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EXTENSIONS OF A BRANDT SEMIGROUP 
BY ANOTHER 

GÉRARD LALLEMENT AND MARIO PETRICH 

1. Introduction and summary. One possible first step in considering the 
structure of a class ^ of semigroups is to study the ideal extensions (here 
simply called "extensions") of simple or 0-simple semigroups in *$ by another 
if the latter are of known structure. Extensions of a semigroup by another were 
first studied by Clifford (see [1, 4.4 and 4.5]). In his constructions, an extension 
of a semigroup S by a semigroup T with zero is given by a function (satisfying 
certain conditions) from T* = T\0 into the translational hull of S. 

We use certain results (refining those of Clifford) established in [2] and a 
description of the translational hull of a Brandt semigroup given in [9] (see 
also [8]), to construct all extensions F of a Brandt semigroup 5 having a finite 
number of idempotents by any Brandt semigroup T (cf. [10]). Multiplication 
in V is determined (except in the trivial case of an orthogonal sum) by three 
independent parameters: two are functions between sets (one of which 
sometimes satisfies a simple condition) and the third one is a monomial group 
representation. The problem is thus completely solved as far as the theory 
of semigroups is concerned. This is our Theorem 2, wrhereas Theorem 1 gives 
the «^-structure of the translational hull of S. We then give the Schutzenberger-
Preston representation of all extensions V which represents V isomorphically 
by matrices over a group with zero. 

In addition, we state a generalization of Theorem 2 giving all extensions of 5 
by an orthogonal sum of Brandt semigroups, and derive a number of con­
sequences of Theorem 2 concerning the existence of particular kinds of 
extensions and covering of idempotents in V. 

In [11] Warne characterized all extensions of a Brandt semigroup 5 by any 
semigroup T with zero using functions satisfying certain conditions; we are 
dealing with a more special situation which makes it possible to solve the 
extension problem completely (i.e., modulo groups). To the best of our 
knowledge, the expressions we have obtained for multiplication are the most 
explicit in the case of an extension not necessarily determined by a partial 
homomorphism (cf. [1, 4.5]). 

Terminology and notation. In general we follow the terminology and notation 
of Clifford and Preston [1]. In particular, T* = 7 \0 if T is a semigroup with 
zero, A/B is the Rees quotient of A by B if A is a semigroup and B is an ideal 
of A, | / | is the cardinality of the set / . Jj denotes the semigroup of all one-to-one 
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partial transformations on I written as operators on the right (the symmetric 
inverse semigroup on I), 0 denotes the empty transformation, d/3 and r/3 for 
j3 G J ! denote the domain and the range of /?, respectively, and rank (3 = |r/3|. 
For k > 1 an integer, @fc is the symmetric group on k letters. If G is a group, 
G wr S* is the wreath product of G and ©*. Its elements are pairs (/, a) with 
f:X—>G, a ^ @fc, and multiplication (/, a)(g, 6) = (f'ag,ab); here for 
x Ç X, a Ç S*, x(f - g) = (xf)(xg), xag = (xa)g, where |X| = fe and ©& acts 
on X (see [7]). G wr ©fc can be interpreted as the monomial group over G, 
i.e., as all k X k matrices over G with exactly one non-zero element in each row 
and column under the usual multiplication of matrices (see [3] and bibliography 
listed there). For a semigroup 5, 12(5) denotes its translational hull; we write 
the left (right) translations as operators on the left (right), so that the product 
in 12(5) is given by (X, p)(X', p) = (XX', pp); 11(5) denotes the inner part of 
12(5) (i.e., all pairs wa = (Xa, pa) with Xax = ax, xpa = xa); recall that 11(5) is 
an ideal of 12(5) and that 11(5) = S when 5 is weakly reductive. P(S) is the 
semigroup of right translations on S,P(S) is the image of 12(5) under the 
projection (X, p) —» p, A(5) = {pa\ a 6 5} (see [2; 8; 9]). If <̂  is a homo-
morphism of a semigroup 4̂ into a semigroup 5 , both with zero, we say that ç 
is O-restricted if aç> = 0 if and only if a = 0. A semigroup 5 with zero 0 is an 
orthogonal sum of semigroups 5* with zero if St are subsemigroups of 5 such that 
Si r\ Sj = 0 and SiSj = 0 if i 9^ j , and S = \J St. 

2. Preliminary results. We first state a general extension theorem which 
is a slightly modified version of [1, Theorem 4.21]. 

EXTENSION THEOREM. Let S be a weakly reductive semigroup and let T be a 
semigroup with zero, disjoint from 5. Let rj: r* —> 12 (5) be a partial homomorphism 
such that (arj)(brj) € U(S)ifab = O.Let V = 5 U T* and define a multiplication 
* in V as follows, letting arj = (\a, pa) {note the difference between \a and \a)\ 

[\ab ifa£T*,be 5, 

a*b = \ap* ifaeS,b£T*, 
I c, where (arj) (brj) = wc, c 6 5 if a,b £ T* and ab = 0 in T, 
lab otherwise. 

Then V is an extension of S by T. Conversely, every extension of S by T is obtained 
in this way. 

A partial homomorphism rj: T* —> 12(5) satisfying the condition 

(ari)(]bri) G n(5) if ab = 0 (a, b € T*) 

will be called an extension function. 

In our case, 5 and T are Brandt semigroups. Throughout the paper we shall 
take 5 = Jt*{G\ I, I ; A) and T = J£*(K\J, J; A), where A is the identity 
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matrix over / and / , respectively. Then the projection of 12(5) onto P(S) is 
one-to-one [8, Theorem 8] so that 

12(5) ^P(S) ^GwrJj. 

Considering different cases of extensions (cf. [2]), the Extension Theorem 
splits into three parts according to properties of 77. 

Case 1. r] maps T* onto the zero of 12(5). Then V is simply the orthogonal 
sum of 5 and T. 

Case 2. rj maps T* into n(5) =S. The extension is then determined by a 
partial homomorphism of T* into 5*. This extension is called strict in [2]. 

Case 3. 77 maps T* into 12(5)\II(5). In such a case, rj can be extended to a 
O-restricted homomorphism of T into 12(5)/II(5) ^ P(5) /A(5) . Since T is 
O-bisimple, 77 maps T* into a i^-class of 12(5) disjoint from 11(5). This extension 
is called pure in [2]. 

In any case, 77 maps T* into a i^-class of 12(5) = P(S). The following 
theorem gives the ^-s t ructure of P(S) for a Brandt semigroup 5 with a finite 
number of idempotents (cf. [6] for the case \G\ = 1). 

THEOREM 1. Let S = ^°(G; / , / ; A) be a Brandt semigroup with I finite, 
\I\ = n. Then P(S) has a unique principal series 

(1) 0 = J0CJ1C... CJn = P(S). 

In P(S) we have Ql = / , A(5) = Ju and for k = 1,2, . . . ,n, 

(2) / * / / * - ! ^^°(G wr ©*; k, k; A), 

where k = {A C I\ \A\ = £}. 

The proof is based on the following. 

LEMMA. 

(3) P(5) £* {(p, * ) | ^ G Jn P * 0, *: dp -> G} U 0, 

A(5) £* {(j8, * ) | 0 G . / , , rank 0 = 1, , M J 8 -> G] U[0, 

with multiplication 

(P,*W,V) = os/s',̂ ) # ^ 5̂ 0 
awd 0 otherwise, where iyp" = (i\f/)(ip\f/f) for all i £ d(PPf). 

Proof. This follows directly from [9, Theorem 1 ; 8, Theorem 4]. 

Pnw/ 0/ Theorem 1. It is easy to see that in </7, 

P@P'& dp = dp', p^pf <^rp = vpf, 

P@P' <=» j8</|8' <=> rank P = rank 0'. 

A simple calculation shows that in P (5 ) , 

{p,*)@(p',V)^dp = dpf, 

(p,rP)^(p',*')^rp = rp', 

(p, *)®(Pf, #) <=> 08, ^ ) / ( 0 ' , f ) <=» rank 0 = rank 0'. 
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Thus 9 = J and letting 

Jk = {(ft*) | rank 0 ^ k) 

for k = 1, 2, . . . , n, we obtain, by (3), the unique principal series (1). It is 
now clear that A (S) = J\ and that for k = 1, 2, . . . , n, 

V A _ i ^ { ( / ^ ) | r a n k / 3 ^ ) U 0 , 

where (0, *)(0', ^ ) = 0 if rank (000 < k; let Dk = J*V*-i-
Recall that k = {A Q I\ \A\ = ifej. Now fix fe, 1 ^ & ̂  », and A <G k. 

For every B £ k, fix a one-to-one map aB: 4̂ —>.£>. For (/3, ^) Ç D^, let 

(4) ( 0 , * ) x = [(0,a);d0,r/3], 

where 0 = a^^, & = ot-d$arfli with d/3, r/3 Ç k (here we have reversed the 
order of a and 0 in keeping with the usual notation of wreath products [7]). 
Then 0: A —> G,a £ ©&, so that (0, a) G G wr ©* and hence by letting Ox = 0, 
we have 

X: Dk° -*Jé*(G wr ©*; k, k; A). 

We establish (2) by showing that x is an onto isomorphism. We first show that 
( 0 , * ) x ( 0 W ) x = [(£, W , ^ ' ) ] x . H r 0 ^ d 0 ' , rank (000 < & and both 
sides are 0. Suppose r/3 = d/3'; then d(/3/30 = d/3, r(/3/30 = r/3'. On the one 
hand, 

(0,*)x(0' ,*Ox = [(0,a);d/3,r/3][(^,aO;d^,r/3'] 
= [(0, a)(0', a 0 ; d/3, r/3'] = [(0 • a0', aa ') ; d/3, r/3'], 

and on the other, 

[08, *)(0', *0]x = (#*', lT)x = [(^, <*'); < W ) , r(/3/3')], 

where ^ = MOOWO for all i G d(/3/3'). Further, for all i € A, 

id" = ioLdwrt" = (^d^)(^d/?W') = (^(ia^a^aa^) 
= (id)(iaad^) = (i0) (ia0') = Hfi^ff), 

which proves that x is a homomorphism. It follows easily that x is one-to-one 
and onto. 

The group G wr ©w ( = -Dw) is isomorphic to the J^-class of the identity 
of 12(5) (pairs of linked invertible left and right translations); it appears 
in [3] under the name of "Loewy group". 

3. The main theorem. Let S = ^ ° ( G ; I , I; A) with \I\ = n, 
T = ^°(K; J, J; A). On V = S KJ T* we define a multiplication denoted by 
* as follows. The zero of S acts as the zero of V; for s, s' Ç 5, let s * s' = ss', 
and for /, /' G T* such that //' 5̂  0 in T, let t * t' = U'. In order to express the 
remaining products we introduce a number of functions. 
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Fix a fe, 1 S k ^ n, and let k = {£ C I\ \B\ = &}. Fix 4̂ G k and for each 
B G k, fix a one-to-one mapping a 5 : 4̂ —>J3. By ©& denote the symmetr ic 
group of degree k and suppose t h a t @fc ac ts on A. Let cr: J —> k be a function 
satisfying |i<r Pi jV| 5̂  1 if i ^ j . Le t d: J -^ G wr ©&, where jô = (0^, ^ ) , and 
let œ: K —* G wr ©# be a homomorphism where aco = (ea, / a ) . 

For 2 = (a; i, j ) G T*, u = (b; l, m) G r* , 5 = (c; £, g) G 5* define 

if g G io", 

if P G jo", 
t*u=[d;r,v] if jv C\ la = {h}, 

where 

d = (haja-hjta^s^di) (haj^Sjta-^a) Qiaj(T
ldi)~l (ha i^dj) (ha i^s^) 

' via ja s-jid of a iG j 

v = haiCT~lSiti)sm-lama', 

in all other cases the product is 0. 

T H E O R E M 2. Let S = Jé*(G\ / , 7; A) awd T = ^ ° ( K ; / , / ; A) be Brandt 
semigroups with the only restriction that I be finite. On V = S VJ T* define a 
multiplication as indicated above. Then V is an extension of S by T. Conversely, 
every extension of S by T, except for the orthogonal sum of S and T, can be obtained 
in this way. 

Proof. We exclude the case of an orthogonal sum of 5 and T. According to 
the Extension Theorem, an extension of 5 by T is determined by an extension 
function rj: T* —> [12(5)]*. Since 12(5) ~P(S), we mus t find a part ial homo­
morphism £: T*->P(S) satisfying (a£) (è£) G A(5) for all a, b G T* such 
t h a t ab = 0. Since T* consists of a single i^-class, £ maps T* into a non-zero 
<£^-class of P(S), which by Theorem 1 implies t h a t T* £ Ç1 Dk for some k such 
t h a t 1 ^ k ^ n. T h u s £ defines a part ial homomorphism of 7"* into ZV Wi th 
the homomorphism % defined by (4) in § 2, le t t ing x = x|z>* a n d ^ = Jx we 
have t h a t <£>: T* -+^°(G wr ©&; k, k ; A) is a part ial homomorphism. Accord­
ing to [1, Theorem 3.14], cp is given by: a function a: J —> k, a function 
ô: J -> G wr @fc, where jô = (0^, s7), and a homomorphism œ: K —> G wr ©*, 
where aw = (ea, £a). If / is a function mapping a set X into a group G, l e t / _ 1 

denote the function on X defined by xf _ 1 = ( x / ) _ 1 . For any (a ; i, j ) G Z* we 
obtain 

(5) (a;i,j)<P = [(Si, si)(ea,ta)(djJ Sj)-1;^, ja] 

= [(fii • Siea, StQK'^Bj)-1, Sf1]; irj*] 
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From the proof of Theorem 1, we deduce 

(6) [(6, a) ; B, C]x~
l = (aB~'aac, aB^B). 

On the other hand, £ = <px~l\ T* —»Dk and by (5) and (6) we obtain 

(7) (a; i,j)£ = (a; ij)^'1 = [a^sAsf'a^ a^lO, • Siea • ^ C ^ 1 ^ ) - 1 ] ] 

= 03, f) 

for some (/3, \p) £ At- The condition: ab = 0 implies (a£)(&£) £ A(5) is 
equivalent to the condition: i 7e- j implies \ia C\ jcr\ ^ 1. In fact, if the condition 
on £ is satisfied, letting 1 be the identity of K, for i, j £ 7, i ^ j , wre have 

[{Uhi)mUj,m = [ ( l ; i f i ) ( l ; i , i ) ] f = 0£ = 0, 

which together with the additional condition on £ by (7) implies 

r a n k t ^ ^ - ^ ^ i ^ r ^ z v ) ^ ^ - 1 ^ ^ ^ ; - 1 ^ ^ ) ] = 1» 

which yields \ia C\ jv\ ^ 1. 
Conversely, if \ia C\ j<r\ ^ 1 whenever i ^ j , consider [(a; i,j)£\[Q)\ /, w)£], 

where j ^ /. By (7) we have 

(8) [(a; i,j)£l[(&;/, m)€\ = [ a ^ V ^ - 1 ^ , I k r ^ A v W , , ] 
= [{oii(r

lsitasflaj<J){aih-
lSithsm-1am(r), ], 

where the blank spaces stand for expressions of no importance for this argument. 
Since j ^ I, by the hypothesis wTe have \ja C\ l<r\ ^ 1. It follows that 

rs.nk[(ai(r
1sitasj-

1aj<7)(al(r
1Siibsm-1am(T)] ^ 1 

which by [8, Theorem 4] implies that the element in (8) is contained in A(£). 
Consequently, £ satisfies the required condition and thus 77 is an extension 
function of T* into [0(5)]*. 

By the construction, (a; i , j)ê = p^a'^iJ) = ((3, \p). Since we are dealing with 
inverse semigroups, \(a;*' ;) is unique and is given by the pair (a, </>), where 
a = 0-1, <fri = (ifi-1)^ for all i 6 r/3 [9, Theorem 1]. Recall from [8] that for 
X = (a, <j>), p = (j(3, ^ ) , we have for (c; £, g) G 5, 

(c; £, g)p = [c{q\p) ; £, g/3) if q £ d/3, and is 0 otherwise, 
^(c\ PJ ç) = [{<l>P)c'i <*Pi Q.] if ^ € da, and is 0 otherwise, 

X0 = Op = 0, 
(0, tfO 03', ^ ) = (00', V) if 00' ^ 0, and is 0 otherwise, 

where ty = (i^)(W) for all i G d(00') 
(a, 0) (a', 0') = (aa', 0") if aa! T6- 0, and is 0 otherwise, 

where 4>"i = (4>ai) (<j>'i) for all i £ d(aa ') . 

Using the formulae for the * multiplication in the Extension Theorem and the 
expressions just derived, we are able to give the multiplication in V determined 
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by rj. A straightforward calculation of products in different cases leads to the 
results indicated at the beginning of § 3. 

Remarks on Theorem 2. (a) In the case of k — 1, V is simply an extension 
determined by a partial homomorphism v: T* —> S*. This extension is given 
by mappings a: J —> / , <5: J —> G and a homomorphism co: K —> G, with 

5 * / = [c(i5)(aco)(;ô)~1; £, jV] if ia = q} 

t* s = [(iô)(aco)(jô)-1c; zV, g] if ja = £, 

t*u = [(id)(aœ){jd)~1(lô)(bù))(mô)~~1; ia, ma] if 7V = la and 7 ^ /. 

These formulae could have been obtained directly, applying [1, Theorem 3.14], 
(b) In the general case, even though the expressions for products are rather 

complicated, these extensions are in fact easy to find. For, the parameters 
a, <5, co are independent, the restriction on a amounts to finding a family se 
of ^-tuples of elements of / indexed by the elements of J such that \B C\ C\ ^ 1 
if B, C Ç s/, B 7e C, while co is a monomial group representation (see, e.g., [3]) 
and 8 is a function subject to no restriction. Observe that for k > 1, a is one-to-
one. 

(c) Note that V has an identity (i.e. F is a unitary extension [5]) if and only 
if k = n. This is possible only if T is a group with 0 (\J\ = 1). 

4. Using the Preston-Schutzenberger representation of an inverse semigroup 
[1, Theorem 3.21], V in Theorem 2 can be faithfully represented by matrices 
as the direct sum of Schutzenberger representations relative to its non-zero 
«^-classes. The value of the Schutzenberger representation of an element 
(a; ij) e T* relative to the ^-class 5* is p ^ * ^ = (a; i,j)£ = (f3, \P) written 
in matrix notation while the other representations either follow from 
[1, Theorem 3.17] or are 0. As a result we obtain matrices of the form 

under the usual multiplication of matrices. Using the notation as in Theorem 2, 
we obtain the following matrices. For 5 = (c; p, q) Ç 5*: 

/ 1 
—lc 

0 

0 0 
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For t = (a; i,j) Ç T*: 

K*) 
(i) 

where p ( a ; U ) = (ft*), 

J/* if IP = k, 
lO otherwise. 

Wlk 

In the part icular case when V is the orthogonal sum of S and T, the matr ix 
representing t = (a; i,j) has the form (ii) below. In the case k = 1 (extension 
determined by a part ial homomorphism T* —>5*) this matr ix has the form 
(iii) with g = (iô)(aco)(j<5)-1: 

(ii) 

3" 

(iii) 
t o j 

ai  ai-

From the condition t ha t a be one-to-one for k > 1 and the hypothesis t h a t I be 
finite, it follows t h a t / is also finite so t ha t the matrices in (i) are of finite 
format, whereas those in (ii) and (iii) need not be. 

Theorem 2 can be easily generalized to yield all extensions of a Brand t 
semigroup S with a finite number of idempotents by an orthogonal sum of 
Brand t semigroups TM (see [4, 5.17]) as follows. One constructs an extension 
V^ of 5 by TM for each /z with the requirement t h a t if /x 9^ v and the extensions 
Vp and Vv are pure, then \io-p C\ jav\ ^ 1 (notation as in Theorem 2) . For each 
JU, multiplication in FM = 5 VJ TM* is already given, while the product of an 
element in T* by an element in Tv* for JJL T^ V is defined similarly as a t the 
beginning of § 3 ( the case t, u Ç T*, tu = 0 in T). T h e conditions on a^ 
indicated here and the one in Theorem 2 can be combined to yield |io-M C\jav\ ^ 1 
if i 9^ j or /x 9^ v. Conversely, every extension of S by an orthogonal sum of 
Brand t semigroups can be obtained in this way. We omit the details. 

We conclude by deriving certain properties of extensions concerning 
covering of idempotents and the existence of extensions. Let 5 and T be as in 
Theorem 2, where |7| = n is kept fixed. For each k, 1 < k ^ n, let k be the 
greatest number of unordered ^-tuples which can be placed in a set of n 
elements such t ha t two distinct ^-tuples intersect in a t most one element. 
T h e importance of k follows from the condition on a in Theorem 2. T h e following 
results are in fact corollaries to Theorem 2. T h e notat ion is the same as in 
Theorem 2 and its proof. 

COROLLARY 1. 

then \J\ g k. 
If the extension is pure and is determined by J: T* —» Dk 
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Proof. This follows from the condition on a in Theorem 2. 

COROLLARY 2. If the extension is pure, then 1 g \J\ ^ (?). 

Proof. This follows from Theorem 2 where & > 1, Corollary 1, and 

COROLLARY 3. Le£ 1 < k ^ n + 1. In order that every extension of S by T 
be of one of the two types (i) strict or (ii) pure and determined by £: T* —» Z)$ 
wiZ/z i < k, it is necessary and sufficient that \J\ > k. 

Proof. Necessity. If | / | ^ &, then there is a pure extension determined by 
£: r* —>£>*; for in Theorem 2, cr can be found since |J | ^ k, while <5 and co 
can be taken at will. 

Sufficiency. If the extension is pure and determined by 77: 2*—>Z>i with 
i ^ &, then î ^ k. By Corollary 1, | / | ^ 2 so that | / | ^ &, contradicting the 
hypothesis |J | > k. 

COROLLARY 4. In order that every extension of S by T be strict (i.e., determined 
by a partial homomorphism of 71* into S), it is necessary and sufficient that 

\J\ > (S). 
Proof. Take k = 2 in Corollary 3 and note that 2 = (?). 

From the multiplication formulae in Theorem 2, we easily see that for 
idempotents (f;j,j) £ T* and (e;i,i) Ç 5*, in V: (f;j, j) covers (e;i,i) 
if and only if i Ç ja (i = ja if the extension is strict). Recall that in a partially 
ordered set A, a covers b if a > b and a > x > b for n o x G i (see, e.g., [5] 
where this notion is extensively used). From Theorem 2 and the above 
corollaries, we easily deduce the following. 

COROLLARY 5. In V, every idempotent in T* covers the same number of 
idempotents in 5*. If this number is k, then 

(i) k = 0 if and only if V is an orthogonal sum of S and T; 
(ii) k rg 1 if and only if V is a strict extension of S by T; 

(iii) k > 1 if and only if V is a pure extension of S by T determined by 
£: T*-+Dk. 

COROLLARY 6. Let 1 ^ k ^ n + 1. In every extension of S by T, every 
idempotent in T* covers less than k idempotents in 5* if and only if T* has more 
than k idempotents. 

COROLLARY 7. The following are equivalent: 
(i) every extension of S by T is strict; 

(ii) in every extension of S by T, every idempotent in T* covers at most one 
idempotent in 5* 

(iii) T* has more than (2) idempotents. 
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Note that for k > \n if n is even, and k > \{n + 1) if n is odd, we have 
k = 1. On the other hand, 2 = (?) so that 1 ^ I ^ (S). The determination 
of & as a function of k and w appears to be a difficult combinatorial problem 
(cf. balanced incomplete block designs). 
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