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Abstract. A complete set of computable invariants is given for deciding whether
two irreducible subshif ts of finite type have topologically equivalent suspension flows.

0. Introduction
One of the fundamental tools in the qualitative study of dynamical systems has been
symbolic dynamics. Subshif ts of finite type (see § 1 for a definition) play a central
role, as they occur quite frequently in smooth dynamical systems. In many instances
a smooth flow will possess a compact invariant set A which admits a cross section
2 l t and the first return map under the flow px: 2^ -* X, will be topologically conjugate
to a subshift of finite type aA: 2A -» SA corresponding to a non-negative irreducible
matrix A. The choice of a different cross-section £2 with different return map
p2: 22 -* 22 may result in a quite different subshift of finite type aB: 1B -» 1B. However
in this case <rA and o-B or the matrices A and B are said to be flow equivalent.
Alternatively the non-negative matrices A and B are flow equivalent when the
corresponding subshifts o-A and crB have topologically equivalent suspension flows
(see § 1 for definitions). The case of primary interest is when the matrices are
irreducible (this is equivalent to the existence of a dense forward orbit in the
suspension flow). A special case of rather little interest occurs with permutation
matrices whose corresponding flows consist of a single periodic orbit. We call this
the trivial flow equivalence class.

The main result of this article is a simple, easily computed algebraic characteriz-
ation of flow equivalence for irreducible matrices not in the trivial flow equivalence
class.

THEOREM. Suppose that A and B are non-negative irreducible integer matrices neither
of which is in the trivial flow equivalence class. The matrices A and B are flow
equivalent if and only if:

and

where n and m are the sizes of A and B respectively and In and Im are identity matrices.

The necessity of these conditions was proved in [3] and [1]. Parry and Sullivan gave
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54 J. Franks

generators for flow equivalence in [3] and proved that det (I-A) is an invariant.
In [1] it was shown that Z"/(I - A)Z" is also an invariant. Notice that this invari-
ant contains all of the information of det (I-A) except its sign, so that one
could replace det (I-A) and det (7 — B) in the theorem by sgndet(Z-A) and
sgndet(7-B) .

The new content of this article is the converse direction. Namely if det ( 7 - A) =
det (I-B) and Z"/(I-A)Z" = ~Zm/{I - B)Zm then A and B are flow equivalent.
In the process we give canonical forms for representatives of a flow equivalence
class (theorem 3.3).

1. Background and definitions
If A is an n by n non-negative integer matrix we can form an oriented graph F
with n vertices and aiy edges joining vertex i to vertex / and oriented from i to j .
It is important to know when any vertex can be joined to any other by an oriented
path on the graph. This property is called irreducibility and it is not difficult to show
that in terms of the matrix it is given by the following criterion.

(1.1) Definition. A non-negative square integer matrix A is called irreducible pro-
vided that for each /, / with 1 < i < n and 1 < / < n, there is an N > 0 such that the
i/th entry of AN is not zero.

Given A and its graph F we can construct the corresponding subshift of finite type
which we now define. Let £ = {«,-} be the set of edges of F. We give E the discrete
topology and consider the compact zero dimensional space fl-oo E °f sequences of
elements of E indexed by the integers. We define a subset 1A c Yl^co E by saying
e = ( . . . , f_i, eo,e1,...) is in SA provided for each i, the oriented edge e, ends at
the vertex of F where ei+1 begins. (An edge of F is allowed to begin and end at the
same vertex.) It is easy to see that 2 A is a closed subset of FJ-oo E a n ^ t n a t it is
invariant under the shift homeomorphism

given by a(e) = f where f = e^x for all i.

(1.2) Definition. The homeomorphism aA: 1A -* ^A given by vA = o-\-L/K is called the
subshift of finite type associated to the matrix A.

For further details on this and subsequent definitions in this section see chapter 3
and appendix A of [2].

An important question, answered by Williams [4], is when do two matrices give
rise to subshifts which are topologically conjugate.

(1.3) THEOREM (Williams). Suppose A and B are non-negative square matrices.
The corresponding subshifts of finite type crA and crB are topologically conjugate if
and only if there are (not necessarily square) matrices Rh S,, 1 < i < n such that

A = R,SU B = SnRn, and

for all l < / < n - l .
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Two matrices A and B which satisfy this condition are said to be strong shift
equivalent.

We are concerned here with flows admitting a cross-section whose return map is
a subshift of finite type. To construct (abstractly) such a flow we use the following
construction.

(1.4) Definition. If h:X-*X is a homeomorphism then its suspension flow (also
called its mapping torus flow) is defined on the identification space

and is defined to be the flow on Y induced by the flow #, on XxU given by
</>,(x, s) = (x, s + t).

Recall that two flows <j>, on X and </>! on X' are said to be topologically equivalent
provided there is a homeomorphism h: X -» X' which carries orbits of <f>, onto orbits
of <(>', and preserves their orientation.

(1.5) Definition. If A and B are non-negative square integer matrices they are flow
equivalent provided the suspension flows of the subshifts of finite type <rA and aB

are topologically equivalent.

The following result of Parry and Sullivan gives a characterization of this equivalence
relation on matrices.

(1.6) THEOREM (Parry & Sullivan [3]). The equivalence relation of flow equivalence is
generated by a strong shift equivalence and the relation

1°
a21

1
0
0

0
al2

a22

\

a2n

0 ann\

This means that if A and B are flow equivalent there exist matrices At = A,
A2,..., Am = B such that for each i either At is strong shift equivalent to Ai+1 or
else At has the form of one of the matrices above and Ai+1 has the form of the other.

In subsequent sections we want to alter a matrix to a canonical form while keeping
it in the same flow equivalence class. One operation we shall use is to change
between two matrices of the form indicated in theorem (1.6) and another comes
from an observation of Williams.

(1.7) PROPOSITION (Williams). The following two matrices are strong shift
equivalent:

bt b,
a 2 • • •

b2 • • •

c2 •••

an

K
Cn

and
••• an + bn\

cn I'
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Proof. Let R be the (n +1) by n matrix

and let 5 be the n by (n + 1) matrix

/ I
0

Then RS is the first of the matrices above and SR is the second. •
The operation of replacing the right hand matrix in (1.7) with the left hand one
will be referred to as splitting the first row and replicating the first column. Of
course we could just as well split row j and replicate column j . In fact permuting
the rows and then doing the same permutation to the columns corresponds to
renaming the vertices of the graph and does not change flow equivalence class.
Likewise since the transpose matrix corresponds to the inverse flow we can split a
column and replicate the corresponding row.

(1.8) Remark. If we are given non-negative integer matrices R and S, then, by
(1.3), A = RS and B = SR are strong shift equivalent (and hence flow equivalent).
However even though A is strictly positive it may happen that B has an entire row
(or column) of zeros; e.g.

2 3) = (7),A =

but the product in the reverse order is

B =

The fact that the second row has all entries zero means that in the graph for B
there are no edges emanating from vertex 2. Thus no edge ending in vertex 2 can
ever appear in one of the sequences in SB. It follows that aB is the same as o-B., where

1
0

2

2
0
4

3
0

6,

* - G
is obtained by removing the row of zeros from B and the corresponding column.

2. Row and column operations
In this section we develop some basic operations on matrices which preserve flow
equivalence and will be used to achieve canonical forms for flow equivalence.
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(2.1) LEMMA. If A = (ai;) is a non-negative square integer matrix and a12>0, then
A is flow equivalent to

Proof. Starting with A we split the first row and replicate the first column (see (1.7)
and the remarks following its proof) to obtain

0 0 1 0 •

a2X

-l a13

22 a23

Next, using the same sort of operation on this matrix, we split the third column
and replicate the third row to obtain

/o o 01 0
#11 #11 " #12 •*• #13

a2\ u2\ 0 a22 #23

#21 #21 ^ #22 #23

#31 #31 0 #32 #33 .

\ /

After switching rows and columns 2 and 3 we can apply the Parry-Sullivan operation
from (1.6) to remove the first row and second column to obtain

ja21 a2x a22 aZ3

an an aX2—\ ai3

a2\ a2\ a22 a23

a3\ a3\ a32 a33

" " "\

\.

Finally we notice that this matrix is exactly the result of taking the matrix

11 + 021 a12 — l + a22 al3 + a23 ••

a21 a22 a23

a31 a32 a33

and splitting the first row and replicating the first column. The only thing to
check is that at all stages the matrices were non-negative and this is the case since
a1 2>0. D

(2.2) COROLLARY. If A = (aj;) is a non-negative square integer matrix and apq>0
p&q then A is flow equivalent to the matrix obtained by subtracting 1 from am and
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adding row q to row p. Likewise A is flow equivalent to the matrix obtained by
subtracting 1 from aM and adding column p to column q.

Proof. The first assertion is proved exactly as in (2.1). (Alternatively one could
conjugate both matrices in the conclusion of (2.1) by a permutation matrix P which
moves row and column 1 to p and row and column 2 to q since A and P~*AP are
strong shift equivalent.)

The second assertion follows because the transpose A' corresponds to the inverse
flow to the flow to which A corresponds. Hence two matrices are flow equivalent
if and only if their transposes are. •

(2.3) COROLLARY. If A = {atj) is a non-negative square integer matrix then A is
flow equivalent to a non-negative integer matrix A' all of whose diagonal entries are
non-zero.

Proof. Suppose A has a zero diagonal entry; without loss of generality we can assume
it is a n . We will show that A is flow equivalent to a matrix whose size is smaller
than that of A. If this new matrix has a zero diagonal entry the process can be
repeated to get a still smaller matrix. We repeat, several times if necessary, until
all diagonal entries are non-zero.

We show that A is flow equivalent to a smaller matrix (under the assumption
that a u = 0) by altering it within its flow equivalence class until the first column is
zero. We do this as follows: if a2\ > 0 we use (2.2) to subtract 1 from it and add
row 1 to row 2. The 21 entry of this new matrix is a2\ -1 since a n = 0. We repeat
this process until the 21 entry is 0 and then proceed to do likewise to all other
non-zero entries in the first column. The resulting matrix, since its first column is
zero, represents the same subshift of finite type as the matrix obtained by deleting
the first row and column (see (1.8)). •

In view of this corollary we will begin to restrict our attention largely to matrices
with non-zero diagonal entries. The advantage of such matrices is that they can be
written in the form B + I, where / is the identity matrix of the appropriate size and
B is non-negative. We come now to the major tool which will be used to establish
canonical forms. This is the first place we make essential use of irreducibility of the
matrices we consider.

(2.4) THEOREM. Suppose B is a non-negative square integer matrix and A = B + I
is irreducible. Then if B' is obtained from B by adding any row to a different row or
adding any column to a different column, the matrix A is flow equivalent to B' +1.

Proof. Consider the case of adding row q to row p. All rows except the pth will be
identical for A and B' + I. Row p of A is

Row

since

P

a

of

pp ~

( f lpl .ap2>- • •

B' + J is

(bpl + bqU..

= (api + aql,..

= bpp + l and aqq

,apn)
 = (bpi,...

.,bpp + bqp + l,.

.,app + aqp,....

-i = V

, b p p + l,...,l

... *„ + *„,..
.apq + a^-l,.

'pq, • • •

• » bpn -

• • jQpn

, bpn).

>rbqn)

+ aqn),
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But now (2.1) and (2.2) say that provided aw was non-zero, A and B' + I are
flow equivalent. Thus whenever bm (which equals an) is non-zero we can add row
q of B to row p forming B' and (B + I) will be flow equivalent to (B' + I). Saying
this another way: if we are given B' we can subtract row q from row p to form B
and provided B is non-negative and bpq>0 (after the subtraction) we will have
(B + I) flow equivalent to (B' + I).

In the case aM = 0we use the irreducibility of A as follows. There is a non-zero
element of row p, say apk. Since A is irreducible there is a sequence io — p, i\, • • •,
im~<i such that for O s / < m , the ij+1ij entry of A is non-zero and all the i; are
distinct. We choose the sequence {/,} to be of minimal length. That such sequences
exist follows easily from the criterion for irreducibility in terms of the graph F of
A mentioned at the beginning of § 1. Note that this implies A is irreducible if and
only if B is.

Now since the h element of row p is non-zero we can add row it to row p. The
new row will be non-zero in the i2 position since the i2 position in row it was
non-zero. Hence we can now add row i2 to row p which will make it non-zero in
the i3 position etc. None of the /, except i0 will equal p since the sequence was
chosen to have minimal length. Since im = q we will end up with a non-zero entry
in position q of row p. We can then add row im = q to row p and begin to subtract
the auxiliary rows we added on. First subtract row im-u the j m _ ! entry of rowp is
still non-zero. We then subtract row /m_2» then im_3 etc.

Since we subtract these rows in the reverse order to that in which we added them,
the appropriate entry of row p is non-zero when we need it to apply (2.2). Hence
at each stage we do not change the flow equivalence class of the matrix plus /. When
we have subtracted row iy the net effect is having formed B' by adding row q of B
to row p.

Since two matrices are flow equivalent if and only if their transposes are, the
analogous result for columns also follows. •

(2.5) COROLLARY. Let B be an n by n non-negative irreducible matrix with n>\.
If A = B + I and TV > 0, there is an n by n matrix A', each entry of which is greater
than TV, and which is flow equivalent to A.

Proof. For some 1 < / < n there is an i with btj > 0. If we add row i of B to each
row except i of B and repeat this TV times we will have each entry except i of
column j of B greater than TV. Now adding one row other than i to row i makes
every entry of column / greater than TV.

If we form B' by adding the new column ;' to every other column then
every entry of B' is greater than TV. By (2.4) A' = B' + I is flow equivalent to
A=B+L •

(2.6) COROLLARY. Let A be a non-negative irreducible matrix which is not in the
trivial flow equivalence class. There exists TV > 0 such that for any n> TV, there is a
strictly positive n by n matrix B' with (B' + I) flow equivalent to A.

Proof. By (2.3) A is flow equivalent to a matrix Ao all of whose diagonal entries
are non-zero. The hypothesis that A is not in the trivial flow equivalence class
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guarantees that Ao is not the 1 by 1 matrix (1). Hence we can write A0 = B0+I
where Bo is non-negative and irreducible. Applying (2.5) we know that Ao = Bo+I
is flow equivalent to Ai = Bi + I, where every entry of B, is 3=2". Thus applying
(1.7) we can split the first row and replicate the first column of At and repeat the
process a sufficient number of times to obtain a matrix A' of size n by n with the
desired properties. •

Note that if the matrix A in the above corollary is the 1 by 1 matrix (1) the
conclusion is false. This is the reason for the requirement of the main theorem that
A should correspond to a non-trivial flow.

We describe now one further operation which we will use to alter matrices within
their flow equivalence class. It may be that in a matrix B = (i»j;) we have bps<bqs

and we would like to subtract row p from row q to obtain bqs - bps in position qs.
We can only do this if each entry of row q is greater than or equal to the corresponding
entry of row p since otherwise we would have negative entries. However if no
negative entries result from the subtraction and the resulting matrix B' is irreducible
then (2.4) asserts that (B + I) and (B' + I) are flow equivalent. To deal with the
problem that an entry of row q, say bqr, is less than the corresponding entry tpr of
row p we can do the following:

Choose m such that m(bqs-bps)> b^-b^. Now add column s of B to column
r, m times. The new entry in position qr is bqr + mbqs, while the entry in position pr
is bp, + mbps which is strictly smaller.

If we do this for all the columns where it is necessary we will be able to subtract
(the new) row p from (the new) row q to obtain bqs — bps in position qs. Notice that
since we have created no negative entries and in fact no new zero entries at any
stage, the matrix at every stage is irreducible. We summarize this process in the
following definition.

(2.7) Definition. If B is a non-negative irreducible matrix with bqs > bps we will call
the following process a column augmentation and row subtraction. First add column
s to every column whose qth element is ^ its pth element. Do this a sufficient
number of times such that each element of row q is greater than the corresponding
element of row p. Then subtract row p from row q. A row augmentation and column
subtraction is defined similarly.

The remarks prior to this definition together with (2.4) make the following lemma
immediate.

(2.8) LEMMA. / / B' is the result of performing a column augmentation and row
subtraction on an irreducible matrix B then (B + I) is flow equivalent to (B' + I). The
analogous result for row augmentation and column subtraction is also valid.

As an application of this operation we will obtain the following result which is the
first step in getting canonical forms.

(2.9) PROPOSITION. Let A = B + I be annby n integer matrix with B strictly positive.
Given j with l < / s n , there is a strictly positive n by n matrix B' such that (B' + I)
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is flow equivalent to A and every entry of the j'th column of B' equals d, where d is
the greatest common divisor of the entries of B and the greatest common divisor of
the entries of B'.

Proof. We give an algorithm in terms of the previously defined operations for
producing the desired matrix B'.

Step 1. Choose the smallest element of the current matrix (B to begin with). Suppose
it is in position pq, and has value d0.

Step 2. For the first element of column q perform a column augmentation and row
subtraction (see (2.7)), subtracting row p from the row 1, decreasing the entry in
the \q position by d0. (If p = 1 start with 2.) Repeat this until the entry in position
\q is ^d0. If this entry or any other is <d0 return to step 1 and start again with
the new matrix.

Step 3. Repeat step 2 for each entry of column q except the pth.

Step 4. When this step is reached the matrix will have a column (called q) each
entry of which is d, where d > 0 is the minimal entry of the matrix. If d is the g.c.d.
of the entries of the matrix proceed to step 5. Otherwise there is an entry, say in
position rs, which is greater than d but not a multiple of d. By means of a row
augmentation and column subtraction, subtracting column q from s we can decrease
the rs entry by d. Repeating this as often as necessary we end up with an entry
d'>0 which is <d. Now return to step 1 and start again.

Step 5. When this stage is reached the matrix will contain a column (called q) each
element of which is d, the g.c.d. of all the elements of the matrix. Conjugating by
a permutation matrix move column q to position / This is the matrix B'.

Notice that the algorithm is finite and must terminate since the maximal number
of times it is possible to start again with step 1 is the original d0 = minimal element
of B. Since all changes made in going from B to B' were of the type considered in
lemma (2.8) or conjugating by a permutation matrix we have that (B + I) is flow
equivalent to (B' +1). Finally, since the changes were also all ultimately combinations
of ordinary elementary row and column operations, the g.c.d. of the entries of B
equals the g.c.d. of the entries of B'. D

3. Canonical forms
We recall from elementary algebra that any n by n integer matrix A can, by standard
row and column operations, be diagonalized. This diagonal form can be arranged
so that for each i the i'th diagonal entry dt divides the (i + l)'st, di+1. The d, so
constructed are called the elementary divisors of A and dx is the g.c.d. of the entries
of A. Also the group Z"/A(Z")is isomorphic to ©T=i

(3.1) PROPOSITION. Suppose B is a strictly positive 2 by 2 matrix with elementary
divisors dx and d2. Then A = B + I is flow equivalent to the 2 by 2 matrix (I + B1),
where

B' = L n iydet(/-A)<0,
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and

Proof. Let dx =g.c.d. of the entries of B. By (2.9) A is flow equivalent to a matrix
I + Bo where

i y)

and x, y > 0.
If det (Bo) = det (I - A) < 0, then x> y. Hence we can apply (2.4) to conclude A

is flow equivalent to (7 + B,) where Bx is obtained by subtracting row 2 of Bo

from row 1. Thus

Since dt divides y, we can now form

«-G o)
by repeatedly subtracting column 1 from column 2. Clearly z = x - y is an elementary
divisor of B2 and hence of B, so z = d2 and B' = B2.

If det (Bo) = det (7 - A) ^ 0, we note that y > x Since di divides x and d , s x w e
can form

by repeatedly subtracting column 1 from column 2. By (2.4) A is flow equivalent
to (7 + B!) and using standard row and column operations to diagonalize B, shows
z = dx + d2. Thus B' = Bx is the desired matrix. •

(3.2) PROPOSITION. Suppose B is a strictly positive n by n matrix of rank 1. Then
(B + I) is flow equivalent to the n by n matrix (B' + I) where B' is the matrix each
entry of which equals d, the g.c.d. of the entries of B.

Proof. Applying (2.9) we can assume that each entry of the first column of B is d.
Since B has rank one and is strictly positive, every other column is a positive
multiple. Hence repeated subtraction of the first column from the others will
transform B to the desired B'. By (2.4) the matrices (B + I) and (B' + I) will be
flow equivalent. •

We can now give essentially canonical forms for flow equivalence classes of n by n
matrices. There are three different forms depending on whether det (7-A) is
positive, negative or zero.

(3.3) THEOREM. Suppose that B is an n by n, n> 1, strictly positive matrix with
elementary divisors du ... ,dn, each dt a factor of di+l. If A = I + B then A is flow
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equivalent to

B

B' =

(I + Br)

1°
t

di

0

\o

1°
0

\o

where

0

d2

0

d2 .

. . .

0

0

0

4-.

0
:

0

4 - i

4\
0

0/

0
•

0
4-i + 4

\

/

i/det(/-A)<0,

i/det(/-A)>0,

/o
Id,

0

\

• • •
0

d2

0

0

dk-t

dk

0
• • •

D

k \
0 \

1
ifk = rank (/ - A) is less than n.

The matrix D is the (n — k) by (n — k + l) matrix each entry of which is dk.

Proof. Our proof is by induction on n. We suppose inductively that any matrix B
of size less than or equal to n can be put in the desired form using only addition
(and subtraction) of rows and columns without ever leaving the class of non-negative
irreducible matrices (and hence by (2.4) not changing the flow equivalence class of
(B + I)). By (3.1) and its proof, this is true for matrices of size 2 by 2, so this starts
the induction.

We now consider a matrix B of size n +1 and suppose first that

(-l)"+ 1det(B) = d e t ( / - A ) < 0 .

By (2.9) we can alter B using only row and column addition and subtractions
and never leaving strictly positive matrices to obtain a matrix Bt whose first column
has every entry dt. We would like to achieve a zero entry in the first column leaving
all other first column entries dx and the rest of the matrix strictly positive. To do
this we note that since the rank of the matrix is > 1 there is a column, say s, with
two distinct entries, say entry ps is > entry qs. We now add column s to every
other column, except 1, a sufficient number of times such that every entry of row
p except the first is greater than the corresponding entry of row q. If we now subtract
row q from row p we have achieved a matrix with 0 in position p i , dx in every
other entry of the first column and strictly positive elsewhere.
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We would like to have column 1 consist of d} in position 21 and zeros elsewhere.
Suppose p r* 2; then if row / is any row other than 2 or p, we can add row p to
row ; a sufficient number of times such that each entry except the first of row / is
greater than the corresponding entry of row 2. The first entries of both row / and
row 2 are dx; hence if we subtract row 2 from row / we will have a 0 in the ;th
entry of the first column. Repeating this for all choices of / results in a matrix with
di in position 21, zeros in the rest of the first column and strictly positive elsewhere.
If p is 2 we use row 3 instead of 2 (there are at least 3 rows!) then add row 3 to
row 2; add row 1 to row 3 a sufficient number of times to be able to subtract row
2 from row 3 and again we have dx in position 21 and zeros elsewhere in the first
column.

We would now like to get zeros in all entries of row 2 except the first which
should remain dx. But this is easy since dx is still the g.c.d. of all entries of our
current matrix so each element of row 2 is a multiple of dx. Our matrix looks like

Xln \

mndx

\o %nn I

where each of the x's is strictly positive. Hence subtracting column 1 from each
other column an appropriate number of times results in

/O

\o

0
x21

Xln\

0

w

Notice that at each stage the matrix remained irreducible.
If we now apply the induction hypothesis to the n by n matrix obtained by deleting

row 2 and column 1 (i.e. the matrix of x's), it follows that it can be put in the form

/0
d2

0

\o

0

0 /

by row addition and subtraction operations which leave it at all times non-negative
and irreducible. If we do precisely these operations to the corresponding rows and
columns of B2 (never using or changing column 1 or row 2 of B2) we will achieve
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the desired form B'. Notice that the fact that the n by n submatrix remains irreducible
implies that the (n + 1) by (n + 1) matrix does too (compare graphs). Hence we
have that (B + I) is flow equivalent to (B' + I). By construction each d, factors di+l.
Since du...,dn+1 are clearly the elementary divisors of B', they are also the
elementary divisors of B. This completes the case det ( 7 - A) <0.

The case det ( 7 - A ) > 0 is proved in precisely the same way.
For the case that rank (B) = rank (7 - A) = k < n, we perform the induction on

k. The case k = 1 was done in (3.2). As in the previous cases we construct a matrix

/ 0 * • • • * \

dx 0 • • • 0

0 * • • • *

\ o * . . . * /

with B2 + I flow equivalent to B + I, where all the *'s represent positive entries.
The n by n submatrix (the matrix of *'s) has rank k — 1 so the inductive hypothesis
applies to it and the proof is completed as before. D

(3.4) Proof of main theorem. The fact that det (I-A) is an invariant of the flow
equivalence class of A is proved in [3]. The fact that Z"/(I-A)Z" is also a flow
equivalence invariant is proved in [1].

To prove the converse we observe that by (2.6) A and B are flow equivalent to
Ax and 7?, respectively where Ax and Bx are the same size, say n by n, and
Ax = C, + 7, Bt = A + 1 with d and A strictly positive. Let {Cj}?=i and {dj}?=i be
the elementary divisors of C\ and A respectively, arranged so that ct factors ci+l

and dt factors di+1 for all i.
Now by the fundamental theorem of abelian groups and the fact that

it follows that dt = ct for all i. Since det (7-A1) = det {I-B-L) we conclude from
(3.3) that Ax and Bx are flow equivalent to the same canonical form. Hence A is
flow equivalent to B. •

Two immediate corollaries are worth noting:

(3.5) COROLLARY. If A is a non-negative irreducible matrix then A is flow equivalent
to its transpose, which corresponds to the inverse flow.

(3.6) COROLLARY. If A and B are non-negative irreducible matrices with det
(I-A) = det (I-B) = m, a non-zero square-free integer, then A and B are flow
equivalent.

This last follows since Zn/(I-A)Z" and the corresponding group for B both have
order \m\. Since m is square-free there is a unique abelian group of order |m|.
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