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Abstract

This paper investigates American puts on a dividend-paying underlying whose volatility
is a function of both time and underlying asset price. The asymptotic behaviour of the
critical price near expiry is deduced by means of singular perturbation methods. It turns
out that if the underlying dividend is greater than the risk-free interest rate, the behaviour
of the critical price is parabolic, otherwise an extra logarithmic factor appears, which is
similar to the constant volatility case. The results of this paper complement numerical
approaches used to calculate the option values and the optimal exercise price at times
that are not close to expiry.
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1. Introduction

How to price an option remains one of the major challenges in today’s finance
industry. Pricing American options is especially challenging due to the nonlinearity
introduced by the fact that they can be exercised at any time during their lifespan,
which effectively makes the problem a free boundary problem.

In the past two decades many researchers have attempted to tackle the problem
of pricing American options. Although analytical solutions for American puts were
determined by Zhu [6], under a Black–Scholes framework with nondividend yield,
and by Zhao [5], in local volatility models, numerical methods are still preferable for
market practitioners as they are usually much faster and have acceptable accuracy.
However, due to the fact that the critical price is singular at expiry, as is the case in
a similar Stefan problem [4], it is difficult to maintain the same level of accuracy in
approximating the optimal exercise price at the time near expiry by using numerical
methods. For example, when using both lattice methods and the projected successive
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over-relaxation (SOR) method for a partial differential equation (PDE) system, a fine
discretization of the time domain must be used near expiry, which is both expensive
and of limited accuracy [3]. Therefore, it is quite helpful to determine the asymptotic
behaviour of the critical price near expiry, and this asymptotic solution can be used
as a complement to numerical approaches to calculate option values and the optimal
exercise price at times that are not close to expiry.

Analyses of the asymptotic behaviour of the critical price near expiry have already
been carried out. For instance, Barles et al. [1] derived the first term of the critical price
by constructing a subsolution as well as a supersolution. Evans et al. [3] obtained a
similar result by both the method of integral equations and the method of matched
asymptotic expansions. It should be remarked that these results are only valid under
the Black–Scholes model with constant volatility.

Empirical evidence, however, shows that when using observed option prices to
determine the implied volatility (for which the theoretical prices fit with the observed
prices) options with different strikes have different implied volatility, which violates
the Black–Scholes assumption that the volatility is constant. One possible strategy to
cope with the empirical facts is to use the local volatility model, where the volatility
is a deterministic function of both the underlying and the time such as the hyperbolic
sine model, the constant elasticity of variance (CEV) model, and so on. The CEV
model further nests the Brownian motion and the Ornstein–Uhlenbeck process as
special cases. The asymptotic behaviour of the critical price near expiry in the local
volatility model remains unclear. Recent progress was made by Chevalier [2] in
extending the previous results under the constant volatility framework to a stock-price-
dependent volatility. However, it must be pointed out that the results in [2] cannot be
representative, as stock-price-dependent volatility is only a special case of the local
volatility model.

In this paper, an explicit analytical expression for the critical price near expiry is
presented under the local volatility model. The expression was found by means of the
method of matched asymptotic expansions, which generates a sequence of problems
for local behaviour near expiry. The results show that if the underlying dividend is
greater than the market interest rate, the behaviour of the critical price is parabolic,
otherwise an extra logarithmic factor appears, which agrees with the constant volatility
case.

The paper is organized as follows. In Section 2, we introduce the PDE system
that the price of an American put option must satisfy in the local volatility model. In
Section 3, we first deduce the asymptotic behaviour of the critical price near expiry
under the assumption that the volatility is stock-price-dependent, and then extend the
analysis to the general case, where volatility depends on both the underlying and time.
Concluding marks are given in Section 4.

2. American puts under general diffusion process

This paper considers a general diffusion process for the underlying under the risk-
neutral measure. Specifically, the underlying St , as a function of time, is assumed to
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follow a diffusion process:

d St = (r − D) dt + σF dWt , (2.1)

where the constants r ≥ 0 and D ≥ 0 denote the risk-free interest rate and the dividend
yield respectively, and the deterministic function σF represents the local volatility. In
this paper, two cases related to the different forms of σF are discussed separately: in
the first, σF is a function of St only, that is, σF = σF (St ); whereas in the second, σF is
a function of both St and t , that is, σF = σF (St , t). The assumptions for the two cases
differ as:
• for σF = σF (St ), it is assumed that σF (St ) is at least second-order differentiable

in the vicinity of St = K ;
• for σF = σF (St , t), it is assumed that σF (St , t) is at least second-order

differentiable in the vicinity of St = K , t = TE .
In fact, these assumptions are in line with almost all the commonly used local volatility
models, such as the CEV model, the hyperbolic sine model, and so on.

Let PA(S, t) be the price of an American put option, with S being the underlying
and t being the time. Then, under the proposed diffusion process (2.1), it can easily
be shown that the valuation of an American put option can be formulated as a free
boundary problem, with PA(S, t) satisfying

∂PA

∂t
+

1
2
σ 2

F S2 ∂
2 PA

∂S2 + (r − D)S
∂PA

∂S
− r PA = 0,

PA(x, TE )=max(K − S, 0), PA(S f (t), t)= K − S f (t),
∂PA

∂S
(S f (t), t)=−1, lim

S→∞
PA(S, t)= 0.

(2.2)

This PDE system is defined on S ∈ [S f (t),+∞) and t ∈ [0, TE ]. Moreover, the
critical price S f at expiry TE in the local volatility model is found in [5] to be

S f (TE )=min
( r

D
K , K

)
.

3. Matched asymptotic analysis for the optimal exercise price near expiry

3.1. σ is a function of S only For convenience we use dimensionless variables

S = K ex , P =
PAeρτ

K
+ eρτ (ex

− 1), S f = K ex f,

τ =
σ 2

F (K )

2
(TE − t), σ (x)= σF (K ex ), a(x)=

σ 2(x)

σ 2(0)
.

The parameters ρ and v are defined as

ρ =
2r

σ 2(0)
, v =

2D

σ 2(0)
,
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respectively. Then (2.2) can be written in the dimensionless form

∂P

∂τ
= a(x)

∂2 P

∂x2 + (ρ − v − a(x))
∂P

∂x
+ eρτ (vex

− ρ),

P(x, 0)=max(ex
− 1, 0), P(x f , τ )= 0,

∂P

∂x
(x f , τ )= 0, lim

x→∞
P(x, τ )= eρτ (ex

− 1),

(3.1)

and

x f (0)=

0, v ≤ ρ,

−log
(
v

ρ

)
, v > ρ.

Now, we shall use matched asymptotic analysis to construct the small-τ behaviour
of x f (τ ) for the PDE system (3.1).

First, we consider the case in which D ≤ r , that is, v ≤ ρ. By setting τ = εT ,
where T =O(1) and ε is an artificial small parameter, we obtain the PDE system for
P(x, T ):

∂P

∂T
= ε

(
a(x)

∂2 P

∂x2 + (ρ − v − a(x))
∂P

∂x
+ eερT (vex

− ρ)

)
,

P(x, 0)=max(ex
− 1, 0), P(x f , T )= 0,

∂P

∂x
(x f , T )= 0, lim

x→∞
P(x, T )= eερT (ex

− 1).

(3.2)

By assuming that the solution of (3.2) can be expanded in powers of ε, we obtain the
outer solution, which is only valid for x > 0:

P(x, T )= ex
− 1+ ρT ε(ex

− 1)+O(ε2).

Since the outer expansion breaks down at x f (0)= 0, we need to perform a local
analysis in the vicinity of x = 0. By using the stretched variable

X =
x
√
ε
, (3.3)

and substituting (3.3) into (3.2), we have

∂P

∂T
= a(
√
εX)

∂2 P

∂X2 + (ρ − v − a(
√
εX))

∂P

∂X
+ εeερT (vex

− ρ). (3.4)

Since the boundary conditions all have a factor
√
ε in common, we rescale the problem

by defining

P =
√
ε p. (3.5)
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On the other hand, assuming that the coefficients have the Taylor expansions to second
order at x = 0, we can expand a, written in the local variable X , as

a(
√
εX)= a(0)+

√
εXa′(0)+

εX2

2
a′′(0)+O(ε3/2). (3.6)

Substituting (3.5) and (3.6) into (3.4), we obtain the leading-order PDE system
∂p0

∂T
=
∂2 p0

∂X2 ,

p0(X, 0)=max(X, 0),

lim
X→∞

p0(X, T )= X.

The solution of this PDE system can easily be found by using similarity solution
techniques. It is

p0(X, T )=

√
T
√
π

e−X2/4T
+

X

2
erfc

(
−

X

2T

)
.

The following lemma states that the location of the free boundary x f (τ ) is outside
the layer near x = 0, which, on the other hand, implies that another layer exists
near x f . Let U (a, δ) denote the neighborhood of a point a, that is,

U (a, δ)= {x | 0≤ |x − a|< δ}.

LEMMA 3.1. When v ≤ ρ, we have x f (τ ) /∈U (0,
√
ε), where τ = εT , and T =O(1).

PROOF. We shall use the method of reductio ad absurdum to prove this lemma.
Assuming that x f (τ ) ∈U (0,

√
ε), we have limε→0(x f (τ )/

√
ε)= X0, where X0 is

finite for T =O(1). Therefore, we can rescale x f (τ ) and expand it in terms of
√
ε,

that is,
X f =

x f
√
ε
= X0 +

√
εX1 +O(ε).

In order to satisfy the moving boundary conditions, the leading-order term should
satisfy

p0(X0)=
∂p0

∂X
(X0, T )= 0,

which yields
√

T
√
π

e−X2
0/4T
+

X0

2
erfc

(
−

X0

2T

)
= 0 and erfc

(
−

X0

2T

)
= 0. (3.7)

By solving (3.7), we obtain X0 =∞, in contrast to our assumption that x f (τ ) ∈

U (0,
√
ε). Therefore, the location of the free boundary should be outside the O(

√
ε)

layer near x = 0, and thus limε→0(x f (τ )/
√
ε)=−∞, a contradiction. This completes

the proof. 2
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On the other hand, in order to satisfy the free boundary conditions, we use the
stretched variable

z =
x − x f

ε
, (3.8)

where z =O(1). Substituting (3.8) into the governing equation contained in (3.2),
ε
∂P

∂T
−

x f

∂T

∂P

∂z
= a(εz + x f )

∂2 P

∂z2 + ε(ρ − v − a(εz + x f ))
∂P

∂z
+ ε2eερT (veεz+x f − ρ),

P(0, T )= 0,
∂P

∂z
(0, T )= 0.

(3.9)

Again, an expansion in regular powers of ε gives the solution of (3.9) as

P =O(ε2). (3.10)

In order to match with the solution near x f , we need the solution in the O(
√
ε) layer

near x = 0. Assuming that

p = p0 +
√
ε p1 + ε

3/2 p2 +O(ε2), (3.11)

we obtain the following sequence of PDE systems:
∂p0

∂T
=
∂2 p0

∂X2 ,

p0(X, 0)=max(X, 0),

lim
X→∞

p0(X, T )= X, lim
X→−∞

p0(X, T )= 0,

(3.12)



∂p1

∂T
=
∂2 p1

∂X2 + a′(0)X
∂2 p0

∂X2 + (ρ − v − 1)
∂p0

∂X
+ v − ρ,

p1(X, 0)=max
(

1
2

X2, 0
)
,

lim
X→∞

p1(X, T )=
1
2

X2, lim
X→−∞

∂p1

∂X
(X, T )= 0,

(3.13)



∂p2

∂T
=
∂2 p2

∂X2 + a′(0)X
∂2 p1

∂X2 +
1
2

a′′(0)X2 ∂
2 p0

∂X2 + (ρ − v − 1)
∂p1

∂X

− a′(0)X
∂p0

∂X
+ vX,

p2(X, 0)=max
(

1
6

X3, 0
)
,

lim
X→∞

p2(X, T )=
1
6

X3
+ ρXT, lim

X→−∞

∂2 p2

∂X2 (X, T )= 0.

(3.14)
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One should notice that, in the above PDE systems, the boundary conditions as
X→+∞ are obtained by matching with the outer expansion; whereas the ones as
X→−∞ are required to properly close those PDE systems.

The solutions of the PDE systems (3.12)–(3.14) can be found by using similarity
solution techniques. The details of the derivation are provided in Appendix A. The
asymptotic behaviours for h0(ξ), h1(ξ) and h2(ξ) as ξ →−∞ can be derived as

h0(ξ)=
1

2
√
π

e−ξ
2

ξ2 +O

(
e−ξ

2

ξ4

)
,

h1(ξ)= v − ρ +O
(
ξe−ξ

2
)
, h2(ξ)= 2vξ +O

(
ξ4e−ξ

2
)
.

We now match the values of Pτ in the two different regions, as suggested by
Keller [3], to complete the analysis. This is accomplished by taking the limit of
X→−∞ (ξ →−∞ or x→ x f ) of Pτ given by (3.11) and (3.10). The leading-order
term forms the following transcendental equations:

1

2
√
πτ

e−x2
f /4τ + v − ρ = 0, v < ρ,

1

2
√
πτ

e−x2
f /4τ + vx f = 0, v = ρ,

which have the solutions

x f (τ )=


−2
√
τ

[
ln

1

2(ρ − v)
√
πτ

]1/2

, v < ρ,

−2
√
τ

[
ln

1

4
√
πvτ

]1/2

, v = ρ,

respectively. Therefore, recalling that S f (t)= K ex f (t), for D < r ,

S f (t) = K − Kσ(K )

√
(TE − t) ln

σ 2(K )

8π(TE − t)(r − D)2

+ o

(√
(TE − t) ln

1
√

TE − t

)
, (3.15)

and for D = r ,

S f (t)= K − Kσ(K )

√
2(TE − t) ln

1

4
√
πD(TE − t)

+ o

(√
(TE − t) ln

1
TE − t

)
.

(3.16)

We now consider the case where D > r , that is, v > ρ. Here, we assume that
x0 =−log(v/ρ)�−

√
ε. The procedure in deriving the outer expansion is quite
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similar to the case where D ≤ r , and the outer solution is

P(x, T )=

{
ex
− 1+ ρ(ex

− 1)T ε +O(ε2), x �
√
ε,

(vex
− ρ)T ε +O(ε2), x �−

√
ε.

One should notice that the leading-order solution P0(x, T )=max(ex
− 1, 0) is

continuous but not differentiable at x = 0. Thus, we expect that there is a corner
layer at x = 0, the thickness of which is O(

√
ε). (The interested reader may refer

to Appendix B for the derivation of the solution in this layer.) However, based on the
assumption that x0 =−log(v/ρ)�−

√
ε, the free boundary is expected to be located

outside the corner layer. Therefore, for future analysis, we only need the outer solution
which is valid for x �−

√
ε.

Since the outer expansion fails to satisfy the free boundary conditions, we perform
a local analysis in the vicinity of x0 by rescaling as follows:

X =
x − x0
√
ε
, p =

P

ε3/2 , X f =
x f − x0
√
ε

. (3.17)

Substituting (3.17) into (3.2), the governing equation becomes

∂p

∂T
= a(
√
εX + x0)

∂2 p

∂X2 + (ρ − v − a(
√
εX + x0))

√
ε
∂p

∂X
+ eρεTρ

(e
√
εX
− 1)
√
ε

.

(3.18)

On the other hand, assume that a(x) has Taylor expansions to first order at x = x0,
that is,

a(
√
εX + x0)= a(x0)+ a′(x0)

√
εX +O(ε). (3.19)

Substituting (3.19) into (3.18), the leading-order PDE system is found to be

∂p0

∂T
= a(x0)

∂2 p0

∂X2 + ρX,

p0(X, 0)= 0,

lim
X→∞

p0(X, T )= ρX T .

(3.20)

Observe that the boundary condition as X→+∞ is obtained by matching with one
branch of the outer expansion (x �−

√
ε). It is straightforward to derive the solution

of (3.20) by using similarity solution techniques. This has the structure

p0(X, T )= T 3/2h(ξ),

where

ξ =
X

2
√

a(x0)T
, h(ξ)= 2ρξ + C

[
(ξ2
+ 1)e−ξ

2
− (2ξ3

+ 3ξ)
∫
+∞

ξ

e−t2
dt

]
,
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with C constant. Now, assuming that the free boundary is located inside the layer near
x0, just as we did in analyzing the previous case, the rescaled free boundary can thus
be expanded in powers of

√
ε, that is,

X f = X1 +
√
εX2 +O(ε).

It is clear that p0(X, T ) should also satisfy

p0(X1, T )=
∂p0

∂X
(X1, T )= 0, (3.21)

which is equivalent to h(ξ1)= h′(ξ1)= 0, where ξ1 = X1/2
√

a(x0)T . Consequently,
we obtain

2ρξ1 + C

[
(ξ2

1 + 1)e−ξ
2
1 − (2ξ3

1 + 3ξ1)

∫
+∞

ξ1

e−t2
dt

]
= 0,

2ρ + C

[
3ξ1e−ξ

2
1 − (6ξ2

1 + 3)
∫
+∞

ξ1

e−t2
dt

]
= 0,

from which the transcendental equation for ξ1 can be derived as

−ξ3
1 eξ

2
1

∫
+∞

ξ1

e−t2
dt =

1
4
(1− 2ξ2

1 ). (3.22)

The solution of (3.22) is ξ1 = 0.4517. Therefore

x f (τ ) = x0 − 2ξ1
√

a(x0)T +O(τ )

= x0 −
√

2ξ1σ
( r

D
K
)√

TE − t +O(TE − t)

and

S f (t)= K ex f =
r

D
K
[
1− σ

( r

D
K
)
ξ1
√

2(TE − t)
]
+O(TE − t).

Remarkably, the leading-order terms of the critical price derived in this section
appear to be reasonable, since they agree with those derived in [2], and they degenerate
to the results of Evans et al. when σ(S) is independent of S.

3.2. σ is a function of both S and t Here, we apply singular perturbation techniques
to derive the explicit analytical expression for the optimal exercise price near expiry
in the local volatility model where σ is a function of both S and t . For convenience,
we shall also make PDE system (2.2) dimensionless. This is achieved by adopting the
new variables:

S = K ex , P =
PAeρτ

K
+ eρτ (ex

− 1), S f = K ex f , τ =
σ 2

F (K , TE )

2
(TE − t),

σ (x, τ )= σF

(
K ex , TE −

2

σ 2
F (K , TE )

τ

)
, a(x, τ )=

σ 2(x, τ )

σ 2(0, 0)
.
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The parameters ρ and v are defined as

ρ =
2r

σ 2(0, 0)
, v =

2D

σ 2(0, 0)
.

Then, (2.2) can be written in the dimensionless form

∂P

∂τ
= a(x, τ )

∂2 P

∂x2 + (ρ − v − a(x, τ ))
∂P

∂x
+ eρτ (vex

− ρ),

P(x, 0)=max(ex
− 1, 0), P(x f , τ )= 0,

∂P

∂x
(x f , τ )= 0, lim

x→∞
P(x, τ )= eρτ (ex

− 1)

(3.23)

and

x f (0)=

0, v ≤ ρ,

−log
(
v

ρ

)
, v > ρ.

When D ≤ r , that is, v ≤ ρ, the construction of the asymptotic expansions uses
an O(

√
ε) layer at x = 0, and the free boundary, in which P =O(τ 2), is located

outside this O(
√
ε) interior layer. The analysis proceeds similarly to the previous

case in which σ is a function of S. Thus, we shall confine ourselves to describing the
results.

For x ≥
√
ε, P(x, T ) has the outer expansion

P(x, T )= (ex
− 1)+ ρT ε(ex

− 1)+O(ε2).

For x =O(
√
ε), substituting X = x/

√
ε and p = P/

√
ε into PDE system (3.23), we

obtain

∂p

∂T
= a(
√
εX, εT )

∂2 p

∂X2 + (ρ − v − a(
√
εX, εT ))

∂p

∂X
+
√
εeερT (vex

− ρ).

By assuming that a(x, τ ) has Taylor expansions to second order, that is,

a(
√
εX, εT )= a(0, 0)+ ax (0, 0)

√
εX + aτ (0, 0)εT + 1

2 axx (0, 0)εX2
+O(ε3/2),

and p can be expanded in powers of
√
ε,

p(X, T )= p0(X, T )+
√
ε p1(X, T )+ εp2(X, T )+O(ε3/2),
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we obtain the sequence of PDE systems:
∂p0

∂T
=
∂2 p0

∂X2 ,

p0(X, 0)=max(X, 0),

lim
X→∞

p0(X, T )= X, lim
X→−∞

p0(X, T )= 0,

(3.24)



∂p1

∂T
=
∂2 p1

∂X2 + ax (0, 0)X
∂2 p0

∂X2 + (ρ − v − 1)
∂p1

∂X
+ v − ρ,

p1(X, 0)=max
(

1
2

X2, 0
)
,

lim
X→∞

p1(X, T )=
1
2

X2, lim
X→−∞

∂p1

∂X
(X, T )= 0,

(3.25)



∂p2

∂T
=
∂2 p2

∂X2 + ax (0, 0)X
∂2 p1

∂X2 +

(
aτ (0, 0)T +

axx (0, 0)
2

X2
)
∂2 p0

∂X2

+ (ρ − v − 1)
∂p1

∂X
− ax (0, 0)X

∂p0

∂X
+ vX,

p2(X, 0)=max
(

1
6

X3, 0
)
,

lim
X→∞

p2(X, T )=
1
6

X3
+ ρXT, lim

X→−∞

∂2 p2

∂X2 (X, T )= 0.

(3.26)

The solutions of the above PDE systems are derived in Appendix C.
Notice that though the option prices p0, p1 and p2 are much more complicated than

the corresponding ones in Subsection 3.1, they fortunately have the same asymptotic
behaviours as ξ →−∞. Next, with the utilization of the same matching procedures
as adopted in the previous case, we obtain the transcendental equations

1

2
√
πτ

e−x2
f /4τ + v − ρ = 0, v < ρ,

1

2
√
πτ

e−x2
f /4τ + vx f = 0, v = ρ,

from which the asymptotic behaviour of the optimal exercise price near expiry can be
derived as S f (t)= K ex f (t) which is equal to the right-hand side of (3.15) ((3.16)) for
D < r (D = r ) with σ(K ) replaced by σ(K , TE ).

When D > r , that is, v > ρ, we assume that x0 =−log(v/ρ)�−
√
ε. The

construction of the asymptotic expansion uses one O(
√
ε) corner layer at x = 0, and

another O(
√
ε) inner layer at x0. The free boundary is located inside the inner layer.

The analysis is also similar to that of the last case. For simplicity, we shall briefly
describe the difference and list the results.
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The outer expansion is valid for x �
√
ε and x �−

√
ε, specifically,

P(x, T )=

{
ex
− 1+ ρ(ex

− 1)T ε +O(ε2) x �
√
ε,

(vex
− ρ)T ε +O(ε2) x �−

√
ε.

As mentioned in the previous section, for the matching process to be discussed later,
we only need one branch of the outer solution which is valid for x �−

√
ε, and thus

we omit the derivation of the solutions in the corner layer. For x ∈U (x0,
√
ε), a local

analysis is performed by rescaling as follows:

X =
x − x0
√
ε
, p =

P

ε3/2 , X f =
x f − x0
√
ε

. (3.27)

Again, assume that a(x, τ ) has Taylor expansions to first order at x = x0 and τ = 0,
that is,

a(
√
εX + x0, εT )= a(x0, 0)+ ax (x0, 0)

√
εX + aτ (x0, 0)εT +O(ε). (3.28)

Substituting (3.27) and (3.28) into (3.23), the leading-order PDE system is
∂p0

∂T
= a(x0, 0)

∂2 p0

∂X2 + ρX,

p0(X, 0)= 0, lim
X→∞

p0(X, T )= ρXT,

which has solution
p0(X, T )= T 3/2h(ξ),

where

ξ =
X

2
√

a(x0, 0)T
, h(ξ)= 2ρξ + C

[
(ξ2
+ 1)e−ξ

2
− (2ξ3

+ 3ξ)
∫
+∞

ξ

e−t2
dt

]
,

with C a constant. Then, by using (3.21) on the free boundary, we obtain

2ρξ1 + C

[
(ξ2

1 + 1)e−ξ
2
1 − (2ξ3

1 + 3ξ1)

∫
+∞

ξ1

e−t2
dt

]
= 0,

2ρ + C

[
3ξ1e−ξ

2
1 − (6ξ2

1 + 3)
∫
+∞

ξ1

e−t2
dt

]
= 0,

from which, the transcendental equation for ξ1 can be derived as

−ξ3
1 eξ

2
1

∫
+∞

ξ1

e−t2
dt =

1
4
(1− 2ξ2

1 ). (3.29)
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Here, ξ1 = X1/2
√

a(x0, 0)T and X1 is the leading-order term of X f . The solution
of (3.29) is ξ1 = 0.4517. Therefore,

x f (τ ) = x0 − 2ξ1
√

a(x0, 0)T +O(τ )

= x0 −
√

2ξ1σ
( r

D
K , TE

)√
TE − t +O(TE − t),

and thus

S f (t)= K ex f =
r

D
K
[
1− σ

( r

D
K , TE

)
ξ1
√

2(TE − t)
]
+O(TE − t).

It is clear that if σ(S, t) is independent of both S and t , our results again degenerate
to those derived in [3].

4. Conclusion

In this paper the asymptotic behaviour of the optimal exercise price for an American
put option is investigated in the local volatility model. Based on singular perturbation
methods, the leading-order term of the optimal exercise price is derived, which is
expected to be complementary to numerical methods. The result derived in this paper
is believed to be quite reasonable, since the leading-order term of the optimal exercise
price in the stock-price-dependent volatility model agrees with those in the literature,
and it degenerates to the result of Evans et al. if the volatility function is assumed to
be a constant. As the singular perturbation method is not limited to one-dimensional
problems, a further task will be to consider its application to American options on an
underlying described by a multi-factor model.

Appendix A. Solutions of the PDE systems (3.12)–(3.14)

To find the solution of PDE system (3.12), we assume that it can be written as

p0(X, T )=
√

T h0(ξ) where ξ =
X

2
√

T
. (A.1)

By substituting (A.1) into (3.12), we obtain the following ordinary differential
equation (ODE) system for h0(ξ):h′′0(ξ)+ 2ξh′0(ξ)− 2h0(ξ)= 0,

lim
ξ→∞

h0(ξ)= 2ξ, lim
ξ→−∞

h0(ξ)= 0.

The analytical solution of this ODE system can be readily found to be

h0(ξ)=
1
√
π

e−ξ
2
+ ξ erfc(−ξ).

Similarly, by assuming that the solution of PDE system (3.13) is in the form

p1(X, T )= T h1(ξ),
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we have
h′′1(ξ)+ 2ξh′1(ξ)− 4h1(ξ)= 2(1− ρ + v)erfc(−ξ)−

4a′(0)
√
π
ξe−ξ

2
+ 4(ρ − v),

lim
ξ→∞

h1(ξ)= 2ξ2, lim
ξ→−∞

h′1(ξ)= 0.

(A.2)
Suppose that the solution h1(ξ) has the structure

h1(ξ)= f (ξ)e−ξ
2
+ g(ξ)

∫ ξ

−∞

e−t2
dt + m(ξ), (A.3)

where f (ξ), g(ξ) and m(ξ) are polynomials in ξ . By substituting (A.3) into (A.2), we
obtain(

f ′′ − 2ξ f ′ + 2g′ − 6 f
)

e−ξ
2
+
(
g′′ + 2ξg′ − 4g

) ∫ ξ

−∞

e−t2
dt + m′′ + 2ξm′ − 4m

=
4(1− ρ + v)
√
π

∫ ξ

−∞

e−t2
dt −

4a′(0)
√
π
ξe−ξ

2
+ 4(ρ − v),

which, combined with the boundary conditions at ξ =±∞, yieldsm′′ + 2ξm′ − 4m = 4(ρ − v),

lim
ξ→−∞

m′ = 0, (A.4)


g′′ + 2ξg′ − 4g =

4(1− ρ + v)
√
π

,

lim
ξ→∞

√
πg + m = 2ξ2,

(A.5)

f ′′ − 2ξ f ′ + 2g′ − 6 f =−
4a′(0)
√
π
ξ. (A.6)

The polynomial solutions of (A.4)–(A.6) can be readily found:

m(ξ)= v − ρ, g(ξ)=
2
√
π
ξ2
+
ρ − v
√
π
, f (ξ)=

1
√
π

(
1+

a′(0)
2

)
ξ.

Therefore,

h1(ξ)=
1
√
π

(
1+

a′(0)
2

)
ξe−ξ

2
+

(
2
√
π
ξ2
+
ρ − v
√
π

) ∫ ξ

−∞

e−t2
dt + v − ρ.

Using the above solution technique, it is not hard to find the solution of (3.14),
though the solution is in quite a complicated form. By assuming that

p2(X, T )= T 3/2h2(ξ),
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and substituting it to (3.14), we obtain the following ODE system for h2(ξ):
h′′2(ξ)+ 2ξh′2(ξ)− 6h2(ξ)= (Cξ4

+ Aξ2
+ B)e−ξ

2

+
8(1+ v − ρ)
√
π

ξ

∫ ξ

−∞

e−t2
dt − 8vξ,

lim
ξ→∞

h2(ξ)=
4
3
ξ3
+ 2ρξ, lim

ξ→−∞
h′′2(ξ)= 0,

where

A =−
4a′′(0)
√
π
+

6(a′(0))2
√
π
−

4a′(0)
√
π
−

6a′(0)(v − ρ)
√
π

,

B =
ρ − v − 1
√
π

(−2− a′(0)+ 2v − 2ρ), C =−
4(a′′(0))2
√
π

.

Suppose that h2(ξ) can be written as

h2(ξ)= f (ξ)e−ξ
2
+ g(ξ)

∫ ξ

−∞

e−t2
dt + m(ξ),

where f (ξ), g(ξ) and m(ξ) are polynomials in ξ . By using the same procedure as in
deriving h1, the ODE systems for f (ξ), g(ξ) and m(ξ) can easily be found to bem′′ + 2ξm′ − 6m =−8vξ,

lim
ξ→−∞

m′′ = 0, (A.7)


g′′ + 2ξg′ − 4g =

8(1+ v − ρ)
√
π

,

lim
ξ→∞

√
πg + m =

4ξ2

3
+ 2ρξ,

(A.8)

f ′′ − 2ξ f ′ − 8 f + 2g′ = Cξ4
+ Aξ2

+ B. (A.9)

The polynomial solutions of (A.7)–(A.9) are

m(ξ)= 2vξ, g(ξ)=
4ξ3

3
√
π
+

2(ρ − v)ξ
√
π

,

f (ξ)=−
C

16
ξ4
−

(
C

16
+

Ã

12

)
ξ2
−

C

64
−

Ã

48
−

B̃

8
,

where

Ã = A −
8
√
π
, B̃ = B −

4(ρ − v)
√
π

.
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Therefore,

h2(ξ) =

[
−

C

16
ξ4
−

(
C

16
+

Ã

12

)
ξ2
−

C

64
−

Ã

48
−

B

8

]
e−ξ

2

+

(
4ξ3

3
√
π
+

2(ρ − v)ξ
√
π

) ∫ ξ

−∞

e−t2
dt + 2vξ.

Appendix B. Derivation of the solution in the corner layer

In the corner layer we adopt the rescaled quantities

X =
x
√
ε
, p =

P
√
ε
. (B.1)

Assuming that p can be expanded in powers of
√
ε, that is,

p = p0 +
√
ε p1 + εp2 +O(ε3/2), (B.2)

and substituting (B.1) and (B.2) into (3.2), we obtain the sequence of PDE systems
(3.12)–(3.14). Here, the boundary conditions as X→+∞ are obtained by matching
with the branch of the outer expansion which is valid for X �

√
ε; whereas those as

X→−∞ are obtained by matching with another branch (X �−
√
ε). The solutions

of these PDE systems,

p0(X, T )=
√

T h0(ξ), p1(X, T )= T h1(ξ), p2(X, T )= T 3/2h2(ξ),

are defined in Appendix A.

Appendix C. Solutions of the PDE systems (3.24)–(3.26)

Again, we shall use the similarity solution techniques to derive the solutions
of (3.24)–(3.26). Suppose that

p0(X, T )=
√

T h0(ξ), p1(X, T )= T h1(ξ), p2(X, T )= T 3/2h2(ξ),

where ξ = X/2
√

T .
The ODE systems for h0(ξ), h1(ξ) and h2(ξ) can be derived ash′′0(ξ)+ 2ξh′0(ξ)− 2h0(ξ)= 0

lim
ξ→∞

h0(ξ)= 2ξ, lim
ξ→−∞

h0(ξ)= 0,
h′′1(ξ)+ 2ξh′1(ξ)− 4h1(ξ)= 2(1− ρ + v) erfc(−ξ)−

4ax (0, 0)
√
π

ξe−ξ
2

+ 4(ρ − v),

limξ→∞ h1(ξ)= 2ξ2, limξ→−∞ h′1(ξ)= 0,
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h′′2(ξ)+ 2ξh′2(ξ)− 6h2(ξ)

= (Cξ4
+ Aξ2

+ B)e−ξ
2
+

8(1+ v − ρ)
√
π

∫ ξ

−∞

e−t2
dt − 8vξ,

lim
ξ→∞

h2(ξ)=
4
3
ξ3
+ 2ρξ, lim

ξ→−∞
h′′2(ξ)= 0,

where

A =−
2ax (0, 0)(2− 3ax (0, 0)+ 2v − 2ρ)

√
π

−
2ax (0, 0)(1+ v − ρ)

√
π

−
4axx (0, 0)
√
π

,

B =−
(1+ v − ρ)(−2− ax (0, 0)+ 2v − 2ρ)

√
π

−
2aτ (0, 0)
√
π

, C =−
4a2

x (0, 0)
√
π

.

By using the solution techniques as introduced in Appendix A, we obtain

h0(ξ)=
1
√
π

e−ξ
2
+ ξ erfc(−ξ),

h1(ξ)=
1
√
π

(
1+

ax (0, 0)
2

)
ξe−ξ

2
+

(
2
√
π
ξ2
+
ρ − v
√
π

) ∫ ξ

−∞

e−t2
dt + v − ρ,

h2(ξ) =

[
−

C

16
ξ4
−

(
C

16
+

Ã

12

)
ξ2
−

C

64
−

Ã

48
−

B

8

]
e−ξ

2

+

(
4ξ3

3
√
π
+

2(ρ − v)ξ
√
π

) ∫ ξ

−∞

e−t2
dt + 2vξ,

where

Ã = A −
8
√
π
, B̃ = B −

4(ρ − v)
√
π

.
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