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1. Introduction. In this paper we obtain a partial answer in graph-theoretic 
form to a question raised by Ryser (2, p. 68) concerning the minimal number 
of interchanges required to transform equivalent (0, l)-matrices into each 
other. 

For given positive integers m and n we consider the collection of m X n 
(0, l)-matrices A = {a^}, i.e. atj = 0 or 1 for 1 < i < w, 1 < j < n. 
We say the (0, l)-matrices A = {&*;•} and B = {btj) are equivalent and write 
A ~ B \l and only if they have the same row and column sums, that is, if 
and only if 

We note immediately that A ~ B iî and only if B — A ~ 0, where 0 desig
nates the m X n matrix of zeros. 

Given a (0, 1)-matrix A, we can obtain an equivalent one, A\ by finding 
a 2 X 2 minor of A of the form 

0 . . 1 

1 . . 0 

and replacing it by one of form 

1 . . 0 

0 . . 1 

or vice versa. Ryser calls this transformation from A to A' an interchange and 
shows (1; 2, p. 68) that any matrix equivalent to A may be obtained from it 
by a suitable sequence of interchanges. We shall show the following : 

THEOREM 1. If A and B are equivalent (0, l)-matrices, then B can be obtained 
from A by a sequence of 

(1.1) fc(A,B) - /3(G) 

and no fewer interchanges, where a (A, B) is the number of positions at which 
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A and B disagree, G is the directed, bipartite graph derived from B — A ~0, 
and /3(G) is the maximum number of edge disjoint circuits in G. 

Experimentation with a number of reasonably small examples has shown 
that determination of the maximum number of interchanges by evaluating 
/3(G) is considerably easier than by a direct examination of the matrices A 
and B. However, no simple algorithm for computing /3(G) has been found. 

In §2, we develop some convenient methods and notations concerning graphs 
and matrices. In §3, we reprove Ryser's result that a sequence of interchanges 
exists, showing, in fact, that a sequence of length (1.1) exists. In §4, we prove 
a general result on graphs and show it implies that (1.1) is a lower bound 
for the number of interchanges. 

2. Preliminaries. 

Definition 1. By a graph G with multiplicities, or graph for short, we mean a 
set V = {vi, V2, . . • , vt} of vertices, and an integer-valued function F on the 
ordered pairs of F X F satisfying F(vu Vj) = —F(VJ, v%), so that in particular 
F(vu v^ = 0. We designate by S the collection of ordered pairs (vu Vj) of 
V X F for which F(vu Vj) > 0. We choose to write the elements of (§ in the 
form E(vi, v3) and say that E(vu v3) is an arc of G directed from vt to Vj of 
multiplicity Fivuvj). 

A graph with multiplicities may be thought of, if desired, as an undirected 
loopless graph where F(vt, Vj) 7^ 0 is a flux from vt to Vj through the only edge 
connecting vt and Vj. 

The class of all graphs with given vertex set V is designated by @ = @(F). 
Throughout we shall suppose that V is arbitrary but fixed. Of special interest 
is the subclass ©* C ®(V) consisting of basic graphs—graphs with arcs of 
multiplicity 1 only. Basic graphs may be thought of as directed graphs with 
at most one arc, regardless of direction, connecting any distinct vertices. 
Given any basic graph G* from ©*, we define a subset @(G*) of ©(F) as 
follows: G is in @(G*) if and only if for each arc E{vi, v3) of G either E(yu Vj) 
or E(VJ, Vf) is an arc of G*. 

PROPOSITION 1. If Gi and G2 are graphs in @ with functions Fx and F2, then 
the function F given by 

F(vi,vj) = FxivuVj) + F2(vi,vj) 

is the function of a graph G which we may call the sum G\ + G2. &(V) is an 
additive group under this composition and each @ (G*) is a subgroup. 

We shall say that a sum J^Gt of graphs in a class @(G*) is conjoint if for 
each arc E of G* the non-zero integers Ft(E) have the same sign, that is, if 
there is no cancellation in forming the sum F = ^Ft for G, or if, in the un
directed graph interpretation, all fluxes reinforce. If, in fact, for each E in 
G* at most one Fi(E) is non-zero, we shall say that the sum XG* is disjoint. 
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It will be seen that conjointness in a sum of graphs is thus a generalization 
of the usual concept of edge disjointness. By a circuit of length r (an r-circuit) 
we mean a graph in @* having exactly r > 3 distinct arcs 

joining r distinct vertices pi, p2, . . . , pr of V. 
We say a graph is conservative if the sum of multiplicities of arcs leaving 

each vertex equals the sum of multiplicities of entering arcs. Any circuit is 
conservative, but also: 

PROPOSITION 2. If the graph G of ®(G*) is conservative, it can be written as 
a conjoint sum of circuits in & (G*). 

If we wish to consider bipartite graphs, we can suppose the vertex set V is 
the disjoint union of sets X = {xu x2, . . . , xm) and Y = {3>i, 3>2, . . . , 3>w}, 
m + n = t, and restrict attention to the subclass ®° C ®(V) containing those 
graphs which have no arcs connecting two points in X or two points in Y. 
We shall suppose the integers m and n and the sets X and Y understood when 
considering a class ®°. The definitions and results on circuits, conservative 
graphs, and subgroups ®(G*) will carry over to the bipartite case. 

If @° is the class of bipartite graphs on vertex sets X and Y of m and n 
elements respectively, we can define for each m X n matrix of integers 
A = {dij} the graph G (A) in ®° whose function F is given by F(xuyj) = 
— F(yjt xt) = dij. The correspondence A <r^G(A) is an isomorphism between 
the additive group of m X n matrices and the group @°. Accordingly, we shall 
speak of these matrices and graphs interchangeably when convenient. 

PROPOSITION 3. An m X n matrix A is equivalent to zero if and only if G {A) 
is conservative. 

We note that if the graph G{C) in ©° corresponding to the matrix C is an 
r-circuit, we may permute the rows and columns of C to obtain an m X n 
matrix 

T 0 

0 0 

where T is an r X r matrix with r l 's on the diagonal, r — 1 — l's on the 
superdiagonal, and a —1 in the lower left. Propositions 2 and 3 combine 
to give: 

PROPOSITION 4. Every m X n matrix A equivalent to zero is the conjoint sum 
of bipartite circuits. If the only entries of A are 0 , 1 , and —1, the sum is disjoint. 

3. Proof that (1.1) can be attained. For any conservative graph G in some 
class ®(G*), let a = a(G) be the sum of multiplicities of G, and let (3 = 13(G) 
be the largest integer for which G can be written as a conjoint sum of 13 circuits. 
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It is easily seen that a(G) and /3(G) are independent of the particular choice 
of G*. In the remainder of this section only, we direct our attention exclusively 
to a class @° of bipartite graphs. We note that if A and B are equivalent 
(0, 1)-matrices, then a(A, B), the number of disagreements between A and B, 
equals a(G(B - A)). 

LEMMA 1. If A and B are equivalent (0, I)-matrices, then there exists a sequence 

A = Ao, Al9 A2,...,Ap=B, p = 0(G(B - A)), 

of equivalent (0, 1) -matrices such that each difference 

is a circuit {of length r{) and 

(3.1) B - A = £ Cj 

is a disjoint sum. Moreover, 

a(A,B) = £ rt. 
2 = 1 

Proof. B — A satisfies the stronger conditions of Proposition 4; hence the 
disjoint sum (3.1) exists. The partial sums 

At = A+ S Cj 

are all equivalent to A, since the Ct are equivalent to zero. The disjointness 
in (3.1) and the fact that A and B are (0, l)-matrices imply that the A t are 
also (0, 1)-matrices. 

LEMMA 2. If A and B are equivalent (0, 1)-matrices and C = B — A is an 
r-circuit, then r — 2s, and there exists a sequence 

(3.2) A = Ao,A1,A2,...,As_1 = B 

of equivalent (0, 1)-matrices for which the differences 

Dt = A t - At-i 

are circuits of length 4; i.e. A t and A ^_i differ only by an interchange. 

Proof. All graphs in @° are bipartite; hence the circuit B — A has even 
length r = 2s. A weak result 

B = A + £ D/ 

for certain 4-circuits D / follows easily upon examination of Figure 1. Note 
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FIGURE 1 

length of C = 2 s 

that the D/ will necessarily visit vertices in X and Y alternately and hence 
are indeed elements of ®°. We seek a reordering Dt of D/ so that 

are (0, l)-matrices. Clearly the A t will be equivalent. The sum 

H = E D> 
j=2 

is a (2s — 2)-circuit in @°, and a matrix of zeros and ones. We assert that either 

(i) A, A + £>/, A + Dx' + H = B or 

(ii) A, A + H, A + H + Dx' = B 

is a sequence of equivalent (0, 1)-matrices. The only possible difficulty is the 
value of the middle terms for the ordered pair (xu y3) corresponding to E in 
Figure 1. But D\ and H take opposite values for this pair; hence exactly one 
of A + D\ and A + H is a (0, 1)-matrix. By applying the same argument 
to the circuit H instead of C, we may place additional terms between A + D±

f 

and B if (i) holds or between A and A + H if (ii) holds. Repeating this process 
a sufficient number of times, we shall reach simultaneously the sequence (3.2) 
and the proper reordering of the D/. 

LEMMA 3. If A and B are equivalent (0, \)-matrices, there exists a sequence 

(3.3) A = A0,AuA2,...,Ak = B 

of equivalent (0, 1)-matrices for which the differences At — A *_i are ^-circuits and 

k =$a(A,B) - P(G(B -A)). 

Proof. The existence of the sequence (3.3) follows from Lemmas 1 and 2. 
The value of k derives from the computation 

Z ( i r « - l ) = j 2 r*~ £> l = k«(A,B)-p. 

4. Proof that (1.1) is a lower bound. Let G be any conservative graph in 
a subgroup ®(G*) C ®. We have defined a(G) and /3(G). For any positive 
integer 8 > 3 let y = 7 (G, ô) be the smallest integer for which G can be written 
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as the sum of y circuits from @ (G*) of length 8 or less. If G cannot be so written, 
set 7 = oo . 

THEOREM 2. If G is a finite, conservative graph in @(G*), then 

a(G) - 20(G) 
T(G,Ô)> S _ 2 

Proof. We need consider the case y < oo only. We fix 5 and define the 
function 4>(G) so that 

0(G) = <*(G) - 2 0 ( G ) - ( Ô - 2 ) . T ( G ) . 

We must show that 

(4.1) 0(G) < 0 for all conservative G in ®(G*). 

Suppose (4.1) is false. Choose a conservative graph G0 from @(G*) for which 
a (Go) is as small as possible subject to 

(4.2) <KGo) > 0. 

Since the empty graph satisfies (4.1), we have 

a(G0) > 0, 0(Go) > 0, 7(Go) > 0. 

Let 

(4.3) Go = £ D< 

be some expression for G0 as a sum of a minimum number of circuits of @ (G*) 
of length <5 or less. For each Dt let q(Di) be the number of arcs of Dt which 
coincide (with proper orientation) with an arc of Go. There must exist a Dk 

for which q(Dk) > 8 — 1 for otherwise we would have 

«(Go)< Z S (£<)< ( 5 - 2 ) . 7 ( G 0 ) , 

in violation of (4.2). 
We suppose first that q(Dk) = 8. Consider the conservative graph 

7«?0) 

(4.4) G' = £ Dt. 
1 = 1 

By exhibiting a specific sum for G', (4.4) shows that 

(4.5) y (Go) > y{Gf) + 1. 

Further, let 

(4.6) G ' = E C i 
t = i 

be a representation of Gr as a conjoint sum of a maximal number of circuits. 

https://doi.org/10.4153/CJM-1965-081-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-081-0


CIRCUITS IN A GRAPH 837 

Then, because q(Dk) = 5, 

G o = E ^ + Dk 

is a conjoint sum for G0, implying 

(4.7) 0(Go) > 0(G') + 1. 

Combining (4.5), (4.7), and a (Go) = a (Gr) + 8, we conclude that 

(4.8) 0(Go) < *(G0, 

which contradicts the choice of G0 as a smallest conservative graph satisfying 
(4.2). In the same way, the assumption q(Dk) = <5 — 1 for a circuit Dk of 
length 8 — 1 leads to (4.8) with strict inequality. 

As a third and last alternative, we assume there exists a circuit Dk in (4.3) 
of length 8 for which q(Dk) = 3 — 1. Let E be the only arc of Dk which does 
not coincide with an arc of Go. Again we form Gr as in (4.4) and find an ex
pansion (4.6). We see that G' is again in ®(G*). In G'y 8 — 1 multiplicities of 
Go have been decreased, and one corresponding to E~, the arc reverse to E, 
has been increased (possibly from zero to one). Thus 

(4.9) a(G0) = a (Gf) +8-2. 

As before, (4.5) must hold. Let Ch be any circuit in (4.6) which has an arc 
coinciding with E~. Now Ch + Dk may not be a circuit, but it is a non-vacuous, 
conservative graph which, by Proposition 2, is the conjoint sum 

Ch + Dk = 2) Ct 

of at least one circuit. Therefore, we have 

0(0") « 

Go = Z^Ê Ci-\- 2LJ Cu 

and this sum is easily seen to be conjoint. Accordingly, 

(4.10) 0(Go) > 0(G'). 

But (4.5), (4.9), and (4.10) imply (4.8) again, and we are forced to conclude 
that (4.1) always holds. This concludes the proof of Theorem 2. 

Theorem 1 now follows directly from Lemma 3 and Theorem 2 for 8 = 4, 
®(G*) = ®°. 

A theorem similar to Theorem 1 can be proved for the case 5 = 3 . 

THEOREM 3. If G is a conservative graph in ®(F), a(G) is the sum of multi
plicities of arcs of G, and 0(G) is the largest integer for which G can be written 
as a conjoint sum of circuits, then G can be written as the sum of 
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(4.11) a (G) - 2(3 (G) 

and no fewer ^-circuits from @ ( V). 

Proof. Theorem 2 states that (4.11) is a lower bound. The proof that (4.11) 
can be realized follows from Figure 2 in the same way that Theorem 1 and 
Lemmas 1,2, and 3 follow from Figure 1. 

length of C = r 

FIGURE 2 
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