BULL. AUSTRAL. MATH. SOC. VOL. 15 (1976), 461-465.

The category of uniform convergence spaces is cartesian closed

R.S. Lee

This paper first assigns specific uniform convergence structures to the products and function spaces of pairs of uniform convergence spaces, and then establishes a bijection between corresponding sets of morphisms which yields cartesian closedness.

1. Introduction

Cartesian closed categories, being set-like, are useful in topology. Extensive bibliographies exist in Herrlich [3], NeI [5], and Wyler [6]. For a category that is not cartesian closed, embedding into one may be considered. For example: the category of uniform spaces is known to be not cartesian closed, but it can be embedded into the category U of uniform convergence spaces. This paper shows that U is cartesian closed Other properties of U will be discussed in a future article.

The definition of uniform convergence structure, given below and used throughout this paper, is due to Wyler [7], since the uniform convergence structure introduced by Cook and Fischer [1] contains the diagonal filter; thus, cannot be used if a function space with the continuous convergence structure is to be in U, as shown by Example 2.2 in Gazik, Kent, and Richardson [2].

2. Uniform convergence spaces

NOTATION. [B] denotes the filter generated by the filter base B.

Received 4 August 1976. The author wishes to thank Professor Oswald Wyler for suggesting this problem and for kindly giving directions and advice.

Let F and G be two filters on $X \times X$ including null filters [7]. Then $F^{-1} = [\{F^{-1} \mid F \in F\}]$ where $F^{-1} = \{(a, b) \mid (b, a) \in F\}$; and $F \circ G = [\{F \circ G \mid F \in F, G \in G\}]$ where

 $F \circ G = \{(a, c) \mid \text{there exist } b \in X \text{ with } (a, b) \in F \text{ and } (b, c) \in G\}$ represents the usual composition of relations in the reverse order. \dot{x} denotes the ultrafilter generated by $\{x\}$. For every filter F of $U(Y, Z) \times U(Y, Z)$, and G of $Y \times Y$, together with the evaluation map $e : U(Y, Z) \times Y \rightarrow Z$, we define $(e \times e)(F \times G)$ to be the filter $F(G) = [\{F(G) \mid F \in F, G \in G\}]$ where

$$F(G) = \{ (fa, gb) \mid (f, g) \in F, (a, b) \in G \} .$$

Using the order notation of Kowalsky and Wyler, a filter F is less than or equal to a filter G if F is finer than G. Also, $F \cup G$ denotes the filter $\{F \cup G \mid F \in F, G \in G\}$, which is the set-intersection of Fand G; and $F \cap G$ denotes the filter $\{F \cap G \mid F \in F, G \in G\}$ which is generated by the set-union of F and G. These symbols of filter operations carry over formal laws from set algebra to filter algebra in a natural way; see Wyler [7].

A uniform convergence structure J on a set X is a set of filters on $X \times X$ such that

(i) $\dot{x} \times \dot{x} \in J$ for every $x \in X$; (ii) if $F \in J$ and $G \leq F$, then $G \in J$; (iii) if $F, G \in J$, then $F \cup G \in J$; (iv) if $F \in J$, then $F^{-1} \in J$; (v) if $F, G \in J$, then $F \circ G \in J$.

A uniform convergence space is a pair (X, J) of a set X and a uniform convergence structure J on X. A map f from a uniform convergence space (X, J) to a uniform convergence space (Y, K) is uniformly continuous iff $(f \times f)J \subset K$.

The collection U of all uniform convergence spaces and uniformly continuous maps form a category, the identity map for each uniform convergence space and the composition of uniformly continuous maps being uniformly continuous [1]. Let V be the initial structure on $X \times Y$ with respect to uniformly continuous projections p and q from the product to X and Y, respectively. Then V consists of all filters on $(X \times Y) \times (X \times Y)$ generated by $(p \times p)^{-1}F \cap (q \times q)^{-1}G$ for filters $F \in J$, $G \in K$, and is known as the product uniform convergence structure [1].

LEMMA 1. $(X \times Y, V)$ is a product of (X, J) and (Y, K) in the category U.

Proof. By Theorems 12 and 14 in [1].

Let U(X, Y) be the set of all uniformly continuous maps from (X, J)to (Y, K), and W be the uniform continuous convergence structure on U(X, Y); specifically, W is the set of all filters H on $U(X, Y) \times U(X, Y)$ such that $(e \times e)(H \times F) \in K$ for every $F \in J$.

LEMMA 2. W is a uniform convergence structure of U(X, Y).

Proof. $(e \times e)((\dot{f} \times \dot{f}) \times F) = (f \times f)(F) \in K$ for every $f \in U(X, Y)$ and $F \in J$, f being uniformly continuous. Thus $\dot{f} \times \dot{f} \in W$. Suppose $A \in W$, and $B \leq A$; then for every $F \in J$, $B(F) \leq A(F)$ in K. Hence $B \in W$. If A, B in W, then $(A \cup B)(F) \approx A(F) \cup B(F)$ in K for every $F \in J$, showing that $A \cup B \in W$. For every $A \in W$,

$$A^{-1}(F) = (A(F^{-1}))^{-1}$$
.

 $F^{-1} \in J$, therefore $A(F^{-1}) \in K$ which implies that $(A(F^{-1}))^{-1} \in K$. For A, B in W, $(A \circ B)(F) \leq A(F) \circ B(F^{-1} \circ F) \in K$, since $(A \circ B)(F) \subseteq A(F) \circ B(F^{-1} \circ F)$, where $A \in A$, $B \in B$, and $F \in F$. Hence $A \circ B \in W$.

LEMMA 3. For each (Y, K) in U, the functor $- \times Y : X \mapsto X \times Y$ is a left adjoint to $U(Y, -) : Z \mapsto U(Y, Z)$, whenever $X \times Y$ and U(Y, Z) have the respective structures V and W used in Lemmas 1 and 2.

Proof. By Lemma 1, $- \times Y$ is an endofunctor of U. The adjoint situation is shown below by an equivalent condition [4], which states that for each uniform convergence space (Z, L) the corresponding evaluation map $e: U(Y, Z) \times Y \rightarrow Z$ is a universal arrow from the functor $- \times Y$ to Z. For every uniform convergence space (X, J) and $f: X \times Y \rightarrow Z$, define $f^*: X \rightarrow U(Y, Z)$ by $(f^*(x))(y) = f(x, y)$. At the set-level,

 $f=e(f^{\star}\times \operatorname{Id} Y)$, where $\operatorname{Id} Y$ is the identity map of Y . For every filter $F\in J$, and $G\in K$,

$$\left((f^* \times f^*)(F) \right) (G) = (e \times e) \left((f^* \times f^*)(F) \times G \right)$$

= $(e \times e) \left(\left((f^* \times \operatorname{Id} Y) \times (f^* \times \operatorname{Id} Y) \right) (H) \right) = (f \times f)(H) ,$

where $H = (p \times p)^{-1} F \cap (q \times q)^{-1} G$ is a filter in V. Since we give U(Y, Z) the uniform continuous convergence structure, e is uniformly continuous. Hence, if f is uniformly continuous, we have $(f^* \times f^*)(F) \in W$ for every $F \in J$, which shows that f^* is uniformly continuous. On the other hand, if f^* is uniformly continuous, clearly so is f.

THEOREM. The category U of uniform convergence spaces and uniformly continuous maps is cartesian closed.

Proof. U has a terminal object, namely a singleton uniform convergence space, has products by Lemma 1, and satisfies Lemma 3. Hence U is cartesian closed.

References

- [1] C.H. Cook and R.H. Fischer, "Uniform convergence structures", Math. Ann. 173 (1967), 209-306.
- [2] R.J. Gazik, D.C. Kent, and G.D. Richardson, "Regular completions of uniform convergence spaces", Bull. Austral. Math. Soc. 11 (1974), 413-424.
- [3] Horst Herrlich, "Cartesian closed topological categories", Math. Collog. Univ. Cape Town 9 (1974), 1-16.
- [4] Saunders Mac Lane, Categories for the working mathematician (Graduate Text in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).
- [5] L.D. Nel, "Cartesian closed topological categories", Categorical topology, 439-451 (Proc. Conf. Mannheim, 1975. Lecture Notes in Mathematics, 540. Springer-Verlag, Berlin, Heidelberg, New York, 1976).

464

- [6] Oswald Wyler, "Convenient categories for topology", General Topology and Appl. 3 (1973), 225-242.
- [7] Oswald Wyler, "Filter space monads, regularity, completions", TOPO
 1972 General topology and its applications, 591-637 (Second Pittsburgh International Conference, 1972. Lecture Notes in Mathematics, 378. Springer-Verlag, Berlin, Heidelberg, New York, 1974).

Department of Mathematics, Duquesne University, Pittsburgh, Pennsylvania, USA.