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1. Introduction

Let G be a group and a.n the mapping which takes every element of G to its
nth power, where n is an integer. It is well known that if an is an automorphism
then G is Abelian in the cases n = — 1,2, and 3 . For any other integer n( # 0)
there exists a non-Abelian group which admits an as the identity automorphism.
Indeed Miller (1929) has shown that if n ^ 0, ± 1,2,3 then there exist non-
Abelian groups which admit a.n as a non-trivial automorphism.

Confining our attention to finite groups, we consider the problem of how
large a proportion of the elements of a non-Abelian group can be mapped to their
nth powers by some automorphism when n = —1,2 or 3 . Let ^ p denote the set
of all finite groups with order divisible by the prime p but by no smaller prime.
In the case n — — 1 it is known that if G is a non-Abelian group in ^ p then not
more than \ | G | or | G [ \p of its elements can be inverted by an automorphism
according as p = 2 or p is odd. Manning (1906) classified all groups G with an
automorphism inverting i\G\ elements, while Liebeck and the present author
(1973) classified all non-Abelian groups in @p (p odd) with an automorphism
inverting | G | \p elements.

Liebeck (1973) has recently settled the case n = 2 by proving that if G is
a non-Abelian group in 9&p then no automorphism can send more than | G \jp
elements of G to their squares. This result includes the case p = 2 . A complete
classification of all non-Abelian groups G in &p with an automorphism squaring
exactly | G | \p elements also appears in Liebeck (1973).

In this paper we investigate the case n = 3 . We prove the following results:

(a) If G is a finite non-Abelian group then not more than £ | G | elements
can be cubed by an automorphism.

(b) G is a finite group with an automorphism cubing exactly f | G | elements
if and only if G has central quotient group of order 4 and the centre of G has no
elements of order 3.
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(c) If G is a non-Abelian group in ^p and p is odd then no automorphism
of G can send more than | G \jp elements to their cubes.

2. Notation

G Denotes a finite group.
a An automorphism of G .
T {geG\(g)x = g3}.
<SV The set of all groups with order divisible by the prime p but by no

smaller prime.
CG(t) The centralizer of the element t in the group G .
Z(G) = Z The centre of G.
G' The commutator subgroup of G.

3. Preliminary results.

LEMMA 3.1. J / a eAu tG then g~l(gcc)eCG(T r\g~lTg).

PROOF. VovgeG,teT,g~ltg e To{g~Hgy = {g~Hg)cLo \j3~\goi),t\ = 1.

LEMMA 3.2. / / \G\ is odd and go. = g(g =£ 1) then TC\Tg is empty.

PROOF. Suppose that teTHTg. Then t = txg and applying a we get
t3 = t^g. Thus t2 = tt

2 and the oddness of | G | gives t = fj, and # = 1.

LEMMA 3.3. (Joseph (1969)). / / G is a non-Abelian group in &p (p odd)
then G has at least | G \jp conjugacy classes if and only if G is nilpotent of class 2
with \G'\ = p.

PROOF. G has (G: G') irreducible representations of degree 1 and hence at
least | G | jp — (G:G) other irreducible representations, each of degree at least p.
Hence

from which it follows that | G' | | p + l , Since p is odd, | G' [ = p, and so
G' £ Z(G), since G belongs to ^ p . The converse is obvious.

LEMMA 3.4. / / G belongs to @p and Z(G) is not contained in T then
\T\ ^ |G|/j>.

PROOF. If Z $ T then T n Z is a proper subgroup of Z . Clearly,
IZx n r | ^ ( l / p ) | z | for any x in G and the result follows.
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4. Main Results

THEOREM 4.1. / / \T\ > f | G | then T= G and G is Abelian.

PROOF. Suppose that | T\ > f | G | and let t be any element of T. Then

\t~lTt C\T\ = | r 1 r f | + \T\-\t~xTt U T | > | | G | + | | G | - | G | = \\G\.

By Lemma 3.1, t2 commutes with more than half the elements of G and hence
t2eZ(G), for all teT.

Similarly, | ( T n T | > i | G | . However, if t, s and ts belong to T then
t3s3 = (ts)3 and so ts = st, since t2 is central.

Hence, | CG(t) | > \ \ G | for every t e T and so every element of T is central.
Finally, | Z ( G ) | > | | G | and so T= Z(G) = G.

THEOREM 4.2. G has an automorphism for which | TJ = | | G | if and only
j/(G:Z(G)) = 4 and Z(G) has no elements of order 3 .

PROOF. If (G:Z(G)) = 4 then G = Z\JZa U Z b UZab where a2, b2 and
[a, ft] all belong to Z . A routine calculation shows that if Z has no elements of
order 3 then the map defined by za'b' -> z3a3ib3j, 0 ^ i, j ^ 1 for all zeZ,
defines an automorphism sending exactly f

Conversely, let G be a group for which | T
Let ( be any non-central element of T. We show that CG(t) is an Abelian sub-
group of index 2 in G.

As in the proof of Theorem 4.1 | CG(t2) \ ^ \ \ G \. If | CG(t2) \ > 11 G | then
t2 is central and thus 11Tr\ T \ ^ i | G | . Thus | CG(t)\ ̂  \ \ G \ and since ( central,
| CG(t)\ = i | G | . Moreover, CG(t) <= T and so CG(0 is Abelian.

We can now assume that | CG(t2) \ = \ | G | and CG(f2) is Abelian, since
CG(t2) c T. Accordingly, if #f2 = t2gf then gt = f# since «2 = t2t. So CG(0 =
CG(t2) and CG(0 is an Abelian subgroup of index 2 in G.

Finally, let a and b be a pair of non-commuting elements of T. Such a pair
exists since otherwise G is Abelian. Let A = CG(a) and B — CG(b) and so A and
B are distinct Abelian subgroups of index 2 in G.

Now G = AB and (G: An B) = 4. Clearly AnB = Z(G). Since Z(G) c T,
Z(G) has no elements of order 3 and the proof is complete.

THEOREM 4.3. Let Ge@p and let G be non-Abelian, where p is odd. Then
J T [ ^ | G | jp, for any automorphism a. of G.

PROOF. Suppose that Ge^p and | T\ > ( l / p ) |G | , where G is non-Abelian.
We first consider the case where a fixes a non-trivial element g of G. Now g has
order at least p and by Lemma 3.2 the p sets T, Tg, •••, Tgp~y are pairwise dis-
joint. Then, IGI ^ I TU Tg U ••• U T ^ - 1 | = p | r | > | G | , a contradiction.

G [ elements to their cubes.
= f | G | . Clearly G is non-Abelian.
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We may thus assume that a is fixed-point-free. By Lemma 3.1, for geG,
teT, g~xtgeT if and only if [g~1(goi), f] = 1. Since a is fixed-point-free the
correspondence g~1g(a)<->g is one-to-one and so g~*tgeTo[g,t~\ = 1.
Hence any conjugacy class contains at most one element of T. Thus G has at
least (l/p)| G\ conjugacy classes and so by Lemma 3.3, G is nilpotent of class 2
with | G' | = p. Moreover, by Lemma 3.4, Z(G) <= T and so G' S Z(G) <r T.

Finally, let r and s be a pair of noncommuting elements of T. Then,
[r, s]a = [r3,s3] = [r,sY = [r,s]9, since r, ssTand G is nilpotent of class 2.
Thus 0 , s ] 6 = 1 and so |>,s]3 = 1, by the oddness of | G\. Since Thas no ele-
ments of order 3, this is a contradiction and the theorem is established.
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