bA + 4c4+4d4 + a2b2 + 2a2c2 - Ubc2 + 2b2c2

+ 2a2d2- 8abd2 + 2b2d2 + 4a3b + 2a2b2 + 4abi + Sc2d2

4aA + 4bA + 4c4 + 4d* + a2b2 + 2a2c2 - \2abc2 + 2b2c2

+ 2a2d2 - \2abd2 + 2b2d2 + 4a3b + 2a2b2+4ab3 + Sc2d2

+ 4abc2 + 4abd2
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< 4«4 + 4b4 + 4c4 + 4d4 + a2b2 + 2a2c2 + 6(a2 + b2)c2 + 2b2c2 (4.2)

+ 2a 2d2 + 6(a2 + b2) d1 + 2b2d2 + 4a*b + 2a 2b2 + 4ab3 + 8c 2d2

+4abc2 +4abd2

= 4a1 + 4b4 + 4c4 + 4d4 + a2b2 + 2a2b2 + %a2c2 + %b2c2

+ %a2d2 + Sb2d2 + 4a3 b + 4ab3 + 8c2d2 + 4abc2 + 4abd2

<4a4 + 4b4 + 4c4 + 4d4 + a2b2 + 8a2b2 + 8a2c2 + %a2d2 (4.3)

+ 4a3 b + %b2c2 + %b2d2 + 4ab2 + 8c 2d2 + 4abc2 + 4abd2

= (2a2 + 2b2 + 2c2 + 2d2 + abf.

Since 2a2 + 2b2 + ab > 0, we deduce from this that

3px <2a2 + 2b2+2c2 + 2d2 + ab.

Hence, using (4.1), this becomes

Ip1- < 3 - 3 p ,

which proves the inequality. This finishes the proof of Theorem 1.
Let us assume now that the equality is realized in (1.1) at the point/?. Equality in (4.2)

implies that c = d = 0 and equality in (4.3) that ab = 0. So, if necessary, by replacing ei and
e3 by —e3 and ei, we may assume that a ^ 0 and b = 0. This proves that (1) and (3) of The-
orem 2 are equivalent. The equivalence of (2) and (3) is proved in [5]. This completes the
proof of Theorem 2.

REMARK 1. Using (3.5), one can always express the normal scalar curvature in terms of
intrinsic invariants. After a straightforward computation, we obtain that

So (1.1) is in fact an intrinsic obstruction.
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