MINIMAL INTERCHANGES OF (0, 1)-MATRICES AND DISJOINT CIRCUITS IN A GRAPH

DAVID W. WALKUP

1. Introduction. In this paper we obtain a partial answer in graph-theoretic form to a question raised by Ryser (2, p. 68) concerning the minimal number of interchanges required to transform equivalent (0,1)-matrices into each other.

For given positive integers m and n we consider the collection of $m \times n$ (0,1)-matrices $A=\left\{a_{i j}\right\}$, i.e. $a_{i j}=0$ or 1 for $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$. We say the (0,1)-matrices $A=\left\{a_{i j}\right\}$ and $B=\left\{b_{i j}\right\}$ are equivalent and write $A \sim B$ if and only if they have the same row and column sums, that is, if and only if

$$
r_{i}=\sum_{j} a_{i j}=\sum_{j} b_{i j}, \quad s_{j}=\sum_{i} a_{i j}=\sum_{i} b_{i j} .
$$

We note immediately that $A \sim B$ if and only if $B-A \sim O$, where O designates the $m \times n$ matrix of zeros.

Given a $(0,1)$-matrix A, we can obtain an equivalent one, A^{\prime}, by finding a 2×2 minor of A of the form

$$
\begin{aligned}
& 0 \ldots 1 \\
& \cdot \\
& 1 \\
& 1 \ldots
\end{aligned}
$$

and replacing it by one of form

$$
\begin{aligned}
& 1 \ldots 0 \\
& \cdot \\
& \cdot \\
& 0 \\
& 0
\end{aligned} .
$$

or vice versa. Ryser calls this transformation from A to A^{\prime} an interchange and shows (1;2, p. 68) that any matrix equivalent to A may be obtained from it by a suitable sequence of interchanges. We shall show the following:

Theorem 1. If A and B are equivalent $(0,1)$-matrices, then B can be obtained from A by a sequence of

$$
\begin{equation*}
\frac{1}{2} \alpha(A, B)-\beta(G) \tag{1.1}
\end{equation*}
$$

and no fewer interchanges, where $\alpha(A, B)$ is the number of positions at which
A and B disagree, G is the directed, bipartite graph derived from $B-A \sim O$, and $\beta(G)$ is the maximum number of edge disjoint circuits in G.

Experimentation with a number of reasonably small examples has shown that determination of the maximum number of interchanges by evaluating $\beta(G)$ is considerably easier than by a direct examination of the matrices A and B. However, no simple algorithm for computing $\beta(G)$ has been found.

In §2, we develop some convenient methods and notations concerning graphs and matrices. In §3, we reprove Ryser's result that a sequence of interchanges exists, showing, in fact, that a sequence of length (1.1) exists. In §4, we prove a general result on graphs and show it implies that (1.1) is a lower bound for the number of interchanges.

2. Preliminaries.

Definition 1. By a graph G with multiplicities, or graph for short, we mean a set $V=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ of vertices, and an integer-valued function F on the ordered pairs of $V \times V$ satisfying $F\left(v_{i}, v_{j}\right)=-F\left(v_{j}, v_{i}\right)$, so that in particular $F\left(v_{i}, v_{i}\right)=0$. We designate by © the collection of ordered pairs $\left(v_{i}, v_{j}\right)$ of $V \times V$ for which $F\left(v_{i}, v_{j}\right)>0$. We choose to write the elements of \mathfrak{F} in the form $E\left(v_{i}, v_{j}\right)$ and say that $E\left(v_{i}, v_{j}\right)$ is an arc of G directed from v_{i} to v_{j} of multiplicity $F\left(v_{i}, v_{j}\right)$.

A graph with multiplicities may be thought of, if desired, as an undirected loopless graph where $F\left(v_{i}, v_{j}\right) \neq 0$ is a flux from v_{i} to v_{j} through the only edge connecting v_{i} and v_{j}.

The class of all graphs with given vertex set V is designated by $(5)=(5)(V)$. Throughout we shall suppose that V is arbitrary but fixed. Of special interest is the subclass $\mathscr{S b}^{*} \subset \mathfrak{G}(V)$ consisting of basic graphs-graphs with arcs of multiplicity 1 only. Basic graphs may be thought of as directed graphs with at most one arc, regardless of direction, connecting any distinct vertices. Given any basic graph G^{*} from (5)*, we define a subset $\left(\mathbb{J}\left(G^{*}\right)\right.$ of $(5)(V)$ as follows: G is in $\mathfrak{b j}\left(G^{*}\right)$ if and only if for each $\operatorname{arc} E\left(v_{i}, v_{j}\right)$ of G either $E\left(v_{i}, v_{j}\right)$ or $E\left(v_{j}, v_{i}\right)$ is an arc of G^{*}.

Proposition 1. If G_{1} and G_{2} are graphs in (5) with functions F_{1} and F_{2}, then the function F given by

$$
F\left(v_{i}, v_{j}\right)=F_{1}\left(v_{i}, v_{j}\right)+F_{2}\left(v_{i}, v_{j}\right)
$$

is the function of a graph G which we may call the sum $G_{1}+G_{2} . \mathfrak{G 5}(V)$ is an additive group under this composition and each $\left(\mathbb{H}\left(G^{*}\right)\right.$ is a subgroup.

We shall say that a sum $\sum G_{i}$ of graphs in a class $(G)\left(G^{*}\right)$ is conjoint if for each $\operatorname{arc} E$ of G^{*} the non-zero integers $F_{i}(E)$ have the same sign, that is, if there is no cancellation in forming the sum $F=\sum F_{i}$ for G, or if, in the undirected graph interpretation, all fluxes reinforce. If, in fact, for each E in G^{*} at most one $F_{i}(E)$ is non-zero, we shall say that the sum $\sum G_{i}$ is disjoint.

It will be seen that conjointness in a sum of graphs is thus a generalization of the usual concept of edge disjointness. By a circuit of length r (an r-circuit) we mean a graph in (54* having exactly $r \geqslant 3$ distinct arcs

$$
E\left(p_{1}, p_{2}\right), E\left(p_{2}, p_{3}\right), \ldots, E\left(p_{r}, p_{1}\right)
$$

joining r distinct vertices $p_{1}, p_{2}, \ldots, p_{r}$ of V.
We say a graph is conservative if the sum of multiplicities of arcs leaving each vertex equals the sum of multiplicities of entering arcs. Any circuit is conservative, but also:

Proposition 2. If the graph G of $\mathfrak{G H}\left(G^{*}\right)$ is conservative, it can be written as a conjoint sum of circuits in ${ }^{(5)}\left(G^{*}\right)$.

If we wish to consider bipartite graphs, we can suppose the vertex set V is the disjoint union of sets $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, $m+n=t$, and restrict attention to the subclass $\mathbb{G j}^{\circ} \subset \mathfrak{b j}(V)$ containing those graphs which have no arcs connecting two points in X or two points in Y. We shall suppose the integers m and n and the sets X and Y understood when considering a class ${\text { (} 5{ }^{\circ}}^{0}$. The definitions and results on circuits, conservative graphs, and subgroups $(5)\left(G^{*}\right)$ will carry over to the bipartite case.

If $\left(55^{\circ}\right.$ is the class of bipartite graphs on vertex sets X and Y of m and n elements respectively, we can define for each $m \times n$ matrix of integers $A=\left\{a_{i j}\right\}$ the graph $G(A)$ in 515° whose function F is given by $F\left(x_{i}, y_{j}\right)=$ $-F\left(y_{j}, x_{i}\right)=a_{i j}$. The correspondence $A \leftrightarrow G(A)$ is an isomorphism between the additive group of $m \times n$ matrices and the group $\mathfrak{G j}^{\circ}$. Accordingly, we shall speak of these matrices and graphs interchangeably when convenient.

Proposition 3. An $m \times n$ matrix A is equivalent to zero if and only if $G(A)$ is conservative.

We note that if the graph $G(C)$ in $\left(55^{0}\right.$ corresponding to the matrix C is an r-circuit, we may permute the rows and columns of C to obtain an $m \times n$ matrix

T	O
O	O

where T is an $r \times r$ matrix with $r 1$'s on the diagonal, $r-1-1$'s on the superdiagonal, and a -1 in the lower left. Propositions 2 and 3 combine to give:

Proposition 4. Every $m \times n$ matrix A equivalent to zero is the conjoint sum of bipartite circuits. If the only entries of A are 0,1 , and -1 , the sum is disjoint.
3. Proof that (1.1) can be attained. For any conservative graph G in some class $\left(\mathbb{F}\left(G^{*}\right)\right.$, let $\alpha=\alpha(G)$ be the sum of multiplicities of G, and let $\beta=\beta(G)$ be the largest integer for which G can be written as a conjoint sum of β circuits.

It is easily seen that $\alpha(G)$ and $\beta(G)$ are independent of the particular choice of G^{*}. In the remainder of this section only, we direct our attention exclusively to a class $\left(55^{\circ}{ }^{\circ}\right.$ of bipartite graphs. We note that if A and B are equivalent $(0,1)$-matrices, then $\alpha(A, B)$, the number of disagreements between A and B, equals $\alpha(G(B-A))$.

Lemma 1. If A and B are equivalent $(0,1)$-matrices, then there exists a sequence

$$
A=A_{0}, A_{1}, A_{2}, \ldots, A_{\beta}=B, \quad \beta=\beta(G(B-A))
$$

of equivalent $(0,1)$-matrices such that each difference

$$
C_{i}=A_{i}-A_{i-1}
$$

is a circuit (of length r_{i}) and

$$
\begin{equation*}
B-A=\sum_{j=1}^{\beta} C_{j} \tag{3.1}
\end{equation*}
$$

is a disjoint sum. Moreover,

$$
\alpha(A, B)=\sum_{i=1}^{\beta} r_{i} .
$$

Proof. $B-A$ satisfies the stronger conditions of Proposition 4; hence the disjoint sum (3.1) exists. The partial sums

$$
A_{i}=A+\sum_{j=1}^{i} C_{j}
$$

are all equivalent to A, since the C_{i} are equivalent to zero. The disjointness in (3.1) and the fact that A and B are $(0,1)$-matrices imply that the A_{i} are also (0,1)-matrices.

Lemma 2. If A and B are equivalent $(0,1)$-matrices and $C=B-A$ is an r-circuit, then $r=2 s$, and there exists a sequence

$$
\begin{equation*}
A=A_{0}, A_{1}, A_{2}, \ldots, A_{s-1}=B \tag{3.2}
\end{equation*}
$$

of equivalent $(0,1)$-matrices for which the differences

$$
D_{i}=A_{i}-A_{i-1}
$$

are circuits of length 4 ; i.e. A_{i} and A_{i-1} differ only by an interchange.
Proof. All graphs in $\left(5^{\circ}{ }^{\circ}\right.$ are bipartite; hence the circuit $B-A$ has even length $r=2 s$. A weak result

$$
B=A+\sum_{j=1}^{s-1} D_{i}^{\prime}
$$

for certain 4-circuits $D_{i}{ }^{\prime}$ follows easily upon examination of Figure 1. Note

Figure 1
that the $D_{i}{ }^{\prime}$ will necessarily visit vertices in X and Y alternately and hence are indeed elements of $\left(\xi^{\circ}\right.$. We seek a reordering D_{i} of $D_{i}{ }^{\prime}$ so that

$$
A_{i}=A+\sum_{j=1}^{i} D_{j}
$$

are (0,1)-matrices. Clearly the A_{i} will be equivalent. The sum

$$
H=\sum_{j=2}^{s-1} D_{j}{ }^{\prime}
$$

is a $(2 s-2)$-circuit in $\mathfrak{G j}^{0}$, and a matrix of zeros and ones. We assert that either
(i) $A, A+D_{1}{ }^{\prime}, A+D_{1}{ }^{\prime}+H=B$ or
(ii) $A, A+H, A+H+D_{1}{ }^{\prime}=B$
is a sequence of equivalent $(0,1)$-matrices. The only possible difficulty is the value of the middle terms for the ordered pair $\left(x_{i}, y_{j}\right)$ corresponding to E in Figure 1. But D_{1}^{\prime} and H take opposite values for this pair; hence exactly one of $A+D_{1}^{\prime}$ and $A+H$ is a (0,1)-matrix. By applying the same argument to the circuit H instead of C, we may place additional terms between $A+D_{1}{ }^{\prime}$ and B if (i) holds or between A and $A+H$ if (ii) holds. Repeating this process a sufficient number of times, we shall reach simultaneously the sequence (3.2) and the proper reordering of the $D_{i}{ }^{\prime}$.

Lemma 3. If A and B are equivalent (0,1)-matrices, there exists a sequence

$$
\begin{equation*}
A=A_{0}, A_{1}, A_{2}, \ldots, A_{k}=B \tag{3.3}
\end{equation*}
$$

of equivalent $(0,1)$-matrices for which the differences $A_{i}-A_{i-1}$ are 4 -circuits and

$$
k=\frac{1}{2} \alpha(A, B)-\beta(G(B-A))
$$

Proof. The existence of the sequence (3.3) follows from Lemmas 1 and 2. The value of k derives from the computation

$$
\sum_{i=1}^{\beta}\left(\frac{1}{2} r_{i}-1\right)=\frac{1}{2} \sum_{i=1}^{\beta} r_{i}-\sum_{i=1}^{\beta} 1=\frac{1}{2} \alpha(A, B)-\beta .
$$

4. Proof that (1.1) is a lower bound. Let G be any conservative graph in a subgroup $\mathfrak{G}\left(G^{*}\right) \subset(5)$. We have defined $\alpha(G)$ and $\beta(G)$. For any positive integer $\delta \geqslant 3$ let $\gamma=\gamma(G, \delta)$ be the smallest integer for which G can be written
as the sum of γ circuits from $\left(5 G^{*}\right)$ of length δ or less. If G cannot be so written, set $\gamma=\infty$.

Theorem 2. If G is a finite, conservative graph in $(5)\left(G^{*}\right)$, then

$$
\gamma(G, \delta) \geqslant \frac{\alpha(G)-2 \beta(G)}{\delta-2}
$$

Proof. We need consider the case $\gamma<\infty$ only. We fix δ and define the function $\phi(G)$ so that

$$
\phi(G)=\alpha(G)-2 \beta(G)-(\delta-2) \cdot \gamma(G)
$$

We must show that

$$
\begin{equation*}
\phi(G) \leqslant 0 \quad \text { for all conservative } G \text { in }\left(\oiint\left(G^{*}\right)\right. \tag{4.1}
\end{equation*}
$$

Suppose (4.1) is false. Choose a conservative graph G_{0} from (55 (G^{*}) for which $\alpha\left(G_{0}\right)$ is as small as possible subject to

$$
\begin{equation*}
\phi\left(G_{0}\right)>0 \tag{4.2}
\end{equation*}
$$

Since the empty graph satisfies (4.1), we have

$$
\alpha\left(G_{0}\right)>0, \quad \beta\left(G_{0}\right)>0, \quad \gamma\left(G_{0}\right)>0
$$

Let

$$
\begin{equation*}
G_{0}=\sum_{i=1}^{\gamma} D_{i} \tag{4.3}
\end{equation*}
$$

be some expression for G_{0} as a sum of a minimum number of circuits of $\mathscr{H}^{5}\left(G^{*}\right)$ of length δ or less. For each D_{i} let $q\left(D_{i}\right)$ be the number of arcs of D_{i} which coincide (with proper orientation) with an arc of G_{0}. There must exist a D_{k} for which $q\left(D_{k}\right) \geqslant \delta-1$ for otherwise we would have

$$
\alpha\left(G_{0}\right) \leqslant \sum_{i=1}^{\gamma} q\left(D_{i}\right) \leqslant(\delta-2) \cdot \gamma\left(G_{0}\right)
$$

in violation of (4.2).
We suppose first that $q\left(D_{k}\right)=\delta$. Consider the conservative graph

$$
\begin{equation*}
G^{\prime}=\sum_{\substack{i=1 \\(i \neq k)}}^{\gamma\left(G_{0}\right)} D_{i} \tag{4.4}
\end{equation*}
$$

By exhibiting a specific sum for G^{\prime}, (4.4) shows that

$$
\begin{equation*}
\gamma\left(G_{0}\right) \geqslant \gamma\left(G^{\prime}\right)+1 \tag{4.5}
\end{equation*}
$$

Further, let

$$
\begin{equation*}
G^{\prime}=\sum_{i=1}^{\beta\left(G^{\prime}\right)} C_{i} \tag{4.6}
\end{equation*}
$$

be a representation of G^{\prime} as a conjoint sum of a maximal number of circuits.

Then, because $q\left(D_{k}\right)=\delta$,

$$
G_{0}=\sum_{i=1}^{\beta\left(G^{\prime}\right)} C_{i}+D_{k}^{\prime}
$$

is a conjoint sum for G_{0}, implying

$$
\begin{equation*}
\beta\left(G_{0}\right) \geqslant \beta\left(G^{\prime}\right)+1 \tag{4.7}
\end{equation*}
$$

Combining (4.5), (4.7), and $\alpha\left(G_{0}\right)=\alpha\left(G^{\prime}\right)+\delta$, we conclude that

$$
\begin{equation*}
\phi\left(G_{0}\right) \leqslant \phi\left(G^{\prime}\right) \tag{4.8}
\end{equation*}
$$

which contradicts the choice of G_{0} as a smallest conservative graph satisfying (4.2). In the same way, the assumption $q\left(D_{k}\right)=\delta-1$ for a circuit D_{k} of length $\delta-1$ leads to (4.8) with strict inequality.

As a third and last alternative, we assume there exists a circuit D_{k} in (4.3) of length δ for which $q\left(D_{k}\right)=\delta-1$. Let E be the only arc of D_{k} which does not coincide with an arc of G_{0}. Again we form G^{\prime} as in (4.4) and find an expansion (4.6). We see that G^{\prime} is again in $(5)\left(G^{*}\right)$. In $G^{\prime}, \delta-1$ multiplicities of G_{0} have been decreased, and one corresponding to E^{-}, the arc reverse to E, has been increased (possibly from zero to one). Thus

$$
\begin{equation*}
\alpha\left(G_{0}\right)=\alpha\left(G^{\prime}\right)+\delta-2 . \tag{4.9}
\end{equation*}
$$

As before, (4.5) must hold. Let C_{h} be any circuit in (4.6) which has an arc coinciding with E^{-}. Now $C_{h}+D_{k}$ may not be a circuit, but it is a non-vacuous, conservative graph which, by Proposition 2, is the conjoint sum

$$
C_{h}+D_{k}=\sum_{i=1}^{\epsilon} \widetilde{C}_{i}
$$

of at least one circuit. Therefore, we have

$$
G_{0}=\sum_{\substack{i=1 \\ i \neq k}}^{\beta\left(G^{\prime}\right)} C_{i}+\sum_{i=1}^{\epsilon} \tilde{C}_{i},
$$

and this sum is easily seen to be conjoint. Accordingly,

$$
\begin{equation*}
\beta\left(G_{0}\right) \geqslant \beta\left(G^{\prime}\right) . \tag{4.10}
\end{equation*}
$$

But (4.5), (4.9), and (4.10) imply (4.8) again, and we are forced to conclude that (4.1) always holds. This concludes the proof of Theorem 2.

Theorem 1 now follows directly from Lemma 3 and Theorem 2 for $\delta=4$, (5) $\left(G^{*}\right)=$ G5 $^{\circ}$.

A theorem similar to Theorem 1 can be proved for the case $\delta=3$.
Theorem 3. If G is a conservative graph in $(\mathbb{J}(V), \alpha(G)$ is the sum of multiplicities of arcs of G, and $\beta(G)$ is the largest integer for which G can be written as a conjoint sum of circuits, then G can be written as the sum of

$$
\begin{equation*}
\alpha(G)-2 \beta(G) \tag{4.11}
\end{equation*}
$$

and no fewer 3-circuits from $\mathfrak{F}(V)$.
Proof. Theorem 2 states that (4.11) is a lower bound. The proof that (4.11) can be realized follows from Figure 2 in the same way that Theorem 1 and Lemmas 1, 2, and 3 follow from Figure 1.

Figure 2

References

1. H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Can. J. Math., 9 (1957), 371-377.
2. -Combinatorial mathematics, The Carus Mathematical Monographs no. 14 (Mathematical Association of America, 1963).

Boeing Scientific Research Laboratories, Seattle, Washington

