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THE MAXIMUM MODULUS OF NORMAL 
MEROMORPHIC FUNCTIONS AND APPLICATIONS 

TO VALUE DISTRIBUTION 

PAUL GAUTHIER 

Introduction. Let f(z) be a function meromorphic in the unit disc 
D = Qz\ < 1). We consider the maximum modulus 

M(r,f) = max \f(z)\ 
lz|=r 

and the minimum modulus 
m(r,f) = min \f(z)\. 

I«l-r 

When no confusion is likely, we shall write M(r) and m(r) in place of M(r,f) 
and m(r,f). 

Since every normal holomorphic function belongs to an invariant normal 
family, a theorem of Hayman [6, Theorem 6.8] yields the following result. 

THEOREM 1. If f(z) is a normal holomorphic function in the unit disc D, then 

(1) lim sup (1 — r) log M(r) < + oo , as r —> 1. 

This means that for normal holomorphic functions, M (r) cannot grow too 
rapidly. The main result of this paper (Theorem 5, also due to Hayman, 
but unpublished) is that a similar situation holds for normal meromorphic 
functions. 

In [2; 3] we considered the distribution of values of meromorphic functions 
having asymptotic values. In the present paper, with the help of Hayman's 
theorems we will see how the speed with which the asymptotic value is 
approached affects the value distribution of the function. We are motivated 
by the classical theorems in this direction for entire functions. 

In addition to asking how quickly M(r) may grow for a normal function, 
we might also ask how slowly M(r) may grow without being bounded. The 
latter question, however, is quickly answered. For if 4>(r) is a function which 
tends to + oo as slowly as we please, it can be shown, using the Ahlfors 
Distortion Theorem, that there is a conformai map f(z) of the unit disc for 
which M(r) tends to + oo more slowly than <j>(r). The function/(s) is, of 
course, normal. 
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804 PAUL GAUTHIER 

1. Definitions and lemmas. For 2, z' G D, we denote by p(s, z') the 
non-Euclidean (hyperbolic) metric. p{z,zr) = | l o g [ ( l + a)/(I — a)], where 
a = \{z' — z) / ( l — 22')I. We call p(z, z') the p-distance between z and 2'. 
For 5 C D and r > 0, we write 

A(S,r) = f ^ D : P ( 5 , 2 ) ^ r}. 

A sequence A(w) of discs in D is a sequence of (non-Euclidean) cercles de 
remplissage for a function / ( s ) defined in D provided that the p-diameters 
of the A(n) tend to zero, and the images/(A(w)) cover all of the Riemann 
sphere, with the possible exception of two sets E(n) and G{n) whose spherical 
diameters tend to zero as n —>oo. The sequence {zn} of centres of the [A{n)\ 
is called a sequence of p-points for/(s). Sequences of p-points were introduced 
by Lange [9], studied by Gavrilov [4] under the name of P-points, and by 
Rung [10] under the name of ikf-points. For the equivalence of P-points and 
p-points, see [1, Theorem 4]; and for the equivalence of these to If-points, 
see [3, Theorem 1]. 

LEMMA 1 [1, Theorem 3]. A meromorphic function is normal in the unit 
disc D if and only if it possesses no sequence of cercles de remplissage. 

A sequence {zn}, zn £ D, is called a boundary sequence if \zn\ —» 1, as » —»oo . 
A continuous curve a(t), 0 ^ t < 1, in D, is called a boundary path provided 
that \a(t)\ —» 1, as t —» 1. A boundary segment is a boundary path which is a 
straight line segment. We shall call a boundary path a a spiral if arg a it) is 
unbounded. The end of a boundary sequence (path) is the set of all points 
on the unit circle which are limit points of the boundary sequence (path). 
We say that a boundary sequence (path) ends in a point z0 of the unit circle 
if ZQ is the only point in the end of the sequence (path). A boundary path 
(segment) a is called a p-path (p-segment) if there is a sequence of p-points 
on a. A Stolz angle ending at a point z0 of the unit circle is a triangle contained 
in D except for one vertex at z0. A boundary disc ending at z0 is a disc contained 
in D except for one point z0 on the unit circle. For concepts and notation 
not explicitly defined in this paper, we refer the reader to [6]. 

We will need the following results. 

LEMMA 2 (Pick [9, Theorem 15.1.3]). Let h(t;) be a function holomorphic 
and bounded by 1 in the unit disc (|f | < 1). Then 

p(Kr).Mr')) £p ( r ,n , r . f e (IfI < D-
LEMMA 3. Suppose that &(f) is holomorphic and h'(£) is bounded by C in a 

convex domain K. Then 

\h(n -AGOI ^ c | f - f | , r . r ' e * . 
Proof. 

|A(T)-A(f)| = T h'(t)dt\ :gC|f'-f|. 
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LEMMA 4 [10, Theorem 1]. Let F(f ) be a holomorphic function in the unit 
disc (|f | < 1) such that 

TOI ^«prErjrf' ^ ^ » = i f2,... f 

w/zere {YW} W a sequence of Jordan arcs in (|f| < 1) satisfying 

\ ^ min |f | = f„ -> 1, » -» oo ; 
f€7n 

0 < lira inf sup p(f, f')> w —» oo ; 

awd {̂ 4W} is a sequence of positive numbers. If 

v log M(rn, F) n _ 
lira — - — j — ! — - = 0, n —> oo , 

tôerc F(f ) == 0. 

2. Holomorphic functions. It follows from Theorem 1 and Lemma 1 
that if M(r) grows quickly for a holomorphic function/(s), then/ (s ) has a 
wild distribution of values, in the sense that it possesses a sequence of p-points. 
One might ask just where in the unit disc this sequence of p-points is located. 
It seems natural to expect that the sequence of p-points will be in some sense 
close to the set along which M(r) grows quickly, since it is the latter 
phenomenon which proclaims the existence of the p-points. In general, we 
will see that this is the case. 

THEOREM 2. If f(z) is a holomorphic function in the unit disc D, satisfying 
on a boundary sequence {zn}, zn Ç D, the inequality 

(2) | / (* ,)! > «p(^Éf). .-!.* 
where p(x) —» + oo as x —» 0, then each point in the end of {zn) is the limit of 
a sequence of p-points. 

Proof. Let s0 be a point in the end of {zn}, and let G be the intersection 
with D, of a disc about ZQ. It is enough to show that there is a sequence of 
p-points in G, for then, by a diagonal process, we can find a sequence of p-points 
tending to z0. 

We may assume that z0 = 1, that zn £ G, n = 1, 2, . . . , and that zn —> 1, 
as n—>co. Let A(f) map the unit disc (|f| < 1) conformally onto G with 
h(l) = 1. Then h(£) is actually conformai in a neighbourhood of f = 1, 
and so there is a constant C, 0 < C < + °o, such that 

(3) ~ - e ^ j - 5 - J l j g C, where z = A(f), 

provided f is sufficiently near 1. To see this, let f' be the nearest point of 
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(|f | = 1) for which arg f = arg f'. Then by Lemma 3, 

i - |*| g |/Kf) - ftG-)| ̂  q r - f| = c(i - |f|). 
Since a similar inequality holds in the opposite direction with C replaced by 
1 / ( C + e), (3) follows. 

From (3) and (2), it follows that / (A(f)) fails to satisfy (1) in (|f| < 1), 
and so by Lemma 1 there is a sequence of p-points for/(A(f)) in (|f| < 1). 
By Lemma 2 this corresponds to a sequence of p-points for f(z) in G. This 
completes the proof. 

THEOREM 3. If f(z) is a holomorphic function satisfying the hypotheses of 
Theorem 2 for some sequence {zn}, with zn approaching the unit circle from 
within a boundary disc Ho, then in each boundary disc Hi (strictly) containing 
Ho, there is a sequence of p-points. 

Proof. We may assume that Ho meets the unit circle at z = 1. Let h(Ç) 
map the disc (|f| < 1) conformally onto the disc Hh so that h(l) = 1, and 
let h(£n) — zn, n = \,2, . . . . Then, as in the proof of Theorem 2, it follows 
from Lemma 3 that 1 — |fj is proportional to the Euclidean distance of zn 

from the boundary of Hi, and so it is enough to show that this latter distance 
is proportional to 1 — \zn\. 

For fixed z £ Ho we have, denoting the boundary of Hi by dHi, 

m 1 - 1*1 < 1 - 1*1 < 1 ~ l*'l 
w dist(|*|, dHi) = dist(z, dHi) = dist(s', dHx) ' 
where z' is a point of dHo with \z\ = \zf\. Since the left member of (4) is bounded 
away from zero, it is enough to show that the right member is bounded. 

To see this, let a0 and ai be the respective centres of H0 and Hi. Then we 
may write 

zf = a0 + (1 - ao)eiB» = ax + neiei = reid. 

Solving for r and r\ as functions of ô yields 

r 1 — r ao 
hm 7- T2 2 = . 
0o_>o (1 — ai) — ri a0 — ax 

But this tells us that 1 — \z'\ is proportional to dist(V, ^i^i), and so 1 — \zn\ 
is proportional to 1 — |fTO|. Writing F(f) = f(z), we have, by Theorem 1 
and Lemma 1, that F(Ç) has a sequence of p-points; and by Lemma 2, then, 
f(z) has a sequence of p-points in Hi. This completes the proof. 

COROLLARY. If f(z) is a function satisfying the hypotheses of Theorem 2 
with zn approaching z = 1 non-tangentially, then there is a sequence of p-points 
which is eventually in every boundary disc at z = 1. 

We cannot infer, simply under the assumptions of the preceding corollary, 
that there is a non-tangential sequence of p-points, as the following example 
shows. 
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Example. Consider the function 

^)=exp i Q g [ y ( i - g ) ] . 
1 — z 

This function clearly satisfies (2) along the radius arg z = 0. However, a 
straightforward calculation shows that f(z) tends to oo within any Stolz 
angle ending in z = 1. Therefore there is no non-tangential sequence of 
p-points tending to z = 1. 

In order to obtain non-tangential p-points, we must assume a faster rate 
of growth for M(r). 

THEOREM 4. Letf(z) be a function holomorphic in the unit disc D, and suppose 
that for some boundary sequence {zn} approaching z — \ non-tangentially, and 
some a > 1, 

,(V(i - K\)\ 
\ (i - W)v ' l/fa.)I ^ exPV(1 _ £\y) » » = l , 2 , . . . t 

w/ze/'e £(x)—> + oo as x —> 0. Then f{z) has a non-tangential sequence of 
p-points at z = 1. 

We merely sketch the proof since it is quite similar to the preceding proofs. 
There is a Stolz angle A of opening ir/a, a > 1, which contains a subsequence 
of {zn}, and so we may assume that the sequence itself is contained in A. 
Let h(Ç) map the unit disc (|f| < 1) conformally onto A so that h(l) = 1, 
and set A(f») = zn, n = 1, 2, . . . . Setting F(Ç) = f(z), we have 

F^n) ^ exp ( f ^ [ ^ , n = 1, 2, . . . , 

where g(x) —» + oo as x —>• 0. It follows from Theorem 2, that for 1 ^ a ^ o-, 
^(f ) has a sequence of p-points. Thus, by Lemma 2, f(z) has a sequence of 
p-points in A. Since a > 1, we may choose a > 1, and so the sequence of 
p-points is non-tangential. This completes the proof. 

One might think that if a holomorphic function tends to oo quickly enough 
on a boundary sequence {zn}, then there would be a sequence of p-points at 
a finite p-distance from {zn}. The following example, however, shows that this 
is not the case. 

Example. Given any continuous positive function 4>(r), there exists a 
boundary sequence {zn} and a holomorphic function f(z) satisfying 

|/(*)| > <KM), *e Afe,o, n = 1,2,... . 
By Mergelyan's theorem [13, p. 367, Theorem 1] one establishes the existence 
of a sequence of polynomials whose limit is the required function f(z). 

In this section we considered the distribution of values of holomorphic 
functions which approach oo rapidly. Similar results hold for a meromorphic 
function which approaches an omitted value rapidly. 
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3. Meromorphic functions. We now present results for meromorphic 
functions, which are analogous to those given in the preceding section for 
holomorphic functions. 

THEOREM 5 (Hayman, written communication). If f(z) is a normal 
meromorphic function in the unit disc D, then 

(5) lim inf (1 - r) log M(r) < + oo, as r -> 1. 

Proof. It follows from [6, p. 171, Example 1] that if / belongs to an invariant 
normal family and, in particular, if / is a normal (meromorphic) function, 
then for J g r < 1, |z0| < 1 — r, we have 

S(r,f(z0 + z)) S |-Q _ rN2 l_ | 2 o | 2 p » 

where the left-hand side is the spherical area of the image of the disc 
\z — So| < 1 — f by / ( z ) . Integrating this with respect to r and noting that 

To(r,f(z + z0))= f S(p,f(z0 + z))&, 

where T0 is the Ahlfors-Shimizu characteristic, we deduce 

1 
(6) T(r,f(z0 + z)) ^ ^ 2 log 

1 

with the same hypotheses. It then follows from [5, p. 365, Theorem 6] that 
(5) holds. For, otherwise, the theorem asserts that either 

T(r,f) 
— ^ - ^ —» oo , log[(l - r)-1] 

which contradicts (6) with z0 = 0, or that T(r,f(z0 + z)) is unbounded for 
fixed r, subject to \z0\ < 1 — r, which again contradicts (6) for variable z0 

and fixed r. This concludes the proof. 

By considering reciprocals, it follows that Theorem 5 is equivalent to the 
following. 

THEOREM 5'. If f(z) is a normal meromorphic function in the unit disc D, 
satisfying 

(7) lim (1 — r) log m(r) = — oo , 

then f(z) s 0. 

The above theorem was proved for bounded holomorphic functions by 
Heins [7, Theorem 7.1]. 

Theorems 5 and 5' have several interesting corollaries analogous to the 
results of § 2. 

COROLLARY 1. Iff(z) is a meromorphic function in the unit disc D, satisfying 
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on a boundary path a the inequality 

(8) ^2^ = exp{Hl - {if) ' 2€a ' 
where p (x) —» + oo as x —» 0, /Âew m d ^0i?z/ wz /Ae end of a is the limit of a 
sequence of p-points. 

Proof. If the end of a contains more than one point, then this result is 
already known [3, Theorem 2]. If a ends at a single point, then the corollary 
follows from Theorem 5 in the same way that Theorem 2 follows from 
Theorem 1. 

COROLLARY 2. If f(z) is a meromorphic function in the unit disc D, satisfying 
on a boundary path a the inequality 

(9) Wz)\ = exÀ-Hî-\zf)' Z(ia> 
where pipe) —» + oo as x —* 0, then either f(z) = 0 or each point in the end 
of a is the limit of a sequence of p-points. 

From Corollary 2 and Lemma 1, we have the following result. 

COROLLARY 3. If f(z) is a normal function satisfying the hypotheses of 
Corollary 2, then f(z) = 0. 

COROLLARY 4. Under the hypotheses of Corollary 2, if a approaches z = 1 
from within a boundary disc i70, then in each boundary disc Hi (strictly) 
containing H0, there is a sequence of p-points. 

The proof is the same as the proof of Theorem 3. 

COROLLARY 5. If' f(z) satisfies the hypotheses of Corollary 2 on a non-tangential 
boundary path a ending at z = 1, then there is a sequence of p-points which is 
eventually in each boundary disc at z = 1. 

COROLLARY 6 [10, Theorem 7]. Let f(z) be a function mer omorphic in D, 
and suppose that for some boundary path a tending to z = 1 non-tangentially 
and some a > 1, 

| / ( z ) | g e x p ( - j >
(

(
1

1 j f f ) , zea. 

Then either f(z) = 0, or f(z) has a non-tangential sequence of p-points at z = 1. 

The proof is the same as the proof of Theorem 4, using Theorem 5 in place 
of Theorem 1. 

In § 2 it was remarked that there is no rate of growth of f(z) on a boundary 
sequence {zn} which implies the existence of a sequence of p-points at a finite 
p-distance from {zn}. However, by considering boundary paths instead of 
boundary sequences, we obtain the following positive result. 
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THEOREM 6. There exists a continuous positive junction X(r), 0 ^ r < 1, 
such that if j(z) is any meromorphic junction in the unit disc D, satisfying 
on a boundary path a the inequality 

(10) \j{z)\ g A(|s|), z G a, 

then either j(z) = 0 or a is a p-path. 

Prooj. Choose 0 = rQ < r± < . . . < rn < . . . < 1, rn —» 1. Let S(n, 0) be 
a disc centred at the origin and contained in (\z\ < rn). Let S(n,j), 
j = 0, 1, . . . ,j(n), be a partition of (|s| ^ rn) into a finite number of annular 
sectors bounded by radial segments and concentric circular arcs. We may 
assume that the S(n,j) are such that the p-diameter of each S(n,j) is less 
than 1/n. Let A(n, p, I), I = 1, 2, . . . , l(n, p), p = 0, 1, . . . , n — 3, be the 
family of all regions which connect some circle (\z\ = rv) to (\z\ = rn), and 
which are such that A (n, p, I) is the union of a subfamily of 

{5 (n , j ) : i = 0 , l , . . . , j ( » ) } . 

Let X(w, p, I) be an arc in A (n, p, I) which connects (\z\ = rp+i) to (\z\ = rp+2). 
Let hn,Vti map the disc (|f| < 1) onto A(n,p,l) via the universal covering 
surface of A (n, p, I), and let k(n, p, V) be a fixed component of the inverse 
image of K(n, p, I). 

From the Two Constants Theorem and another theorem of Nevanlinna 
[10, Theorem A] we conclude the following. For each 0 < an < 1, there is a 
constant m(n, p, I) such that if F(Ç) is holomorphic and bounded by 1 in 
(|f | < 1) and bounded by tn(n, p, I) on a boundary curve y which meets 
(If I = On), then |F(f) | < 1/n, for f in kin, p, I). Let m{n) = inf m(n, p, I), 
where the infimum is taken over all m(n, p, I) with p = 0, 1, . . . , w — 3, 
Z = 1, 2, . . . , l(n, p). It follows that if F(f ) is holomorphic and bounded by 
1 in (|f| < 1) and bounded by m{n) on a boundary curve y which meets 
(If I = On), then 

(11) |F(f) | < 1/n, ?eHn,p,l), p = 0, 1, . . . , n - 3, 

/ = 1, 2, . . . ,l(n,p). 
The constant an will be specified shortly. 

For any boundary path /3 in (\z\ < 1), let p(/3) be the smallest index p 
such that /3 meets (\z\ = rp). For n > p, let 4̂ (/3, w) be the union of all S(n,j) 
which meet A(/3, 2/»). Then A(J},n) = A(n, p, I) for some / and some 
£ < P(P)- We now set 

a„ = max{min{|f|; *„,„,,(f) Ç /?, where A (fi, n) = A(n,p,l)}}, 

where the maximum is taken over all boundary paths fi which meet 
(\z\ — fn-3). Since 0 Pi (\z\ = rn_2) is at a p-distance of at least 1/n from the 
boundary of A (/3, n), it follows that an < 1. 

We may now assume that m(n) is strictly decreasing to zero as n—>oo. 
Let X(r) be a continuous positive function satisfying 

https://doi.org/10.4153/CJM-1970-090-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-090-7


NORMAL MEROMORPHIC FUNCTIONS 8 1 1 

X(r) < m(n), rn-! S r < rn. 

We may also assume that \(r) < \. 
Suppose now, to prove the theorem, that a is a boundary path on which 

f(z) satisfies (10), and suppose that a is not a p-path. Then [3, Theorem 1] 
the family 

is normal in some neighbourhood of z = 0, and hence [8, Theorem 15.2.2] 
equicontinuous. It follows from this and from (10), that for all sufficiently 
large n > N(a), a meets (\z\ = rn), and 

|/(2)| < 1, z e A(a,é/n)r\ (\z\ ^ rn). 

For each n > N(a) + 4, we have A (a, n) = A(n,p, I), for some index p 
and some index I. By our choice of an, we see that some component yn of the 
inverse image of a by hn,p,i meets (|f| = an). Also from the definition of X(r), 

|fi.(f)l ^ |/(A».p.i(f))| ^ w(n), f 6 7,; 

and thus (11) holds for F = Fn. It follows that 

|/(2)| < 1/», 2 6 i£(rc, £ , / ) , » > P + 3. 

Since 2£(w, p, I) is an arc which intersects both Qz\ = rP+i) and (|s[ == rp + 2), 
and since p < p(a), we have f(z) = 0. This completes the proof. 

4. Spiral asymptotic behaviour. We now consider the distribution of 
values of a meromorphic function which tends quickly to an asymptotic 
value along a spiral path. As in the previous theorems, there are two types 
of results depending on whether the asymptotic value is an omitted value or 
not. The first case is typified by the approach of a holomorphic function 
to oo, and the second case is exemplified by the approach of a general 
meromorphic function to, say 0. 

To begin, we note the following consequence of the proof of Theorem 4. 

THEOREM 7. Letfiz) be a function holomorphic in the unit disc D, and suppose 
that for some spiral a and some a ^ 1, 

| / W | è Œ p ( ^ f ^ ) , .€«, 
where p(x) —» +00 as x —> 0. Then in each Stolz angle of opening TT/CT, f(z) 
has a sequence of p-points. 

COROLLARY. If f{z) is a holomorphic function in the unit disc D, satisfying 
eventually, on a spiral a, the inequality 

| / ( 2 ) | è exp (1 - \z\)-

for each fixed a, then each boundary segment is a p-segment. 

https://doi.org/10.4153/CJM-1970-090-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-090-7


812 PAUL GAUTHIER 

For functions approaching zero on a spiral we have an analogue to 
Theorem 7. However, it seems that we must assume a faster rate of approach 
since zero may not be an omitted value. 

THEOREM 8. Letf(z) be a function holomorphic in the unit disc D, and suppose 
that for some spiral a and some a ^ 1, f(z) satisfies 

| / ( Z ) | ^ e x p ( - [ 1
( 1 _ - f f ) , zta, 

where p (x) —> + oo as x —» 0. Then either f(z) = 0 or in each Stolz angle of 
opening T/<T, f(z) has a sequence of p-points. 

Proof. Suppose that A is a Stolz angle of opening w/a. We may assume that 
the vertex of A is at z = 1. As usual, let A(f ) map the disc (|f | < 1) conformally 
onto A so that h(l) = 1, and let F(Ç) = f(z). Then since (1 — \z\)a is 
proportional to 1 — |f|, we have 

(12) ITOI *«*(-* ' - f f f f -W). f€„, 
where q(x) —» + co as x —> 0, and {y^} is a sequence of crosscuts of (|f| < 1) 
which tend to f = 1. 

Suppose, now, that F(f ) is a normal function. Then by Theorem 1, 

(13) ^.a-lm/a'-fl)-0- lfl^L 

According to Lemma 4, (12) and (13) imply that F(f ) = 0. Thus f(z) = 0. 
If, on the other hand, F(£) is not normal, then by Lemma 1, it possesses 

a sequence of p-points. By Lemma 2, f(z) has a sequence of p-points in A. 
This completes the proof. 

It is surprising to see precisely the same order of growth on M(r) in 
Theorems 1 and 5 but not in Theorems 7 and 8; perhaps Theorem 8 is not 
sharp. In addition, it seems that Theorem 8 should hold for meromorphic 
as well as holomorphic functions. However, in the proof we rely heavily on a 
theorem of Rung (Lemma 4) which has thus far been proved only for 
holomorphic functions. 

COROLLARY. If f(z) is a holomorphic function in the unit disc D, satisfying 
eventually, on a spiral a, the inequality 

| /(2) | g e x p ( - ( l - | s | ) - ' ) 

for each fixed a, then either f(z) = 0 or each boundary segment is a p-segment. 

It is important to point out that there exist non-constant functions satisfying 
the respective hypotheses of the theorems and corollaries of this paper (with 
the exception of those where we assume the function is normal). This follows 
from a theorem of Schnitzer and Seidel [11]. 
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5. Normal families 

THEOREM 9. Let F be a normal family of meromorphic functions in the unit 
disc D. Then there is a continuous positive function X(r), 0 ^ r < 1, such that 
for each f in F, 

(14) lim inf \(r)M(r,f) = 0, r -> 1. 

Proof. Set 

TO = \fe F:min \f(z)\ £ n\ . 

Then F = Fil) U F (2) U . . . U Fin) U . . . . Now choose 

è = r0 < ri < . . . < rn < . . . , rn -> 1. 

For each n, there is a constant M in) such that for each / £ ^(w), there is 
an r, with rw_i ^ r ^ rre such that M(r,f) ^ Af(w). For otherwise, for each 
m = 1, 2, . . . , there is a function /OT in F(n) satisfying M(r,fm) ^ ra, for 
rn-\ S y ^ Tn. Now {/m} has a subsequence which converges uniformly to oo 
on (\z\ S rn)> However, for each/m there is a point zm such that \fm(zm)\ ^ n, 
and |sw| ^ J. This is a contradiction, and so M(n) exists, as claimed. 

Set \(r) = 1, for 0 ^ r ^ r0, and set X(r) = (wikf(n))-1, for r„_i < r ^ rre, 
w = 1, 2, . . . . Now, if / is in F, then for each n > N if), f is in F(n). Hence 
for each n > N(f), there is an r, with rw_i ^ ^ « such that M(r,f) S Min), 
and so for this r, \(r)M(r,f) ^ 1/n. The theorem follows. 

THEOREM 10. Let F be a normal family of holomorphic functions in the unit 
disc D. Then there is a continuous positive function X(r), 0 ^ r < 1, such 
that for each f in F, 

(15) lim sup \(r)M(r,f) = 0, r -> 1. 

Proof. Set 

TO = {/€ # l/(0)| £ * } , n = 1 ,2 , . . . . 

Then F = F(l) U F(2) U . . . W F(») U . . . . By an argument similar to 
that used in Theorem 9, one can show that each family F(n) is uniformly 
bounded by, say M in), on Qz\ S rn). The rest of the proof parallels the 
proof of Theorem 9, and thus we omit the details. 

It should be remarked that condition (15), although necessary, is certainly 
not sufficient for normalcy. For example, the family of functions (2z)n, 
n = 1, 2, . . . , satisfies (15) but is not normal in the unit disc. 

REFERENCES 

1. P. M. Gauthier, A criterion for normalcy, Nagoya Math. J. 32 (1968), 277-282. 
2 . Cercles de remplissage and asymptotic behaviour, Can. J. Math. 21 (1969), 447-455. 
3. Cercles de remplissage and asymptotic behaviour along circuitous paths, Can. J. Math. 

22 (1970), 389-393. 

https://doi.org/10.4153/CJM-1970-090-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-090-7


814 PAUL GAUTHIER 

4. V. I. Gavrilov, On a theorem of A. L. Shaginjan, Vestnik Moskov. Univ. Ser I Mat . 
Meh., no. 2 (1966), 3-10. (Russian) 

5. W. K. Hayman, On Nevanlinna1 s second theorem and extensions, Rend. Circ. Mat. Palermo 
(2) 2 (1953), 346-392. 

5# Meromorphic functions (Clarendon Press, Oxford, 1964). 
7. M. H. Heins, The minimum modulus of a bounded analytic function, Duke Math. J. 14 (1947), 

179-215. 
8. E. Hille, Analytic function theory, Vol. 2 (Ginn, Boston, 1962). 
9. L. H. Lange, Sur les cercles de remplissage non-euclidiens, Ann. Sci. Ecole Norm. Sup (3) 

77 (1960), 257-280. 
10. D. C. Rung, Behavior of holomorphic functions in the unit disc on arcs of positive hyperbolic 

diameter, J. Math. Kyoto Univ. 8 (1968), 417-464. 
11. F . Schnitzer and W. Seidel, On the rate with which a holomorphic function in a disk can tend 

radially to zero, Proc. Nat . Acad. Sci. U.S.A. 67 (1967), 876-877. 
12. A. L. Shaginjan, A fundamental inequality in the theory of functions and its applications, 

Izv. Akad. Nauk Armjan. SSR Ser. Fiz.-Mat. Nauk 12 (1959), no. 1, 3-25. (Russian. 
Armenian Summary) 

13. J . L. Walsh, Interpolation and approximation by rational functions in the complex domain, 
3rd éd. (Amer. Math. Soc , Providence, Rhode Island, 1960). 

Université de Montréal, 
Montréal, Québec 

https://doi.org/10.4153/CJM-1970-090-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-090-7

