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Abstract

This study quantifies the effect of fertilizer and irrigation management on water use efficiency
(WUE), crop growth and crop yield in sub-humid to semi-arid conditions of Limpopo
Province, South Africa. An approach of coupling a cropping system model (DSSAT) with
an agro-hydrological model (SWAT) was developed and applied to simulate crop yield at the
field and catchment scale. Simulation results indicated that the application of fertilizer has a
greater positive effect on maize yield than irrigation. WUE ranged from 0.10–0.57 kg/m3

(rainfed) to 0.84–1.39 kg/m3 (irrigated) and was positively correlated with fertilizer application
rate. The combined application of the variants with deficit irrigation and fertilizer rate
(120:60 kg N:P/ha) for maize turned out to be the best option, giving the highest WUE
and increasing average yield by up to 5.7 t/ha compared to no fertilization and rainfed culti-
vation (1.3 t/ha). The simulated results at the catchment scale showed the considerable spatial
variability of maize yield across agricultural fields with different soils, slopes and climate con-
ditions. The average annual simulated maize yield across the catchment corresponding to the
highest WUE ranged from 4.0 to 7.0 t/ha. The yield gaps ranged from 3.0 to 6.0 t/ha under
deficit irrigation combined with 120N:60P kg/ha and ranged from 0.2 to 1.5 t/ha when only
applying deficit irrigation but no fertilizer. This information can support regional decision
makers to find appropriate interventions that aim at improving crop yield and WUE for catch-
ments/regions.

Introduction

Agriculture in developing countries needs to transform and increase food production by about
70% to meet demand by 2050 (FAO, 2010; Tilman et al., 2011). Food security in Africa is a
priority due to a high population growth rate coupled with some unfavourable biophysical
conditions, socio-economic developments and political issues. This includes poor soils,
adverse climates, a heavy burden of pests and diseases and inadequate agricultural infrastruc-
ture (Gatzweiler and von Braun, 2016). Gbetibouo et al. (2010) pointed out that smallholders
dependent on rainfed agriculture and a high degree of soil degradation are the most
vulnerable.

With regard to crop production in South Africa (SA), maize is the most important staple
crop and mostly grown under rainfed conditions. The yield of maize in the Limpopo province
is fairly low – for smallholder farmers ranging between 1 and 2 t/ha. This is mainly due to
manual farming techniques together with low input provision such as no or little fertilizer
application, lack of quality seeds and no irrigation (FAO, 2010). The increase in water scarcity
and land degradation, particularly poor soil fertility in most smallholder farming systems
poses a serious threat to crop production in SA. Therefore, a logical agricultural intervention
measure is to increase crop yield per volume of water used and replenish the nutrient-depleted
soils with mineral and organic fertilizer. Water use efficiency (WUE) is mentioned in this
research aiming at finding appropriate technological improvements and innovations to sup-
port sustainable agricultural productivity. Saving water and promoting crop growth through
appropriate fertilization could be an effective measure to maximize WUE. Regarding semi-arid
areas, a shortage of soil moisture during the growing stage of the crop often results in poor
crop growth and low grain yield. Therefore, applying deficit irrigation during crop growing
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stages can improve yield and WUE. Several studies have indicated
that applying irrigation measures increases WUE in maize
(Hernández et al., 2015; Kresovic et al., 2016). Sadras et al.
(2012) reported an increase in WUE values from 1.1–3.2 kg/m3

for irrigated maize to 0.6–2.3 kg/m3 for rainfed maize. In add-
ition, application of nitrogen in environments with adequate rain-
fall or soil moisture availability can increase WUE in maize
(Hernández et al., 2015; Zhang et al., 2022).

Dynamic crop simulation models (CSMs) that are often
embedded in crop modelling platforms with software packages
for input and output handling and their visualization, such as
Decision Support System for Agrotechnology Transfer (DSSAT)
(Hoogenboom et al., 2019a), Agricultural Production Systems
Simulator (APSIM) (Holzworth et al., 2014), Root Zone Water
Quality Model (RZWQM2) (Ma et al., 2012), Environmental
Policy Integrated Climate (EPIC) (Williams, 1989), World Food
Studie (WOFOST) (Supit et al., 1994) and others, can be useful
tools for simulating crop growth and yield formation for different
genotype (G) × environment (E) × management (M) combina-
tions (Rötter et al., 1997, 2015; Liu et al., 2011; Yan et al.,
2020). In recent years, DSSAT has been used widely to predict
nitrogen dynamics, crop yield and water use of a whole range
of crops and cropping systems (Jones et al., 2003; Thornton
et al., 2009; Liu et al., 2011; Hoogenboom et al., 2019a). CSMs
have sound algorithms for describing the main processes of
crop growth and development in dependence of given environ-
mental (soil and climate) conditions and for predicting the effects
of alternative management options, such as best management
practices (BMPs) for nutrients and water on yield formation at
the field scale. Their input data requirements are accordingly
high. However, the usage of CSMs at catchment scale is rather
limited and often difficult, especially in hilly areas with great vari-
ability of soils, slope and land use. Agro-hydrological models
(AHMs), such as Soil and Water Assessment Tool (SWAT)
(Arnold et al., 1998), Système Hydrologique Europée (MIKE
SHE) (Refsgaard and Storm, 1995) or Agricultural Policy/
Environmental Extender (APEX) (Gassman et al., 2010), can be
considered as the suitable tools to investigate the effects of
BMPs on crop performance under different environmental condi-
tions in a catchment. The SWAT model has been widely used to
simulate the impact of land-management practices on water,
nutrient transport and agricultural productivity in watersheds
with varying soil, land-use, climate and management conditions
(Tripathi et al., 2004; Lam et al., 2011; Nair et al., 2011;
Sinnathamby et al., 2017). The key strength of SWAT is a flexible
framework that allows prediction of many types of BMPs such as
application rate and timing of fertilizers and irrigation, cover
crops (Gassman et al., 2007). However, the crop growth model
in SWAT is based on a simplification of the EPIC crop model
(Williams et al., 1984), which has a low capability to accurately
predict crop yield for different G × E ×M combinations and is
much less suitable for that than the DSSAT model under similar
study area conditions (Dechmi et al., 2010). In addition, several
studies have identified that the auto-irrigation functions in
SWAT did not adequately represent field practices (Chen et al.,
2017). These limitations of the models urge for another approach,
which is a coupling and combining the strengths and functional-
ities of different models like SWAT and DSSAT. This approach
can be expected to be a suitable solution for assessing the effects
of agricultural management practices on crop productivity in a
watershed. To date, various CSMs that can describe major crop
growth processes in interactions with environment and

management have been integrated successfully with hydrological
models. Examples of just coupling includes DSSAT–RZWQM
(Ma et al., 2006), DSSAT– Soil Water Atmosphere Plant
(SWAP) (Dokoohaki et al., 2016), WOFOST–WEP (Jia et al.,
2011) and EPIC–SWAT (Zhang et al., 2014). For example, Jia
et al. (2011) used water and moisture availability obtained from
the Water and Energy Transfer Processes (WEP) model as
input data for the WOFOST model. In the current study, the
approach we aimed to couple the model DSSAT with SWAT. In
this approach, the DSSAT model is used to determine crop
water requirements and then feeds the data to the SWAT
model. With this approach, it is possible to determine the water
stress levels associated with different variants of crop–climate–
agricultural management combinations for a given watershed.

The present study aimed to: (1) operationalize the coupling of
DSSAT–SWAT model to simulate soil water dynamics, maize
growth and yield from field to catchment scale, (2) evaluate the
effects of a number of BMPs on maize yield, water use and
WUE, and (3) assess the spatial variation of yield and to identify
the best agricultural management interventions to narrow yield
gaps under current climatic conditions of the study area.

Materials and methods

Study area description and data collection

The study areas are mainly located in the Limpopo province, SA.
The rainy season is characterized by hot and humid conditions
occurring during summer months (October–April). Dry winters
(May–September) are warm and mild but cold at night (Fig. 1).
The field trials represent different climatic conditions (see,
Fig. 1). The first site is Syferkuil, the experimental farm of the
University of Limpopo (23°50’10”S latitude, 29°41’34”E longitude,
and 1250 m elevation above mean sea level) can be characterized
as a semi-arid upland site. The second site, the experimental farm
of the University of Venda, is Univen (22°58’49”S latitude, 30°
26’16”E longitude, and 712 m elevation above mean sea level)
can be characterized as sub-humid, warm midland site. Average
rainfall at the Syferkuil and Univen stations are 485 and 820
mm, respectively, during the growing season from November to
April.

Soil data of the experimental sites
Soil at Syferkuil is a sandy clay loam, characterized by its high
sand content (57–58%). Clay content ranges from 25 to 29% at
different soil layers. At Univen, soil is a sandy loam, containing
relatively high sand content up to 72%, while clay content only
accounts for 14–16% (Table 1). The 0–90 cm soil layer had on
average total nitrogen levels of 0.96 and 0.65 g/kg for the
Syferkuil and Univen site, respectively.

Agronomic field experiments and survey data
The agronomic experiments were set up in a randomized com-
plete block design with three replicates at each research site,
Syferkuil and Univen. Only sole-maize cultivar Hybrid PAN
6479 was grown for the experiment. The size of the experimental
plot is 4.5 m × 4m. Maize was sown using intra-row spacing of 90
cm with the density of three plants/m2. The experiments were car-
ried out in two separate seasons. Maize was planted on 29
November 2015 for the first season 2015/2016 and on 03
January 2017 for the second season 2016/2017 in Syferkuil,
while the planting date for maize was 24 October 2016 for the
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season 2016/2017 at Univen, while season 2015/2016 failed due to
insect damage. The rate of fertilizer application is 40N:30P. Maize
grain yield, dry matter at flowering and harvesting time, and soil
water content (SWC) were measured during the growing period.

Additional surveys on maize yield were conducted in 2018/
2019 in the neighbouring villages Mafarana and Gavaza (Fig. 2
denotes Mafarana only), Limpopo province by the Institute of
Tropical Plant Production and Agricultural Systems Modelling,
University of Goettingen, Germany (e.g. May, 2019). The weather
conditions in these villages are similar to those at the neighbour-
ing Syferkuil site. A total of 319 samples from smallholders in
Mafarana and Gavaza villages were collected at the harvest time.
The cultivation of maize in this area is based on rainfed condi-
tions and no fertilizer application.

Gravimetric method was used to measure soil moisture con-
tents. Gravimetric SWC was determined biweekly (a total of
nine sampling events) for the layers 0–15, 15–30 and 30–60 cm
using a soil auger. Soil samples were collected between plants

(within rows) and between rows, bulked together according to
depths and subsampled for the determination of soil moisture
content. Samples were oven dried at 105°C. Volumetric water
content was then calculated by multiplying gravimetric water con-
tent by the bulk density. Soil properties of the Syferkuil and
Univen sites can be seen in Table 1. Field management data are
presented in Table 2.

Characterization of the study catchment and weather
information

The study catchment that includes the Syferkuil site is located
upstream of the Olifants River. The total drainage area of the
catchment is about 39 000 km2. Due to the division of the terrain,
more than 75% of the catchment area is located within the
Limpopo province, while the rest of upstream area (about 25%)
of this catchment is located in the neighbouring provinces. The
highest and lowest elevations of the catchment are 2114 m and

Figure 1. Average monthly total precipitation, maximum and minimum air temperature over the period 1985–2020 for (a) Syferkuil and (b) Univen site.

Table 1. Soil properties up to a maximum rooting depth for the Syferkuil and Univen sites

Depth (cm)

Bulk
density
(g/cm3) Clay (%) Silt (%) Sand (%)

LL
(cm3/cm3)

DUL
(cm3/cm3)

Saturation
(mm/mm)

Organic
carbon (%)

Total nitrogen
(g/kg) pH

Syferkuil

0–15 1.45 25 17 58 0.054 0.156 0.403 1.01 1.2 6.6

15–30 1.45 25 17 58 0.072 0.156 0.403 0.95 1.1 6.7

30–45 1.45 29 15 57 0.11 0.157 0.403 0.64 0.9 6.8

45–60 1.45 29 15 57 0.11 0.157 0.403 0.55 0.9 6.8

60–90 1.45 29 15 57 0.11 0.157 0.403 0.51 0.7 6.8

Univen

0–15 1.1 16 12 72 0.12 0.26 0.49 0.41 1.1 5.0

15–30 1.2 16 12 72 0.13 0.29 0.49 0.71 0.9 5.5

30–45 1.2 14 14 72 0.15 0.29 0.49 0.51 0.5 5.9

45–60 1.2 14 14 72 0.15 0.32 0.49 0.43 0.4 6.1

60–90 1.2 14 14 72 0.15 0.32 0.49 0.42 0.4 6.1

CLL is crop lower limit. DUL is the drained upper limit.
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410 m above sea level, respectively (Fig. 2). There are two hydro-
logical monitoring stations located in the river Olifants and its
tributary. The first station, Finale, was installed at the catchment
outlet and the second station, Loskop Noord, was installed in the
tributary of the river Olifants (Fig. 2). Land use is dominated by
rangeland grasses (32.33%), followed by forest evergreen (27.48%)
and agricultural land (23.19%) of the total study area. Sandy clay
loam (80.87%) is dominant soils, followed by sandy loam

(16.69%). The information on land use and soil maps is presented
in Fig. 2.

Weather stations at or near the sites provided daily solar radiation,
maximum and minimum air temperature and precipitation. For
Univen, an on-site weather station and the Makwarela station (6
km from site) were used to provide climate data for the period
1985–2014. The climate data from 2015 to 2020 were obtained
from the Venda station, provided by the Agricultural Research

Figure 2. Location of the study catchment, topography (NASA, 2019), land use (EGIS, 2018) and soil maps (iSDA, 2019) in Limpopo and its adjacent regions, South
Africa.

Table 2. Field management data for the two experimental sites and seasons used for model evaluation

Experimental
site Season Maize cultivar

Planting
date

Plant
density

(plant/m2)
Row space

(cm)
Harvested

date

Fertilizer
application (kg/ha)

N P

Syferkuil 2015/2016 Hybrid PAN 6479 29.11.2015 3 90 03.04.2016 40 30

Syferkuil 2016/2017 Hybrid PAN 6479 03.01.2017 3 90 07.05.2017 40 30

Univen 2016/2017 Hybrid PAN 6479 24.10.2016 3 90 25.02.2017 40 30
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Council, SA (ARC–ISCW). At the Syferkuil site, daily weather data
were derived from an on-site station for the period 1985–2018.
The extended weather data from 2019 to 2020 were obtained from
the Ammondale weather station, provided by ARC–ISCW.

At Syferkuil, the maximum temperature ranges from about 20 to
29°C, while the minimum temperature ranges from about 2 to 16°C.
The lowest temperature occurs in the months from June to August
(Fig. 1(a)). The rainy season runs from October to April with aver-
age total monthly precipitation ranges from 35 to 85mm (Fig. 1(a)).
Compared to Syferkuil, the weather at Univen is warmer and more
humid (Fig. 1(b)). The distribution of temperature and precipitation
over time of the year in the two sites is relatively similar, in general.
However, the average monthly total precipitation amount from
October to April at the Univen site is higher than that of the
Syferkuil site, ranging from 50 to 170mm (Fig. 1(b)).

Model description

DSSAT model input
The DSSAT is a software application program that comprises
CSMs to simulate growth, development and yield as a function
of the soil–plant–atmosphere dynamics. In this study, the
Cropping System Model (CSM)-CERES–Maize module in
DSSAT (version 4.7.5) (Jones et al., 2003; Hoogenboom et al.,
2019b) was applied to simulate maize growth and yield at the
field scale. Main input data of the model consist of daily weather
data, soil profile data and crop management. The crop manage-
ment data of sowing date, harvest date, tillage and fertilizer appli-
cation rate were taken into account in the model. The initial soil
nitrogen was set to be 5 kg/ha. Crop data for maize were obtained
from the experimental sites as summarized in Table 2.

DSSAT model calibration and evaluation
The calibration and validation of maize grain yield, total biomass
and SWC were performed for the season 2015/2016 and 2016/
2017 in the Syferkuil site. The validation of maize grain yield
and total biomass was further conducted for the season 2016/
2017 in the Univen site. Maize development and yield were cali-
brated using measured data from the trials.

In this study, the timing and amount of the 40N:30P kg/ha fer-
tilizer rate were set up in the model. Grain yield and phenological
stages were taken into account in the calibration of the cultivar
coefficients. The predicted phenological stages under the cali-
brated cultivar coefficients were roughly in the same phenological

stages as field crops in this study area. The calibrated model coef-
ficients are presented in Table 3.

SWAT model input
The AHM SWAT (Arnold et al., 2013, version 2012) is a basin
scale distributed hydrologic model. It was developed to quantify
the impact of land management practices in large, complex catch-
ments. SWAT is a continuous time model, which simulates water,
nutrient cycles and crop yield with a daily time step. In the SWAT
model, the watershed is divided into sub-basins which are then
further subdivided into hydrologic response units (HRUs). Each
HRU is assumed to consist of homogeneous land use and soils.
Major components of the model include hydrology, weather
and agricultural management. The content of all components
can be found in Arnold et al. (1998) and Neitsch et al. (2002).

The potential evapotranspiration (PET) is calculated using a
Penman–Monteith method. Crop growth and yield parameters
in SWAT model are simulated based on a simplification of
EPIC model. The main data described in Table 4 were used to
set up the SWAT model. The model was established by dividing
the basin into 64 sub-basins and 665 HRUs in this study.
Management inputs include sowing date, timing and rate of fer-
tilizer application and harvest date for maize as described in
Table 2.

SWAT model calibration and validation
Maize growth and yield were first manually calibrated and validated
for the season 2015/2016 and 2016/2017 at the field scale, respect-
ively. The experimental Syferkuil site is located within HRU60 in
the study catchment which combines soil (sandy clay loam) with
agricultural land (AGRR). Maize parameters were adjusted until
the simulated values of the grain yield and biomass were close to
measured values at the HRU60. The parameters used for maize
yield calibration process are described in Table 5. Simulated
maize yield and total biomass values during the growing season
in HRU60 were used for a simple comparison with those calculated
by DSSAT with the aim of improving the model accuracy. In add-
ition, survey data collected from different sites in the Mafarana vil-
lage which are located in HRU6, HRU9, HRU11, HRU12 and
HRU14 were used to evaluate the SWAT model.

After maize yield calibration and validation, daily and monthly
stream flow was simulated. Based on the hydrological data avail-
ability, calibration (1985–1998) and validation (2008–2015) of
flow were performed for daily time step using measured data

Table 3. The calibrated cultivar coefficients of maize (Hybrid PAN 6479) for the experimental field at the Syferkuil using CERES–Maize

Coefficients Definition
Calibrated

value

P1 Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base
temperature of
8°C) during which the plant is not responsive to changes in photoperiod

230

P2 Extent to which development (expressed as days) is delayed for each hour increase in photoperiod above the longest
photoperiod
at which development proceeds at a maximum rate (which is considered to be 12.5 h)

0.6

P5 Thermal time from silking to physiological maturity (expressed in degree days above a base temperature of 8°C) 800

G2 Maximum possible number of kernels per plant 620

G3 Kernel filling rate during the linear grain filling stage and under optimum conditions (mg/day) 6.2

PHINT Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances 39
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from the Finale gauging station at the catchment outlet (Fig. 2).
Additional monthly validation of flow was done for the period
from 1984 to 1998 at the Loskop Noord station.

Surface runoff and base flow were calibrated simultaneously
during the calibration period. Main parameters adjusted during
the flow calibration comprise curve number (CN2), available
water capacity (SOL_AWC), soil evaporation compensation factor
(ESCO), plant uptake compensation factor (EPCO), groundwater
revap coefficient (GW_REVAP) and threshold depth of water in
the shallow aquifer (GWQMN). Parameters used for the calibra-
tion of flow are described in Table 6.

Coupling input/output from the two models
The approach for ‘coupling models’ in this study is not a hard
link but implies that the models interact through their input/
output files. DSSAT model uses crop parameters, weather and
soil data as input to calculate maize growth and yield. Crop
water requirements and rooting depth generated by DSSAT
are transferred to SWAT as input data. The amount of crop
water demand based on the weather conditions is a critical
component used to estimate the water balance of the hydro-
logical model. In this study, the automatic irrigation in the
DSSAT model was set at 50% of the available soil moisture,
similar to the approach followed by Attia et al. (2021) and
Kisekka et al. (2016). Using crop water demand derived from
the DSSAT model as input to the SWAT model can

significantly improve predicting water balance components in
a watershed, while no observed data on timing and amount
of irrigation for maize in local cultivation areas are being col-
lected. Estimated SWCs and evapotranspiration rates by the
SWAT model were then compared to those of the DSSAT
model using the same datasets at the field scale. In addition,
simulated maize yield and biomass by the SWAT model were
also compared to measured values at the experimental field.
This approach enhances the SWAT model simulation capabil-
ities for crop growth and yield at a field-to-basin scale.

Statistical criteria
Statistical parameters used to assess the model performance
include root mean square error (RMSE) (Willmott, 1982), the
normalized root mean square error (nRMSE) (Loague and
Green, 1991), the coefficient of determination (R2) and Nash–
Sutcliffe efficiency (ENS) (Nash and Sutcliffe, 1970), and the per-
centage ‘prediction deviations’ (PD).

Agricultural BMPs
The effects of BMPs on maize yield and WUE at the filed scale
were evaluated using the DSSAT model. The management prac-
tices in this study focus on the application of improved practices
in terms of nitrogen (N) and phosphorus (P) fertilizer application,
irrigation management and their combinations to find the most
appropriate recommendation that delivers both high maize
grain yield, biomass productivity and at the same time saves irri-
gation water for the Limpopo province. Eleven treatments were
tested and compared with the baseline (i.e. rainfed and no fertil-
izer application). Details of the different treatments are given in
Table 7. Maize yield and water use for various treatments were
simulated by DSSAT for a 35-year period from 1985 to 2020.

Yield gap analysis

For showing the scope of each technology combination (treat-
ment) to increase crop yield and narrow the gap between average
actual yield obtained by farmers and average maximum yield
attainable for a given crop and location for the study period
1985–2020, different types of yield gaps were calculated (for ref-
erence see Van Ittersum et al., 2013; Kassie et al., 2014). For
instance, Kassie et al. (2014) computed yield gaps as differences
among simulated water-limited yield, on-farm trial yield and
average actual farmers’ yield of maize in the Central Rift Valley
of Ethiopia. In our study, the yield gaps were calculated as the dif-
ference between simulated average water-limited yield (e.g. yield
of DN0, DN120) and average actual farmers’ yield at the

Table 4. Input data used for SWAT model

Data type Source Data description/properties

DEM NASA (2019) Digital elevation model, a grid size
of 50 m × 50 m

Soil map iSDA (2019) Soil physical properties such as
texture, saturated conductivity,
etc., 30 m × 30m resolution

Land use map EGIS (2018) Land use classifications, 20 m × 20
m resolution

Climate data COPER,
ARC–ISCW

Temperature, precipitation, wind
speed, humidity (1980–2020), 04
climate stations

River flow GRDC Daily and monthly observed river
flow at Finale and Loskop Noord
stations, respectively

Crop
management

Rapholo
et al. (2020)

Tillage operation, time of planting
and harvesting, fertilization
amounts and dates

Table 5. Maize growth parameters for the rainfed conditions used for the SWAT model calibration in the field scale (HRU60)

Parameter
Model

processes Definition
Default
values

Calibrated
values

BIO_E Crop growth Biomass energy ratio (kg/MJ) 30 35

HVSTI Crop growth Harvest index (kg/ha) 0.45 0.5

BLAI Crop growth Maximum leaf area index (m2/m2) 6 5.7

T_BASE Crop growth Minimum (base) temperature for plant growth (°C) 7 8

DLAI Crop growth Fraction of the plant growing season when leaf area begins to decline 0.7 0.85

FRGRW1 Crop growth Fraction of the plant growing season corresponding to the first point on the
optimal leaf area development curve

0.015 0.017
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catchment scale. Actual farmers’ yield refers to yield levels
achieved with current farming practices of the smallholders in
the Limpopo province (i.e. rainfed and no fertilizer application).
The average annual yield of RNO was used as the average actual
farmer’s yield to calculate the yield gap since its value is closest to
actual farmers yield in the Limpopo province (see section on
DSSAT model calibration and evaluation).

Results

Simulated water balance components at the field scale

SWC simulated by DSSAT model
The approach for soil water modelling in DSSAT was assessed
based on its ability to accurately estimate the SWC by soil
layer, total soil water content (TSWC) in the soil profile,
Potential Evapotranspiration (PET) and Actual
Evapotranspiration (AET) rates and, subsequently (see next sub-
section), crop growth and yield formation. In this study, SWC at
0–15, 15–30 and 30–60 cm depths of the soil was simulated
based on the baseline treatment (RN40) for the separate growing
seasons 2015/2016 and 2016/2017 at the Syferkuil site. The tem-
poral variation of SWC under different soil layers at the
Syferkuil is presented in Fig. 3. The trend in simulated SWC
showed good agreement with measured data in general. This
was confirmed by RMSE values below 0.02 mm3/mm3 for both
the calibration and validation period (Fig. 3).

Comparison of the simulated TSWC, AET and PET in DSSAT and
SWAT model
Simulations of the TSWC in the soil profile, AET and PET were
conducted at the Syferkuil site under the growing season 2015/
2016 using DSSAT and SWAT model. The evaluation process
compared the performance of both models in predicting TSWC
in the soil profile. The obtained results showed that the two mod-
els similarly describe the dynamics of the TSWC, and the same
performances in simulation of TSWC for the Syferkuil (Fig. 4).
At the beginning of the growing season, the TSWC was 300
mm but it gradually decreased to about 200 mm at the end of
the maize season, despite some precipitation events were occur-
ring during the growing season. The two models showed lower
TSWC at the end of the simulations through about 85–125 days
after planting (DAP) in the baseline treatment of the Syferkuil
experiment (Fig. 4). In general, the fluctuations of TSWC during
the growing season are simulated well by both models.

The simulated AET and PET by the two models are shown in
Fig. 5. The cumulative amounts of simulated AET were 573 and
564 mm for DSSAT and SWAT model, respectively. AET rates dif-
fered slightly between the two models, especially in the period
from 90 DAP. However, the trend of the AET simulated by the
SWAT model was similar compared to that of the DSSAT
model. AET values varied between 1.9 and 8.4 mm/day for both
models. In general, the DSSAT and the SWAT model produced
comparable values for evapotranspiration rates at the beginning
of the growing season (about 3.5 and 3.2 mm/day, respectively)

Table 6. Main controlling parameters of the SWAT model and their optimal values for the Finale stations of the catchment

Parameter Unit
Model

processes Definition
Allowable
range

Calibrated
values

CN2 (arable land,
range brush and forest)

– Flow Curve number 35–98 72, 65, 45

SOL_AWC mm H2O/mm
soil

Flow Available water capacity 0–1 0.07–0.35

SOIL–K mm/hr Flow Saturated hydraulic conductivity 0–2000 10–75

GW_REVAP mm H2O Flow Ground water revap coefficient 0.02–0.2 0.02

GWQMN mm H2O Flow Threshold depth of water in shallow aquifer 0–5000 700

GW_DELAY mm H2O Flow Delay time for aquifer recharge 0–500 31

ALPHA_BF l/day Flow Base flow recession constant 0–1 0.02

ESCO – Flow Soil evaporation compensation factor 0.01–1 0.95

EPCO – Flow Plant uptake compensation factor 0.01–1 0.97

Table 7. Description of treatments simulated for the study area

Treatment
Irrigation
rates (mm)

Fertilizer rates
(N:P kg/ha) Treatment

Irrigation
rates (mm)

Fertilizer rates
(N:P kg/ha) Treatment

Irrigation
rates (mm)

Fertilizer rates
(N:P kg/ha)

RN0 Rainfed 0:0 DN0 Deficit* 0:0 FN0 Full** 0:0

RN10 Rainfed 10:5 DN10 Deficit* 10:5 FN10 Full** 10:5

RN40
(baseline)

Rainfed 40:30 DN40 Deficit* 40:30 FN40 Full** 40:30

RN120 Rainfed 120:60 DN120 Deficit* 120:60 FN120 Full** 120:60

*The total volume of 100 mm irrigation water was divided into four times on the sowing date (25 mm), emerging date (25 mm), flowering date (25 mm) and silking date (25 mm).
**The total volume of 200 mm irrigation water was divided into four times on the sowing date (50 mm), emerging date (50 mm), flowering date (50 mm) and silking date (50 mm).
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and at the end of the season (2.9 and 2.4 mm/day, respectively),
for the baseline treatment (Fig. 5(a)).

Figure 5(b) shows the results of PET obtained with two models
over the period 0–125 DAP. While slight differences were appar-
ent at the beginning of the growing season, they were similar from
30 DAP. PET values varied between 1.4 and 9.5 mm/day for both
models. The simulation results indicated that most of the time
during the growing season, the SWAT model simulated PET
values quite similarly to those of the DSSAT model.

Simulated total above-ground dry matter (biomass) and grain
yield of maize at the field scale

Dry matter (in maize above-ground biomass and grains) as
simulated by DSSAT and SWAT model
Grain yield and biomass (expressed as dry matter) for hybrid
PAN 6479 maize were calibrated for the season 2015/2016 first,

and then validated for the season 2016/2017 to evaluate the per-
formance as well as simulated results of the model. Simulated and
measured grain yield and total above-ground dry matter are pre-
sented in Table 8.

Regarding simulated gain yield for the experimental site,
low PD values (from 0.4 to 7.4%) and small RMSE values
(<10%) revealed that DSSAT and SWAT model performed
well in simulating maize yield for both the calibration and val-
idation period. The simulated grain yield in the calibration and
validation period was 2.47 and 2.59 t/ha by DSSAT and 2.41
and 2.43 t/ha by SWAT under rainfed condition at the
Syferkuil, respectively. Grain yield and biomass for maize
were further validated for the season 2016/2017 by DSSAT at
the Univen site. The values of nRMSE ranged from 4.04 to
4.27% indicated that DSSAT model performed well in simulat-
ing maize yield at the Univen site. Similar to grain yield, the
above-ground biomass was simulated reasonably well for

Figure 3. Simulated v. measured soil water content (SWC) with DSSAT at the Syferkuil: calibration of SWC during the growing season 2015/2016 (left), validation of
SWC during the growing season 2016/2017 (right).
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both the calibration and validation periods by the two models.
This is confirmed by nRMSE values ranging from 2.68 to 5.52%
(Table 8). Grain yield and biomass for maize were further vali-
dated for the season 2016/2017 by DSSAT at the Univen. The
statistical results in Table 8 indicated that the simulation results
of maize yield by the DSSAT model are highly reliable in both
Syferkuil and Univen site.

The additional comparison between simulated and observed
values of the grain maize yield in 2019 by the SWAT model is
shown in Fig. 6(b). Simulated average yield for maize fitted very
well to the observed values with a deviation of +3.2%. It is
noted that the simulated and observed values are smaller than
2.0 t/ha due to the cultivation based on rainfed condition and
no fertilizer application in the Mafarana village.

Simulated maize growth with DSSAT and SWAT model
A comparison of the biomass dry matter simulated by the DSSAT
and the SWAT model is shown in Fig. 6(a). The two models
showed a very similar pattern in the simulation of above-ground
biomass under the baseline treatment. The SWAT model slightly
overestimated dry biomass during the flowering period, but is
finally able to meet the cumulative total dry biomass at harvest
time. The results show very good agreement between simulated
(both models) and measured above-ground biomass with R2

and ENS from 0.98 to 0.99 and 0.72 to 0.96 for the calibration
period, respectively (Fig. 6(a)). From the analysed results on
maize yield and biomass, it can be confirmed that the DSSAT
and SWAT models are reliable in simulating maize yield and
their simulated results are similar for both the calibration and val-
idation period in the study areas.

Long-term simulation of maize yield, water consumption and
use efficiency under various management treatments
The impacts of the various BMPs on maize yield under rainfed
condition were assessed by DSSAT model over a 35-year period
(1985–2020). Simulated results of maize yield under each treat-
ment were compared with baseline results in the same simulation
period. The boxplot analysis for maize yield among treatments is
shown in Fig. 7.

The simulated results of maize yield from Figs 7(a) and (b)
showed that maize yield increased with increases in the rate of fer-
tilizer and irrigation applications in both the experimental Syferkuil
and Univen sites. However, the increase in fertilizer rates had a
stronger effect on maize yield improvement than irrigation. This
may be due to inadequate irrigation water volume or degraded
soil in these experimental locations. Increasing the NP fertilization
rate alone increased average annual maize yield of RN40 to 3.12 t/
ha (i.e. 144%) and FN120 to 4.75 t/ha (i.e. 271%) compared to that

Figure 4. Comparison of the simulated total extractable soil
water in DSSAT and SWAT model at the Syferkuil. Also shown
is precipitation during the growing season.

Figure 5. Actual evapotranspiration rates (a) and potential evapotranspiration (b) as simulated with the DSSAT and SWAT model at the Syferkuil.
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Table 8. Observed and simulated grain yield and total dry biomass for maize under rainfed condition at the experimental sites

Components

Calibration (growing season 2015/2016) Validation (growing season 2016/2017)

Obs. Mean of Obs. Sim. RMSE (t/ha) nRMSE (%) PD (%) Obs. Mean of Obs. Sim. RMSE (t/ha) nRMSE (%) PD (%)

DSSAT model

Syferkuil site

Grain yield, t/ha 2.44 2.52

2.19 2.46 2.47 0.01 0.40 0.40 2.61 2.51 2.59 0.04 1.60 1.54

2.77 2.41

Total dry biomass, t/ha 7.49 7.40

6.47 7.21 7.42 0.21 2.90 2.83 7.65 7.35 7.55 0.20 2.68 2.64

7.66 7.01

Univen site

Grain yield, t/ha 3.24

2.85 3.03 2.91 0.12 4.04 −4.10

3.01

Total dry biomass, t/ha 9.79

8.77 9.31 8.92 0.39 4.27 −4.37

9.37

SWAT model

Syferkuil site

Grain yield, t/ha 2.44 2.52

2.19 2.46 2.41 0.05 2.05 −2.1 2.61 2.51 2.43 0.18 7.01 −7.40

2.77 2.41

Total dry biomass, t/ha 7.49 7.40

6.47 7.21 7.62 0.41 5.52 5.38 7.65 7.35 7.57 0.22 2.96 2.91

7.66 7.01
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of RN0 which was 1.30 t/ha, respectively. The average annual yield
of RN0 is close to average actual farmer’s yield of 1.04 t/ha which
was based on the analysis of 48 maize yield samples from small-
holders taken in 2019 in the two villages of Mafarana and
Gavaza located within the study catchment (May, 2019).

Considering irrigation alone, treatments of DN0 and FN0
increased maize yield only by 10.5 and 21.9%, respectively, com-
pared to RN0 (Fig. 7(a)). The combination of fertilization and
irrigation application gave the highest average annual yield for
the DN120 and FN120 treatments, achieving 5.4 and 5.7 t/ha,
respectively.

The best option of fertilization rates and amount of water
added as irrigation is assessed through consumptive crop water
use and WUE. Figure 8 showed the simulated WUE under differ-
ent treatments at the experimental Syferkuil site. The average
WUE varied between 0.1 and 1.39 kg/m3. The supplemental irri-
gation increased WUE by 5.1%, while fertilizer application
increased it by 182.2%. Simulated results showed that fertilizer
application had a positive effect on WUE of maize. Considering
fertilizer alone, the highest WUE value was recorded in RN120,
followed by RN40, then RN0 treatment (Fig. 8). The results
from Fig. 8 also showed that the combination of deficit irrigation
and fertilizer rate application resulted in higher WUE values than
those of the combined full irrigation with fertilizer or rainfed cul-
tivation. Among the treatments, DN120 (combined deficit irriga-
tion and the 120N:60P kg/ha fertilizer application) gave the
highest average WUE value of 1.15 kg/m3 (Fig. 8) and the corre-
sponding average annual yield of 5.4 t/ha (Fig. 7(a)).

Simulation of water balance components and maize yield at
the catchment scale

Simulated flow by the SWAT model
Based on the calibrated results of maize growth, yield and water
balance components at the field scale (HRU60), the calibrated
model parameters regarding crop growth and hydrological pro-
cesses at the HRU60 were applied to all HRUs with similar con-
ditions within the catchment. In addition, main parameters (e.g.
CN2, SOL_AWC, SOL_K) affecting surface runoff and base flow
were adjusted during the flow calibration (Table 5). Irrigation
demand for maize obtained from DSSAT model was used as
input data to the SWAT model.

Figure 6. Observed v. simulated dry maize biomass in the growing season 2015/2016 for the DSSAT and SWAT model at the Syferkuil (a) and grain yield during the
validation for the SWAT model in 2019 using survey data from Mafarana/Gavaza (b).

Figure 7. Box plots of simulated yield among the treatments at the two experimental
locations (a) Syferkuil and (b) Univen. Box boundaries indicate upper and lower quar-
tiles, whisker caps indicate 100 and 0% percentiles, and circles indicate outliers. Yield
is simulated from 1985 to 2020.
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The simulated and measured flows were compared for both
the simulation period. Gaps in the timeline (01 September 1998
to 31 July 2008) are due to a malfunction of the sampler with
incorrect data. Therefore, the measured data for that period
were not used in the simulation phases. Figure 9 shows a reason-
able agreement between simulated and measured daily discharge
with ENS and R2 at 0.71 and 0.65 for the calibration period and
0.61 and 0.65 for the validation period at the catchment outlet,
respectively. However, there are still some single flood peaks
occurring in the rainy seasons of 1988, 1991, 1994 and 1998
which are less accurately simulated. This is probably due to the
model structure of SWAT.

The monthly validation of flow for a 15-year period from 1984
to 1995 at the Loskop Noord station was further carried out in
order to evaluate the model performance (Fig. 10). High model
efficiency (ENS of 0.91 and R2 of 0.61) showed a good agreement
between simulated and measured flow during the validation per-
iod. Overall, the SWAT model performance was satisfactory in
simulating flow at the catchment outlet of Finale and at the
Loskop Noord station.

Simulated spatial yield by SWAT model
The spatial distribution of average annual yield for the RN0 and
DN120 treatments is shown in Fig. 11. The simulated yield
under the RN0 and DN120 indicates substantial spatial differ-
ences within the catchment. The average annual yield ranged
from 0.5 to 2.0 t/ha and from 4.0 to 7.0 t/ha for RN0 and
DN120 treatments, respectively (Figs 11(a) and (b)). The highest

yield occurred in areas located near the southern catchment, fol-
lowed by the areas in the middle of the catchment, and those in
the northern catchment. The variation of the spatial distribution
pattern of maize yield is mainly due to the variation of different
soils and climate conditions within the catchment. For instance,
the average annual precipitation (1980–2020) in the northern
regions of the catchment is 440.6 mm, while it is 510.9 mm in
the southern regions of the catchment.

As outlined in section of yield gap analysis, we analysed spe-
cific types of yield gap. The difference in maize yield as obtained
at the deficit irrigation (DN0) and rainfed cultivation (RN0) as
well as between the combined fertilizer with deficit irrigation
application (DN120) and RN0 were analysed in this study to
give an overview of the effect of the technology ‘deficit irrigation
alone’ and deficit irrigation as a part of the combination/technol-
ogy package jointly with fertilizer application (see Palosuo et al.,
2021) on maize yield in the entire catchment. The spatial distribu-
tion of average annual yield from Fig. 12 showed that differences
in yield between DN120 and RN0 are large (3–6 t/ha/cropping
cycle, corresponding to 75.2–84.5% of the maximum attainable
yield that can be reached by maize under the BMP) in most of
the regions within the catchment (Fig. 12(b)), while the different
yields between DN0 and RN0 are much smaller, ranging from 0.2
to 1.5 t/ha/cropping cycle which corresponds to 5.4–21.1% of the
maximum attainable yield (Fig. 12(a)).

The small differences between yield attainable at RN0 and
DN0 suggest that investments in irrigation only to raise
maize yield during the main growing season are not the most

Figure 8. Box plots of simulated water use efficiency (WUE) among the treatments at Syferkuil. Box boundaries indicate upper and lower quartiles, whisker caps
indicate 100 and 0% percentiles, and circles indicate outliers. WUE is derived from simulating crop water use and maize dry matter for period 1985–2020.
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Figure 9. Simulated and measured daily discharge at
the Finale gauging station for the calibration (a) and
validation (b) periods by SWAT model.

Figure 10. Simulated and measured monthly discharge at the Loskop Noord station for the validation period by SWAT model.

368 Q. D. Lam et al.

https://doi.org/10.1017/S0021859623000230 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859623000230


effective way to increase maize production in the catchment in
particular and in Limpopo in general. Other management factors
such as N and P fertilizer nutrient supply combined with deficit
irrigation (DN120) were the most effective way to improve
maize yield. This is confirmed by a large gap between RN0 and
DN120 (Fig. 12(b)).

Discussion

Major findings

In this study, 12 BMPs related to irrigation and fertilizer manage-
ment were evaluated for 35 years to select those giving the highest
WUE for maize. The simulated results showed that a combination
of deficit irrigation (100 mm irrigation water) and a fertilizer
application at the rate of N120 and P60 (kg/ha) for maize gave
the highest WUE. This adoption would increase yield on average
by up to 5.4 t/ha compared with maize cultivation under no fer-
tilization and rainfed conditions. The obtained highest average
WUE of 1.15 kg/m3 falls within the acceptable 1.1–2.7 kg/m3

range of irrigated maize (Zwart and Bastiaanssen, 2004). The
results also indicated that WUE was mostly affected by fertilizer

levels, whereas little effect of the two irrigation levels (at no fertil-
izer application) on WUE was found. This finding is consistent
with the study by MacCarthy et al. (2010) who indicated that
WUE increased with increased N application. In water-limited
environments, grain yield and WUE response to fertilizer supply
will be closely associated with the timing and intensity of the soil
water and nutrient deficits. Several studies have shown that high
irrigation frequency increases crop yield and WUE (Hendawy
et al., 2008; Liu et al., 2013; Zhang et al., 2019), others found
that changing irrigation regimes improved crop yield and WUE
(Farre and Faci, 2009; Kresovic et al., 2016). For instance,
Kresovic et al. (2016) studied how grain yield and WUE of
maize is impacted by different irrigation regimes in Vojvodina
region. They reported that an irrigation regime of 25% water sav-
ing could ensure satisfactory maize yield and increase WUE. In
addition, the difference in the total volume of irrigation water
will significantly affect maize yield and WUE. Several studies
have found a positive linear relationship between grain yield
and water use (Istanbulluoglu et al., 2002; Kiziloglu et al.,
2009). Tossou et al. (2020) applied seasonal irrigation (from
450 to 756 mm) to maize at different crop growth stages in nor-
thern Togo, West Africa and obtained yield ranging from 1.0 to

Figure 11. Simulated average annual maize
yield distribution for the RN0 (rainfed, no nitro-
gen (N) or phosphorus (P)) (a) and DN120 (def-
icit irrigation, N:P at 120:60 kg/ha) treatments
(b) in the catchment by the SWAT model.

Figure 12. Yield gaps between the RN0 (rainfed, no nitrogen (N) or phosphorus (P)) and DN0 (deficit irrigation, no N or P) treatment (a) and between the RN0 and
DN120 (deficit irrigation, N:P at 120:60 kg/ha) treatments (b).
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2.2 t/ha. Choruma et al. (2019) applied a total irrigation volume of
600 mm divided into eight times during the growing season of
maize in the Eastern Cape, SA and their mean observed yield
was 11.3 t/ha. In our research, the irrigation timing was fixed
four times with the total irrigation volume ranging from 100 to
200 mm. This volume is quite small compared to the above fig-
ures. However, in the context of the scarcity of water available
in SA (Bruwer and Van Heerden, 1995), the suggestion of such
a small volume of irrigation seems judicious and acceptable taking
into account the financial resources of smallholder farmers in the
study area.

Spatial variation of maize yield was simulated under different
treatments at the catchment scale. The simulated results indicated
that the yield gap between the simulated yield for treatment RN0
(that is closest to actual farmers yield) and yield attainable under
deficit irrigation combined with 120N:60P kg/ha (DN120) ranged
from 75.2 to 84.5% of the maximum attainable yield, while this
was only between 5.4 and 21.1% of the attainable for the case
of only applying deficit irrigation but no fertilizer (DN0). The
yield differences are largely explained by inappropriate soil,
water, nutrient and crop management practices applied by most
farmers, having already caused serious land degradation (Wani
et al., 2009). Several studies found that proper water supply and
nitrogen application rate are major contributors to high grain
yield and WUE (Zhang et al., 2004; Fan et al., 2005b). In
Africa, the use of fertilizers for agriculture is relatively low com-
pared to other continents. The average N fertilizer use is around
20 kg/ha for Africa and about 3–5 kg/ha for sub-Saharan coun-
tries (Folberth et al., 2013). Regarding fertilizer use in the SA,
the respective rates of N and P fertilizer recommended for
maize vary from 20 to 220 kg/ha and from 6 to 130 kg/ha
(FSSA, 2003). In our research, a suggested fertilizer rate of
120N:60P kg/ha is within the above recommended range.
Twomlow et al. (2006) showed that even small quantities of nitro-
gen fertilizer can give substantial yield benefits when applied rates
are based on extensive soil testing as shown in Malawi, Zimbabwe
and SA.

Large simulated spatial yield variations in the catchment indi-
cated that maize yield is sensitive and strongly responds to differ-
ences in climate and soil conditions (Fig. 11). In the Limpopo
area, soil water holding capacity varies widely across the province,
i.e. from 20 to 140 mm, but remains overall at the low end
(Schoeman et al., 2013). In conjunction with the different rainfall
patterns and variability, the wide variation of the soil–water hold-
ing capacity markedly affects water availability to maize in the
catchment. Several studies also indicated that climate variability
has been among the most important determinants of maize
yield and their variability in African countries (Rötter et al.,
1997; Omoyo et al., 2015; Peter et al., 2019).

The increases in yield between rainfed (RN0) and deficit irriga-
tion (DN0) were found to be much smaller than between RN0 and
deficit irrigation combined with fertilizer (DN120). This means
that the use of irrigation only cannot improve maize productivity
significantly in Limpopo. Apart from insufficient fertilizer applica-
tion, lacking crop protection, inappropriate variety choice and
planting dates are further factors that currently keep actual farm-
ers’ yield at a low level, which cannot be overcome by using deficit
irrigation alone. The application of deficit irrigation without add-
ing fertilizer can only be seen as an immediate or interim solution
for smallholders who produce crops under rainfed and subsistence
conditions. At the other end of the spectrum is the combination of
deficit irrigation and fertilizer rates of 120N:60P giving fairly high

yield (DN120, average annual yield of 5.4 t/ha) which are compar-
able to actual average yield obtained by commercial maize farmers
applying best practices in the study area.

Limitations of the study

The modelling system presented in this study provides an
approach through linking the irrigation demand of crops to
enhance the prediction of hydrological components and crop
yield in the watershed. Maize is used as reference crop to quantify
production potential and WUE indicators in the Limpopo and its
adjacent areas. Simulation of maize growth and yield under differ-
ent BMPs was carried out for a 35-year period (1985–2020).
Observed daily weather data used for the DSSAT model was dir-
ectly derived from local authority (ARC–ISCW), while the SWAT
model used both the climate data from ARC–ISCW and COPER
sources. The data obtained from COPPER were aggregated in
daily time steps for the local time zone and corrected towards a
finer topography at a 0.1° spatial resolution. The weather data
obtained from different sources can lead to uncertainty in
model results. The effect of uncertainty in precipitation for dis-
charge calculations and crop yield simulations can be consider-
able (Biemans et al., 2009; Van et al., 2013).

The datasets that were utilized for crop model calibration and
validation were taken from a fairly limited environmental (soil
and climate) data space, not covering the entire range of conditions
analysed and therefore contributing to some uncertainty in the
results. Finally, among many possible combinations of water and
fertilizer management for a given crop/ crop cultivar, we only
selected a limited amount of combinations and might have over-
looked other possible combinations that would result in similar or
even higher improvements in the productivity and WUE of maize.

Future research needs

The models were set up to simulate maize growth and yield as a
proxy for all arable crops because maize is the staple crop in this
area and because of its high water demand in relation to other cer-
eals suited to semi-arid environments, such as sorghum. However,
this assumption will cause inaccuracies in the water balance calcula-
tion of the basin. In the future, more realistic crop rotations such as
maize–soybeans or maize–peanuts should be implemented in the
models and set-up of simulation runs. Moreover, the effect of future
climate change scenarios on spatial yield patterns should be assessed
in order to estimate changes in future productivity and find effective
subregion-specific (local) adaptation measures. Soils in the study
area are largely sandy, causing the function of the soil as a buffer
for bridging water deficits in dry periods limited (Table 1). As has
been reported for a climate impact study on barley, on coarse
soils the increasing variability in precipitation and temperatures
can have an increasingly negative effect on productivity (Rötter
et al., 2011). Different soil amendments that increase soil water
holding capacity should therefore be investigated and their potential
adaptive effect quantified (Folberth et al., 2013; Palosuo et al., 2021).

Conclusions

In this research, the input/output data of SWAT and DSSAT mod-
els were coupled to simulate maize production and soil water
dynamics. Results showed that the ‘coupled model’ satisfactorily
predicted changes in SWC as well as maize growth and yield.
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Twelve different ‘technology treatments’ (management prac-
tices) were developed to assess their impacts on maize yield at
the field and catchment scale under baseline climatic conditions
(1985–2020), with the purpose of delivering yield improvement
in Limpopo province and some of its adjacent regions. When
implementing treatment DN120, the results indicated that a com-
bination of deficit irrigation (100 mm) with a high fertilizer appli-
cation rate (120N:60P) would be most effective in increasing
maize yield at field and catchment scales.

Further studies are needed to evaluate and apply this model-
ling approach at different catchment levels to give practical deci-
sions about crop improvement and management of maize
cultivation under rainfed conditions. Particular emphasis should
be put on risk management strategies for maize cultivation
under climate change conditions.
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