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Abstract. Let Tlt...,Tn be continuous representations of a o--compact separable
locally compact amenable group G as measure-preserving transformations of a
non-atomic separable probability space (X, fi, m). Let (Kn) be a right Ftflner
sequence of compact sets in G. If T, , . . . , Tn are pairwise commuting in the sense
that Ti(g)Tj(h) = Tj(h)Tj(g) for i^j and g, heG, then necessary and sufficient
conditions can be given, in terms of the ergodicity of certain tensor products, for
the following to hold: for all F , , . . . , Fn e L^, the sequence AN(x) where

AN(x) =

(l/\KN\) f Fl(Tl(g)-lx)F2(Tl(grlT2(g)->x)- • • ^(T.Cg)"1 • • -Tm(g)-lx) dg

converges in L2(X) to n"=i J Fi dm. The necessary and sufficient conditions are that
each of the following representations are ergodic: Tn, Tn_,® Tn_,Tn,..., T20
T2T3®- • -®TyTn, r , ® T , r 2 ® - ••®T1- --Tn.

In order to prove this theorem, specific properties of the decomposition of L2(X)
into its weakly mixing and compact subspaces with respect to a representation Tt

are needed. These properties are also used to prove some generalizations of well-
known facts from ergodic theory in the case where G is the integer group Z.

0. Introduction
In [7], Furstenberg proved a fundamental theorem on multiple recurrence of measure
preserving systems. He showed that for any measure preserving system (X, /?, m, T),
for any k > 1, A 6 0, and m(A) > 0; there exists n > 1 such that m(n?=i T~inA) > 0.
In the special case where T is weakly mixing, more was proved: T is weakly mixing
of all orders. That is, if T is weakly mixing, then for all Ao,..., Ak € (3,

lira (1/AT) I \m(AonT-nAin---nT-knAk)-U m(y4,) =0.
N - 0 0 n = l L i=0 J

(1)

Indeed, Furstenberg uses (1) as part of the proof in [7]. See also Furstenberg,
Katznelson and Ornstein [10] for a discussion of this connection.

As in [10], (1) can be shown by proving for weakly mixing T, that all F , , . . . , Fk e
MX),

Km (1/A0 I ( fl T'"F) - n [ F, dm \= 0. (2)
" - H I n = i \ ;= i / /=i J ||2
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This was generalized by Furstenberg and Katznelson in [9], see also Furstenberg
[8], in the process of proving an ergodic Szemeredi theorem for commuting transfor-
mations. They show that if Sit... ,Sn are commuting transformations with StSJl

weakly mixing for all i ̂ j, then for all F , , . . . , Fk e L^X),

= 0. (3)lim (1/N) I (Y[SJF)-U \F,dm
2

The hypotheses that are necessary and sufficient for (3) are given in Berend and
Bergelson [1] where it is shown that (3) holds for commuting S, if and only if
S,® • • -® Sn is ergodic and StSjl is ergodic for each i ¥^j. This latter jointly ergodic
criteria is much weaker than assuming Sx,..., Sn are weakly mixing (for instance,
let 5, be irrational rotations by rationally independent angles). See also Berend and
Bergelson [2] where necessary and sufficient criteria for (3) are given when T, , . . . , Tn

do not commute.
In § 2, (3) is generalized by replacing each S, by commuting actions S{{g) of a

general o--compact separable amenable locally compact group. First, in § 1, some
facts about representations of a cr-compact locally compact group G as measure
preserving transformations are derived which are generalizations of similar theorems
for abelian groups G. These are then used in § 2 to give the joint ergodicity conditions
on commuting actions S; of G which are necessary and sufficient for the generaliz-
ation of (3).

1. Groups of measure-preserving transformations
Assume G is a tr-compact locally compact Hausdorff group (called a group in

the sequel). Let T:G-> M(X) be a homomorphism of G into the invertible measure-
preserving transformations Jl(X) of a probability space (X, /3, m). For F.X^C,
geG,( T(g)F)(x) = F( r(g)"'x) for all xeX.A representation TofG in M{X) will
be any such homomorphism for which the mapping g -* j T(g)FlF2 dm is continuous
for all F,, F2e L2(X). Generally, L2(X) is a direct sum of two orthogonal closed
subspaces, denoted here by L2(X)W and L2(X)C. The compact summand L2(X)C

consists of all FeL2(X) such that {T(g)F: ge G} is totally-bounded in L2(X). Let
M denote the unique G-invariant mean on WAP(G), the weakly almost periodic
functions on G. Then the weakly mixing part L2(X)W consists of all Fe L2(X) such
that, if/(g) = \FT(g)Fdm-\]Fdm\2 for all geG, then M(|/ |) = 0. See Bergelson
and Rosenblatt [3] for a proof of the above using the work of Godement, or see
Krengel [14, p. I l l ] , where this theorem is discussed in relationship to the work of
Jacobs, Deleeuw and Glicksberg.

The representation T is weakly mixing if and only if L2{X)C consists of just the
constants. Of particular importance in § 2 are some of the structural aspects of
L2(X)C. In case G is abelian, in particular G = Z as in Halmos [11], the space
L2(X)C has an orthonormal basis (FA: A 6 A) of eigenvectors. That is (FA: A € A) is
an orthonormal basis of L2{X)C such that for all geG, there exists ck{g) e C such
that 7"(g)FA = cA(g)FA a.e. [m]. Also, T is ergodic if and only if the constant
functions are the only eigenvectors with eigenvalue one. If T is ergodic and A,, A2 € A
are such that cKx(g) = cA2{g) for all geG, then FXt = Fk2 a.e. [m]. That is, the
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eigenvalue homomorphisms cA: G->T are simple. The analogues of these results for
general groups are described in Propositions 1.1 and 1.4.

1.1. PROPOSITION. The representation T restricted to L2(X)C decomposes as an
orthogonal direct sum of finite-dimensional subrepresentations.

There are a number of proofs of this theorem. See [3] for a discussion of the proof
via Godement's decomposition of positive definite functions. Also, see Dye [6] for
a proof for amenable groups that can be generalized to any locally compact group.
These proofs all suggest that there should be a direct argument using only the
Peter-Weyl theorem for compact groups. Indeed, in Deleeuw and Glicksberg [4,
p. 72], the necessary fact about compactifications is observed which is needed in
the proof of the following:

1.2. THEOREM. Suppose G is a group of unitary transformations {Vg: geG} of a
Hilbert space H. Then a necessary and sufficient condition for H to decompose as a
direct sum of G-invariant finite-dimensional subspaces is that for all Fe H, {VgF: g e
G) is totally bounded in the L2-norm topology.

Proof. Because orbits {VgF: geG} are totally bounded when F lies in a G-invariant
finite-dimensional subspace of H, the condition is necessary. Conversely, suppose
all orbits are precompact. Let ^ be the weak-operator closure of G in the bounded
operators B(H). Give $ the weak-operator topology.

Theorem 3.2 in Deleeuw and Glicksberg [3] proves that<S is a compact semigroup
with a jointly continuous multiplication. Clearly, if A e % then A* e % too. But also
A* = A~l. That is, <8 consists of unitary transformations. Indeed, suppose A = lim; Vg.
in the weak-operator topology. Then lim, Vgl_i = A* in that topology and so

/ = lim, Vgl Vgl_, = (lim, Vgl)(lim, VgI_.)

= AA* = A*A

by the joint continuity of the multiplication. Finally, this also shows that A -* A~l =
A* is continuous in & Thus, 'S is a compact group, continuing {Vg: geG} as a
dense subgroup, and acts continuously as unitary transformations on H.

Now we apply the Peter-Weyl principle (as in Greenleaf and Moskowitz [11] or
in Hewitt and Ross [13, p. 29]) to argue that H is a direct sum of ^-invariant, and
hence G-invariant, finite-dimensional subspaces. •

Remark 1. Notice that the positive definite functions arising from the representation
T on L2{X)C (or of G on H in 1.2) are almost-periodic. Hence, the almost periodic
compactification of a group as in Loomis [15] can be used to envelop the representa-
tion and prove 1.2 analogously to the above. Also, the uniqueness part of theorem
27.44 [13] applies to the decomposition and hence each finite-dimensional T-
invariant T-irreducible subspace A<= L2(X)C has a multiplicity fi = fi(H, T) associ-
ated with it. As in [13, p. 29], for ere % let M^ be the smallest closed subspace of
L2(X)C containing all such A with 'S equivalent to cr on A. This subspace will be
used in the proof of 1.6.
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Remark 2. Let % be the enveloping compact group as in the proof of 1.2 for
{T(g): geG} when H = L2(X)C. Let/3C be {Ae (I: lAeL2(X)c}. It is easy to show
)8C is a cr-algebra too and the largest compact factor in /3, see [3] and [10]. Also,
L2(X)C is naturally isometricto L2(X, /3a m) since each F e L2(X)C is j8c-measurable.
For any Ae%, there exists (gi)<=G such that for all F,, F2eL2(X)c,
lim, <T(ft)FI,F2> = <A(F1),F2> and lim, ( T ^ F i , F2> = <A-'(FI), F2>. Hence,
(T(&): i) is Cauchy in the weak topology of Ji{X, /3C), cf. Halmos [12]. Thus, ^c

as a group is identical to {T(g): ge Gc} where Gc is the closure of T(G) inM(X,f}c)
in the weak topology and T denotes the regular representation on L2(X)C. Moreover,
since ^c is compact, this identification gives a topological isomorphism of % with
the weak-operator topology into Gc with the weak topology of M{X, /3C). If the
probability space (X, /?, m) is not standard, this may only identify % with Boolean
^-isomorphisms in M(X, )3C). To have $c realized completely as point transforma-
tions as in Mackey [17] requires some further separability hypotheses on G and/or
(X,p,m).

1.3. Definition. Assume G has a countable dense subset. A separable (measure-
preserving) representation of G in M(X) is a representation T of G in M(X) such
that (X, )3, m) is a non-atomic separable probability space.

1.4. PROPOSITION. Suppose T is an ergodic separable representation of G in M(X)
and let H be a finite-dimensional T-invariant T-irreducible subspace of L2(X)C. Then
the multiplicity fiH of H in L2{X)C is at most dim (H).

Proof. The hypothesis on G guarantees that there is a countable subgroup Go which
is dense in G and so {T(g): g e Go} is a countable dense subset of %. The decomposi-
tion of L2(X)C into finite-dimensional T-invariant T-irreducible subspaces is com-
pletely determined by %, and hence, because T is continuous, by the representation
T restricted to Go- Because Go is countable, we may assume without affecting this
decomposition, up to unitary equivalence, that (X, p, m) is a standard probability
space. Hence, corollary 2 of Zimmer [20] applies and shows that there is a standard
probability space (Y, T, p) and an action of Go on it as measure preserving transfor-
mation so that the action of Go on L2(X)C is equivalent to the action on L2( Y, T, p).
Now Mackey [16], theorem 1, applies to the G0-space (Y, T, p). This shows that all
/uH are finite. Actually, an examination of the proof in [16] shows that the action
of % on L2(X)C is equivalent to the regular action of % on L2(%/K) for a suitable
closed subgroup K of %. Hence, the Peter-Weyl Theorem for % shows that any
finite-dimensional T-invariant T-irreducible subspace H of L2(X)C has multiplicity
no larger than dim (H). •

1.5. COROLLARY. Suppose T is an ergodic separable representation of G in M(X).
Then there is Fe L2(X)C such that span {T(g)F: geG} is norm dense in L2(X)C.

Proof. Proposition 1.4 shows that the hypotheses of theorem 1.10 in Greenleaf and
Moskowitz [11] are satisfied. This theorem gives exactly the above. •

Questions. (1) When does there also exist a cyclic vector for L2(X)W or L2(X) for
ergodic separable group actions? (2) If T is an ergodic separable action, when does
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there exist Ae/J such that the smallest a-algebra containing {T(g)A: ge G) is f3
up to null sets?

Another general property of the finite-dimensional decomposition of L2(X)C is
the following.

1.6. PROPOSITION. Let Tbe an ergodic separable representation of G in M(X). Then
there is an orthogonal direct-sum decomposition of L2(X)C into finite-dimensional
T-invariant subspaces Ht such that each H,<=- L^X) and hence each Ht has an
orthonormal basis formed by L^-functions.

Proof. As in proof of theorem 1.2, there is a compact group $ of unitary transforma-
tions of L2(X)C such that {T(g): g e G} is dense in "S in the weak-operator topology
on L2(X)C. The proof of theorem 27.44 [13] first constructs a projection Pa: L2(X)C -»
Ma for each ae $. The definition of Pa shows that for all Ft, F2£ LX(X)n L2(X)C,

P<r{F1)F2dm
\J

since

II
Since L0O(X)nL2(X)c, is dense in L,(X,/3C, m), this shows WPAF^Wco
Also, P<, maps Lco(X)nL2(X)c onto a dense subspace of Ma. Thus,
is dense in Ma for all <re •§. Since M,,. is finite-dimensional by proposition 1.4, this
is enough to prove this proposition. •
Remark. It may well be that this theorem is true without the assumption that T is
a separable action of G in M(X). Indeed, the extreme case is where G is a compact
group and T is the action by left multiplication on (G, /3A,A) where A is a left-
invariant Haar measure on G. There L2(G)C = L2(G) and this does have a basis of
Lco(G) functions as above because the coefficient functions of finite-dimensional
irreducible representations of G can be used in this role.

Yet another application of proposition 1.4 is this generalization of the well-known
fact that if T, Se M{X) and TS = ST, then T ergodic and S weakly mixing implies
T is weakly mixing too.

1.7. PROPOSITION. Suppose S is a weakly mixing representation of G and T is an
ergodic separable representation ofG in M(X). IfS and Tcommute, then Tis weakly
mixing too.

Proof. If T were not weakly mixing, then there would exist a finite-dimensional
T-invariant subspace H<= L°2(G)C, the mean zero functions in L2(X)C. We may
assume H is T-irreducible, For g&G, S(g)H is T irreducible and the representation
of T on S(g)H is equivalent to the representation T on H. By the property of Ma

where a is T restricted to H, S(g)Hc Ma. Thus, Ma is an S invariant subspace
which is finite-dimensional by proposition 1.4. Hence, S cannot be weakly mixing.

There are other theorems that can be generalized along these lines. A particularly
important one in relation to criteria used in § 2 is to determine when a tensor product
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T®S is ergodic. As in [3], if S is weakly mixing and T is ergodic, then T®S is
ergodic. More generally, in the abelian case, T®S is ergodic if T and S are ergodic
and share no common eigenvalues other than 1. The following generalization of
this fact holds.

1.8. PROPOSITION. If T and S are ergodic representations, then T®S is ergodic if and
only if T and S have disjoint spectra: there are no finite-dimensional subspaces Ht,
H2<=- L2(X) with H, T-invariant andH2 S-invariant, such that T|H] is equivalent to S\H,.

Proof. Suppose T\H< is equivalent to S\H2. Then the contragradient representation
of T\H< is realized as the complex conjugate S\/j2. Since the trivial representation is
a subrepresentation of T\Ht®S\f)2, the trivial representation is a subrepresentation
of T®S.

On the other hand, suppose T and S do have disjoint spectra. Let M denote the
unique G-invariant mean on WAP(G). Suppose O ^ f e L ' f X x X ) is T®
S-invariant. Then

\
JX

(ng)®S(g)&)Fdmxdm) =

But for all e > 0, there exist c, e C and F,, G, e L2(X), i = 1 , . . . , n such that for
each i, j Ftdm or J G,dm = 0, and | |^-£r=i ciFi®Gi\\2< e. If we show

J \
(T(g)®S(g)F,®G,)F,®Gldmxdm) =

for all i,j=l,..., n, letting e -> 0 this would show || &\\ I = 0, a contradiction which
would prove T®S is ergodic.

Suppose then F,, F2yGl,G2e L2{X) and for i = 1, 2, j F, dm or J G, dm is 0. Let
L2

r(X)c@L2(X)w and Lf(X)c©Lf(X)w be the orthogonal decompositions for S
and T discussed earlier, and write F, = F1 + F™, G, = G'+G™ for i = 1, 2 according
to this decomposition. Since T is weakly mixing on Lj{X)w and S is weakly mixing
on Lf(X)w, we have

f (T(g)® S(g)F,® G,)F2® G2 dm x

See [3], § 1, for further discussion. Hence, we may assume at the outset that
Ff e L2

T(X)C and G, e L2
S(X)C for i = 1, 2.

But now what we want to show is that Tc ® Sc is ergodic where Tc is T restricted
to the mean zero functions in Lj{X)c and Sc is S restricted to the mean zero
functions in L2(X)C. For representations of a locally compact group that are direct
sums of finite-dimensional representations, the trivial representation is a subrep-
resentation of TC®SC if and only if for some subrepresentation of T[. of Tc, the
contragradient representation t'c is a subrepresentation of Sc (up to unitary
equivalence). Because the representations here are obtained from non-singular group
actions on a measure space, f'c is just given by the complex conjugate t'c of T'c.
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So if some S'c is equivalent to f'c, then S'c is equivalent to T'c. But S'c is a
subrepresentation of Sc, and so the disjointness of the spectra of S and T prevents
this. Hence TC®SC is ergodic and so T®S is ergodic. •

In the above, if T\Hj is equivalent to S\Hl with //, having an orthonormal basis
F , , . . . , Fn e L°(X), and V: H, -» H2 is a unitary transformation such that VT(g) =
S(g)V for all geG, then

</>(£.,&)= L Ff(6)Wi(&)

for gug2e X is a non-zero mean zero T®S-invariant function. This explicit proof
of the first part of the above is observed in Moore [17]; it shows how the trivial
representation is a subrepresentation of T | H I ®S|H 2 .

The same argument as above can be used to prove a local version of this theorem
when T®S is not ergodic. That is, let F^eL2

r(X)c and F2eLf(X)c, both mean
zero. Then

(^M(g), j T(g)F1T1dm J

if and only if the positive definite functions f{g)=\x T(g)FjFj dm give rise to
representations of G with disjoint spectra.

2. Averaging theorems
The idea used in proving the major convergence theorem here is to use an abstract

version of the van der Corput inequality, cf. [1]. To do this for amenable groups
requires an approximate tiling lemma for averages in G over F0lner sequences. Let
| | be a fixed right invariant Haar measure on G. For simplicity, let d\a(g) be
denoted dg.

In this section integrals of the form \Km T{g)Fdg are needed. The explanation
of the meaning of \Km T(g)Fdg when G is not discrete and Km is compact is that
it represents the usual Pettis integral of g-» T(g)Fe L2(X). Here p:g-» T(g)F is
continuous since it is weakly continuous and so its range is separable by the
cr-compactness of G. So the weak continuity of p shows that p is AG-measurable
by the Pettis measurability theorem, see Dunford and Schwartz [5, III.6.11]. Thus,
this integral can also be taken to be the Bochner integral. The following propositions
are well-known.

2.1. PROPOSITION. Let G be an amenable group and let (Km) be a right F/flner sequence
of compact sets. Let A.G^Hbe a function where H is a Hilbert space. Assume A(G)
is bounded. Let

A(g) dg

and

S2(m,h) = {\/\Km\)\ (l/\Kh\)\ A{gz)dzdg.
J Km J Kh
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Then, for all h,

lim \\Sl(m)-S2(m,h)\\=0.
m-»oo

In the sequel (Km) will be a FeSlner sequence chosen as above.

2.2. PROPOSITION. IfT: G->M(X) is an ergodic representation of G, and

Am(F) = (l/\Km\)\ T(g)Fdg, then for all Fe LP(X), l<p<oo,

lim ' -JAmF-\ Fdm\\ = 0.

Now suppose Tl,...,Tn are commuting representations of G in M(X) and
consider products Sj(g) = T,(g)... 7}(g), j = 1 , . . . , n. For F , , . . . , Fn e L J X ) , the
product Si(g)FiS2(g)F2.. .Sn(g)Fn is a well-defined element of L«>W. It will be
important that Sj is a representation of G, too, so it is necessary to assume that the
Tj are commuting in the sense that 7^(g)7}(fc) = 7}(li)Tj(g) for i?*j and g, heG.
It might seem that the theorems to follow could be phrased and proved for products
SiFt... SnFn without knowing each St is itself a product. However, we will need to
use the fact that SJ1Sk,j<k, is a representation of G; and generally, if S,, S2 are
representations of G such that S7'S2 is a representation of G, then S2= StT for
some representation T of G commuting with S,. For these reasons, we generally
assume Sf are formed as above from commuting representations Tt. Either notation
is appropriate in the case of abelian groups G.

2.3. Definition. We say (7" , , . . . , Tn) is mutually ergodic if 7,(8)7, T2®- • -©I", . . .? ;
is ergodic. We say ( T , , . . . , Tn) is /u//y mutually ergodic if (7} , . . . , Tn) is mutually
ergodic for all j = 1 , . . . , n. This type of joint ergodicity of Tu...,Tn should be
contrasted with the one in [1].

2.4. THEOREM. Let T , , . . . ,Tn be commuting fully mutually ergodic representations of
an amenable group G in M(X). Let S( = 7)- • • Tt for i = 1 , . . . , n. Let (Km) be a right
Fdlner sequence in G and let F , , . . . , Fn e LX(X). Then

lim
m~+oo

j 5,(g)F,- • •Sn(g)Fndg-i F, dm- • • J Fndm = 0. (5)

Proof. The proof is by induction on n. If n ~ 1, we are assuming T, is ergodic, and
proposition 2.2 proves the theorem. Assume the theorem has been proved for a fully
mutually ergodic system ( T , , . . . , Tn_,). Assume T , , . . . , Tn is fully mutually ergodic.
Without loss of generality, J F, dm = 0. Indeed, suppose the theorem is proved in
case } F, dm = 0. Then let £(F,) = J F, dm. We have

5,(g)(F,-£(F1))S2(g)F2- • -Sn(g)Fn

= Sl(g)FlS2(g)F2- • -Sn(g)Fn-£(F,)(52(g)F2- • -5n(g)Fn). (6)

Since ( T , , . . . , Tn) is mutually ergodic, (TtT2, T3,..., Tn) is mutually ergodic. By
induction,

I S2(g)Fn- • •Sn(g)Fndg-* U \ F,
jKm i = 2j
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as m-> oo in L2(X)-norm. Thus,

lim (1/|KJ) I E(Fl)S2(g)F2- • • Sn(g)Fndg = fj | Ftdm
m-°° J*rm / = i J

in L2(X)-norm, too. Hence, (6) shows the theorem follows from the case £ (F , ) = 0.
We assume j F, dm = 0 and show

lim (l / |Km|) I S1(g)F,52(g)F2- • • Sn(g)Fn dg = 0

in L2(X)-norm. If we let

= Sl(g)FlS2(g)F2- • -Sn(g)Fn,

in proposition 2.1, we see that it suffices to show that for all e > 0, there is an ft >
such that for some M > 1 if m > M, then

[ (l/\Kh\) [ Sl(gz)Fl- •Sn(gz)Fndzdg

f r ii2

|Km|) (l/\Kh\)\ Sl(gz)Fl---Sn(gz)Fndz\\ dg.
J f t . JKh N 2

Now

Indeed, if A:G-»L 2 (X) is bounded and weakly measurable, then for KcG, K
compact

A(g)dg

'
But we have,

\(gz)Fl---Sn(gz)Fndz

f f ( f Tl(s)Fl(Tl(s)T2(gs)F2)- • • (r,(s)T2(g5)• • • Tn(gs)Fn)

xTl(t)Fl(TMT2(gt)F2)- • -(TMT2(gt)- • • Tn(gt)Fn) dm} dsdt

(Tl(s)Fl)T2(g)[Tl(s)T2(s)F2]- • • T2(g)T3(g)- • •

*{Tm{g)[Tx(s)T2(s)- ••Tn(s)Fn](Ti(t)F1)T2(g)[Tl(t)T2(t)F2\- • •

x T2(g)Ug)- • • Tm(g)[Tt(t)- • • Tn(t)Fn] dm} dsdt

[5,(5)F151(r)F1](T2(g)tS2(5)F2S2(/)F2])-[ ([
*(T2(g)- • • Tn(g)[Sn(s)FnSn(t)Fn] dm\ dsdt.
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Hence, the induction hypothesis applied to the fully mutually ergodic system
(T 2 , . . . , Tn) shows that for all h^l,

S2(s)F2.
X

lim (l/|Xm|) f (l/\Kh\ [ S1(gz)Fl-- •Sn(gz)Fndzldg

= (1/|X,|2)[ [ [ SMFtSMFt dm f
jKh jKh JX J

xS2(t)F2dm- • \ Sn(s)FnSn(t)Fndm\ dsdt

= \\/\Kh\ I S1(g)®---®Sn(g)(F1®..-®FJ
II JKh

\L2(X")

But St ® • • • ® Sn is ergodic and so for any s > 0, there is an h > 1 such that this
last norm is no larger than e because

. . . Fx®- • -®Fndm- • •dm=\[ F,dm=0.
JX JX 1=1 JX

For this h, there is an M > 1 such that for all m > M, Jfs 2e. •

2.5. Examples, (a) Suppose G and X are separable as in definition 1.3. Then assume
T, , . . . , Tn are commuting representations of G such that T, is weakly mixing and
each Tj is ergodic. By proposition 1.7, each T, is weakly mixing. Thus, if also each
Sj is ergodic (and hence weakly mixing by the same argument), then Sj®- • -®Sn

is weakly mixing. It follows that (Ti,...,Tn) is fully mutually ergodic. Indeed,
without the separability assumption, if each Tt and S, is weakly mixing, then
(T , , . . . , Tn) is fully mutually ergodic. This situation is the generalization of a weakly
mixing system of commuting transformations as in [9]. But as in [1] where the exact
hypotheses for (3) were given, the hypotheses for theorem 2.4 above are less than
assuming that all T, and S, are weakly mixing. In fact, theorem 2.6 will show that
the hypotheses of theorem 2.4 are essentially necessary, thus generalizing the work
in [1].

(b) Let H = ©T=i G, with the product topology. Any representation T.H^Lon
a Hilbert space L gives commuting representations 7^:G-*L defined by 7*(g) =
T(ei(g)) where e,:G^H is the ith-coordinate injection. If T is strongly mixing,
then so is each T). The proof of theorem 2.5 in Bergelson and Rosenblatt [3] shows,
for amenable groups G among others, that in the weak topology, the representations
T such that each 7] and S; is weakly mixing from a residual subset of all the
representations of H on L. So, at the unitary level, there are many representations
T of H such that {Tx,..., Tn) is fully mutually ergodic as representations of G as
unitary operators on L. Using the Gaussian measure space construction, see Neveu
[18] or Schmidt [19], each such T and system (T , , . . . , Tn) gives a representation
T:H-> M(X) such that (T , , . . . , Tn) is fully mutually ergodic as point transforma-
tions. Hence, for any group G, there are examples of systems (7",,. . . , Tn) where
the hypotheses theorem 2.4 hold. If G is discrete, it is easier to give an example.
Let X = n«[0,1] and let H act on X by permutation of the coordinate indices.
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Then in the product probability measure given by Lebesgue measure in [0,1], each
Ti and 5, is strongly mixing.

(c) If G is abelian, then the existence of eigenvalues and orthonormal bases of
eigenvectors for a representation T in M{X) restricted to L2(X)C allows a sim-
plification of the hypotheses of theorem 2.4. It is not too hard to show that if
T , , . . . , Tn are ergodic and Sl®S2®- • -®Sn is ergodic, then T2®T2T3®- • -®
T2...Tn is ergodic. So, if Tu...,Tn and SY®S2®- • -®Sn are ergodic, then
( T , , . . . , Tn) is fully mutually ergodic. Thus, by proposition 1.8, when G is abelian,
(T i , . . . , Tn) is fully mutually ergodic if and only if just the constants have the
eigenvalue 1 for T, and if A, denotes the set of eigenvalues of S,, then for Af e A,,
1 = 1 , . . . , n, \t\2... An = 1 if and only if A, = 1 for all i. Of course, this includes the
case where A, = 0 for all i, i.e. each T, is weakly mixing. Is there a simplification
of the hypotheses of theorem 2.5 along these lines for general groups?

One of the interesting aspects of the hypotheses of theorem 2.4 is that they are
necessary given T , , . . . , Tn commute.

2.6. THEOREM. Let T , , . . . , Tn be commuting, separable representations of an amenable
group G in M{X) and fix a right F/flner sequence (Km). Suppose that for all
F0,...,FneLoo{X);

lim I (l/l-Kj I F0S,{g)F,...Sn(g)Fndg)dm=U \ F,dm. (7)

Then Sr®S2®- • -®Sn is ergodic. Also, ( T , , . . . , Tn) is fully mutually ergodic.

Proof. Only the ergodicity of Sx®- • ®5n is needed to get the rest. Indeed, let
F, = l.Then

J [\/\Km\ j Sx{g)Fx • • • Sn(g)Fn dg\ dm

= (\/\Km\) £ ( j S2(g)F2- • • Sn(g)Fndrn^j dx

- • •(T2(g)...Tn(g)Fndm^j dg

= | (l/\Km\ f y,(g)F2...yB_I(g)Fndg) dm,
Jx\ JKm I

where #",•= T 2 . . . . , T1+1, i = 1 n - 1 . Hence, (7) holds for ( S ^ , . . . , #"„_,). So,
by induction, we would get ( T , , . . . , Tn) being fully mutually ergodic. Note also
that (7) entails the ergodicity of each T, and St. For example, fix i = 1 , . . . , n and
let Fj = l for j e {i - 1 , i}. Then (7) implies

lim

Hence, if F e LX(X) is T,-invariant, then

in (l/|Xm|) j ( j F^T^FXg) dm} = j F,_, dm j Ftdm.

variant, then

I \Fi\
2dm= \ F.dm

Jx Jx
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by taking Fj_, = F, = F. So, if Ae/} is 7]-invariant, then m(A) = m(A)2 and m(A)
is 0 or 1.

Let L2(X) = Lc® Vw where Vc is the compact summand for S, and L^ is the
weakly mixing summand for S,. We identify L2(X") with ®r=i Li(X) in the usual
fashion. On an invariant subspace of the form L2(X)®- • -®L^®- • -®L2(X),
S,®- • -®Sn is ergodic because St is weakly mixing on L,w. So, if S,®- • -®Sn has
an invariant function, it must be in Lj® • • • ® L". But the existence of an S,-invariant
finite-dimensional orthogonal direct sum decomposition of L'c with an Lx basis on
the summands is guaranteed by proposition 1.6. Hence, if 5, ® • • • ® Sn is not ergodic,
then there exist S,-invariant finite-dimensional subspaces //, of L^nL^iX), with
some Hi<= L2(X), such that some O^FeH,®- • -®Hn<= L2(X) is invariant under
S,®- • -®Sn. Let (f'k: k = \,..., dim (//,)) be orthonormal bases in L^X) for each
Hj. Then F has unique expansion as a finite sum

(mt mn)

fora.e. (^,, . . . , | n ) e AT".fora.e. (^,, . . . , | n ) e AT".
For each geG, S,(g)|H. has a matrix expansion S,(g) = [a'mn] in the basis ( / „ : m)

with « L depending on g. Since (S,®- • -®Sn)F= F, for all g€ G,

( ) ( 0F= I a(fcI,...,fe
(fci fc»>

= z i «(it, *-)«?,*,• - -«r.fc./i,• • • / " „ •
<k, kn) (I, /„)

Hence, for all ( / , , . . . , / „ ) ,

a ( h , . . . , l n ) = I « ( * „ . . . , * » ) « ; , * , • • • « ! ; * „ .
<ki,...,*n)

But then for a.e. f € X, and all geG,

= 1 I l l
«c, lcn) (/„...,/„)

= I a(/,,...,U/L(f)•••/"„«).
(/,,...,'„)

Fix F O G L 2 ( X ) . We have

Fo(|)( I a(/,,...,U/}1(f)-••/".(
\((, /„)

= (l/|Km|)| |FOU)- I a(lu...,lH)Sl(g)f}l(()---Sm(g)fW)dm(f)dg
jKm J (/,....,/„)
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By (7), letting m-»oo, this shows for all F o e L^iX),

\ Fo( I a(ll,...,ln)f),---

because for some i, all f'm are mean zero. That is,

I «( /„ . . . , / - ) / ! , («• ••/
(i, /„)

a.e. £ [m].
Now, if

g , , . . . ) g n _ 1 € G , r2(g,)®T3(g2)®- •

commutes with S,®- • -®Sn. So, (T 2 (g , )®-•-® T n (g n _, )®/)F is S , ® - • - ® S n

invariant, too. Moreover, Ti+1(gj)Hi, i = 1 , . . . , « - 1 , is S.-invariant with orthonor-
mal basis (Ti+1(gi)f'm: m). So, the same argument as the one above shows that for
all g , , . . . , g n _ , e G ,

0= I a(ll,...,ln)T2(gl)fll({)---Tn(gn-l)fZ-_]{{)fl(£) (8)
Ci. .-,'„)

a.e. £ [»»]• But each 7̂  is ergodic, and so

lim \/\Km\ I T,(g)Fdx = I Fdm

in L2(X)-norm. Hence, using (8),

I
J Ci '„>

= I I «(/„ • • •, Ua(fc., • • •, ,
di '„> (*i,.. ..*»)

By the orthonormality of (fj
m), this gives

0= I \a(h,...,ln)\
2.

(i, ij

So all a ( / , , . . . , / „ ) = 0 and F = 0, a contradiction. •

Remark. Theorems 2.4 and 2.6 show that the seemingly weaker joint ergodicity of
(7) is equivalent to (5) for commuting separable actions Tlt...,Tn. Also, the proof
could have been shorter if we knew that the bases (fm: m) could have been chosen
to be generic, i.e. not only are (/L.Ui)- • •/£,„(£„) : ("i i , • • •, mn)) orthonormal in
L2(Xn), but (fmi(€)'--f!n.(€)-(ml,...,mn)) are linearly independent. If G is
abelian, this could be arranged, but it is not clear if it is always possible. See [8]
for other uses of genericity.

There is another possible definition of joint ergodicity that one might use as a
generalization of (3). For instance, we might assume for all F o , . . . , Fn e LX(X) that

lim (l/\Km\) I I F0S1(g)F,...Sn(g)FB-n I F,dm
m-"x> JKm I JX i=0 Jx

(9)
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This property is related to (5) and (7) as in [10, p. 534]. However, taking all Ft = 1,
i> 1, except for F]t shows that property (9) forces Sj to be weakly mixing and so
Si®- • -® Sn is ergodic, too. Thus, if one wishes to get a joint ergodicity result that
does not entail all representations being weakly mixing, then (5) or (7) are better
forms to study.
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