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1. Introduction

Let G be a group and «, the mapping which takes every element of G to its
nth power, where n is an integer. It is well known that if «, is an automorphism
then G is Abelian in the cases n =— 1,2, and 3. For any other integer n( # 0)
there exists a non-Abelian group which admits «, as the identity automorphism.
Indeed Miller (1929) has shown that if n % 0,4+ 1,2,3 then there exist non-
Abelian groups which admit a, as a non-trivial automorphism.

Confining our attention to finite groups, we consider the problem of how
large a proportion of the elements of a non-Abelian group can be mapped to their
nth powers by some automorphism when n = —1,2 or 3. Let &, denote the set
of all finite groups with order divisible by the prime p but by no smaller prime.
In the case n = —1 it is known that if G is a non-Abelian group in ¢, then not
more than #|G| or |G|/p of its elements can be inverted by an automorphism
according as p = 2 or p is odd. Manning (1906) classified all groups G with an
automorphism inverting %] GI elements, while Liebeck and the present author
(1973) classified all non-Abelian groups in ¢, (p odd) with an automorphism
inverting | G ] /p elements.

Liebeck (1973) has recently settled the case n = 2 by proving that if G is
a non-Abelian group in %, then no automorphism can send more than ]G]/ p
elements of G to their squares. This result includes the case p = 2. A complete
classification of all non-Abelian groups G in &, with an automorphism squaring
exactly | G| /p elements also appears in Liebeck (1973).

In this paper we investigate the case n = 3. We prove the following results:

(a) If G is a finite non-Abelian group then not more than %I G| elements
can be cubed by an automorphism.

(b) G is a finite group with an automorphism cubing exactly 2 [ G, elements
if and only if G has central quotient group of order 4 and the centre of G has no

elements of order 3.
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(©) If G is a non-Abelian group in ¢, and p is odd then no automorphism
of G can send more than |G |/ p elements to their cubes.

2. Notation

G Denotes a finite group.

o An automorphism of G.

T {g€G|(g) = g°}.

9, The set of all groups with order divisible by the prime p but by no
smaller prime.

Cg(1) The centralizer of the element ¢ in the group G .

Z(G) = Z The centre of G.

G’ The commutator subgroup of G.

3. Preliminary results.

LemMa 3.1, If acAutG then g ' (gx)e Co(T Ng~1Tg).
Proor. ForgeG,teT,g tge T< (g™ tg)® = (g~ *tg)a<[g~ (gu), t] = 1.
LEMMA 3.2. If]GI is odd and ga = g(g # 1) then TN Ty is empty.

PRrROOF. Suppose that te TN Tyg. Then ¢t = t;g and applying o« we get
1* = t,3g. Thus t* = t,% and the oddness of IGI givest =t;,and g = 1.

Lemma 3.3. (Joseph (1969)). If G is a non-Abelian group in %, (p odd)
then G has at least ]G |/p conjugacy classes if and only if G is nilpotent of class 2
with lG’| = p.

PROOF. G has (G:G’) irreducible representations of degree 1 and hence at
least l G I /p — (G: G’) other irreducible representations, each of degree at least p.

Hence

1 1
Gl = |Gl/|G = - =] |G
612 [ole' |+ (3= g7)le]

from which it follows that ]G[ < p-+1. Since p is odd, IG'I = p, and so
G’ < Z(G), since G belongs to &,. The converse is obvious.

LemMA 3.4. If G belongs to 9, and Z(G) is not contained in T then
7| = |6li.

PrOOF. If Z & T then TNZ is a proper subgroup of Z. Clearly,
[Zx N T| < (l/p)]Z] for any x in G and the result follows.
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4. Main Results
THEOREM 4.1. If |T|>$|G| then T= G and G is Abelian.

PROOF. Suppose that | T| > 4|G| and let ¢ be any element of T. Then
[t TeNT| = |t7'Tt|+|T| - |t Tt U T| > |G|+ 4|G| - |G| = 3| G].

By Lemma 3.1, > commutes with more than half the elements of G and hence
> Z(G), for all teT.

Similarly, [tT NT|>}|G|. However, if ¢, s and ts belong to T then
1353 = (t5)® and so ts = st, since t* is central.

Hence, ICG(t)| >4 | Gl for every te T and so every element of T is central.
Finally, |Z(G)| > |G| and so T= Z(G) = G.

THEOREM 4.2. G has an automorphism for which ]T[ = %IGI if and only
if (G:Z(G)) = 4 and Z(G) has no elements of order 3.

PrOOF. If (G:Z(G)) = 4 then G = Z U Za UZb U Zab where a2, b? and
[a, b] all belong to Z. A routine calculation shows that if Z has no elements of
order 3 then the map defined by za'b? - 2%a*p*, 0<i,j <1 for all zeZ,
defines an automorphism sending exactly %]G[ elements to their cubes.

Conversely, let G be a group for which | T| = 4| G|. Clearly G is non-Abelian.
Let t be any non-central element of T. We show that Cy(?) is an Abelian sub-
group of index 2 in G.

As in the proof of Theorem 4.1 ICG(tZ)] = J%lGI If ]CG(I2)| > %[ Gl then
2 is central and thus [tTNT| 2 4| G|. Thus | Cg(t)|Z 4| G| and since t central,
ICG(t)|= %I Gl. Moreover, C;(t) = T and so Cg(f) is Abelian.

We can now assume that ICG(tZ)[ = %|G| and Cg4(#?) is Abelian, since
C4(t?) = T. Accordingly, if gt*> = t*g then gt = tg since t1? = t?t. So C4(f) =
C;(t?) and Cg4(7) is an Abelian subgroup of index 2 in G.

Finally, let a and b be a pair of non-commuting elements of 7. Such a pair
exists since otherwise G is Abelian. Let A = C(a) and B = Cg(b) and so A and
B are distinct Abelian subgroups of index 2 in G.

Now G = AB and (G: AN B) = 4. Clearly A N B = Z(G). Since Z(G) = T,
Z(G) has no elements of order 3 and the proof is complete.

THEOREM 4.3. Let Ge %, and let G be non-Abelian, where p is odd. Then
]T[ = lGl/p,for any automorphism o of G.

PROOF. Suppose that Ge %, and I Tl > (1/p) | Gl, where G is non-Abelian.
We first consider the case where o fixes a non-trivial element g of G. Now g has
order at least p and by Lemma 3.2 the p sets T, Ty, ---, Tg®~! are pairwise dis-
joint. Then, |G| 2 |[TUTg V- UTg?~!| = p|T|>|G|, a contradiction.
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We may thus assume that o« is fixed-point-free. By Lemma 3.1, for geG,
teT, g 'tgeTif and only if [g~*(ga),t] = 1. Since « is fixed-point-free the
correspondence g~ 'g(x) «>g is one-to-one and so g 'tgeT<>[g,t] = 1.
Hence any conjugacy class contains at most one element of T. Thus G has at
least (1/ p)]Gl conjugacy classes and so by Lemma 3.3, G is nilpotent of class 2
with ,G’I = p. Moreover, by Lemma 3.4, Z(G)<= T and so G’ < Z(G) = T.

Finally, let r and s be a pair of noncommuting elements of T. Then,
[r,s]e = [r%s%*] = [r,s]® = [r,5]°, since r, se T and G is nilpotent of class 2.
Thus [r,s]° = 1 and so [r,s]> = 1, by the oddness of | G|. Since T has no ele-
ments of order 3, this is a contradiction and the theorem is established.
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