A. Takaku. Nagoya Math. J. Vol. 44 (1971), 51–55

UNITS OF REAL QUADRATIC FIELDS

AKIRA TAKAKU

1. Let D be a positive square-free integer. Throughout this note we shall use the following notations;

d = d(D): the discriminant of $Q(\sqrt{D})$,

 t_0 , u_0 : the least positive solution of Pell's equation $t^2 - du^2 = 4$,

 $\varepsilon_D = (t_0 + u_0 \sqrt{d})/2.$

In this note we estimate ε_D . At first (in lemma) we prove that for $Q(\sqrt{D})$ there exist integers \checkmark , m and \varDelta (= square-free) such that D is one of three types

$$D = \Delta \left(m^2 \Delta \pm \frac{4}{2^{\delta}} \right) / \ell^2, \qquad (\delta = 0, 1 \text{ or } 2)$$

where $2 \not\mid m$, $2 \not\mid \Delta$ for $\delta = 0$ and $2 \not\mid \Delta$ for $\delta = 1$. Therefore we consider the above three types.

As for the estimate of ε_D Hua [1] proved

(1)
$$\log \varepsilon_D < \sqrt{d} \left(\frac{1}{2} \log d + 1\right).$$

Here we estimate ε_D in accordance with the above three types.

THEOREM. We have

(2)
$$\varepsilon_D < 2^{\delta} \ell^2 D$$
,

where $D = \Delta (m^2 \Delta + 4/2^{\delta})/\ell^2$ and $\delta = 0$, 1 or 2. Δ is a square-free integer > 0, m and ℓ are integers. In particular 2+m, 2+ Δ for $\delta = 0$ and 2+ Δ for $\delta = 1$. More precisely when $\delta = 1$ we have

(3)
$$\varepsilon_{D} < \begin{cases} 2 \swarrow^{2} D & (\varDelta = 1), \\ \swarrow^{2} D & (\varDelta \ge 2), \end{cases}$$

Received January 25, 1971

and when $\delta = 2$ we have

(4)
$$\varepsilon_{D} < \begin{cases} 4 \ell^{2} D & (\Delta = 1), \\ 2 \ell^{2} D & (\Delta = 2, 3), \\ \ell^{2} D & (\Delta \ge 4). \end{cases}$$

Hence if $m^2 \Delta \pm 4/2^{\delta}$ is square-free then, for $D = \Delta(m^2 \Delta \pm 4/2^{\delta})$, (5) $\varepsilon_D < 2^{\delta}D$

holds, where $\delta = 0, 1$ or 2 and $2 + \Delta$ for $\delta = 0, 1$.

2. Types of D and Proof of Theorem.

LEMMA. (A) (I) If $D \equiv 1 \pmod{4}$ then there exist 2, m and Δ (=square-free > 0) such that D is one of the following two forms

$$D = \Delta(m^2 \Delta + 4/2^{\delta})/\ell^2$$

where $\delta = 0$ or 2 and 2 + m, $2 + \Delta$ for $\delta = 0$. Then we have

$$\varepsilon_D \leq \{(2^{\delta}m^2\varDelta + 2) + 2^{\delta} \swarrow m\sqrt{D}\}/2.$$

(II) If $D \equiv 2,3 \pmod{4}$ then there exist \checkmark , m and \varDelta (= square-free > 0) such that D is one of the following two forms

$$D = \varDelta \ (m^2 \varDelta + 4/2^{\delta})/\ell^2,$$

where $\delta = 1$ or 2 and $2 + \Delta$ for $\delta = 1$. Then we have

$$\varepsilon_D \leq \{(2^{\delta}m^2\varDelta + 2) + 2^{\delta} \ell m \sqrt{D}\}/2.$$

(B) Let $\Delta = square-free > 0$ and m > 0 then, for $Q(\sqrt{D}) = Q(\sqrt{\Delta(m^2 \Delta \pm 4/2^{\delta})})$ $(m^2 \Delta \pm 4/2^{\delta} \text{ is not necessary square-free}),$

(6)
$$\varepsilon_{\mathcal{D}} \leqslant \frac{1}{2} \left\{ 2^{\delta} m^2 \varDelta \pm 2 + 2^{\delta} m \sqrt{\varDelta (m^2 \varDelta \pm 4/2^{\delta})} \right\}$$

holds, where $\delta = 0, 1$ or 2 and 2 + 4 for $\delta = 0, 1$.

(7) Proof. (A) (I) Pell's equation
$$t^2 - du^2 = 4$$

becomes $Du^2 = (t+2)(t-2)$, hence we have

$$D = D_1 D_2$$
 such that $(D_1, D_2) = 1$, $D_1 | t + 2$, $D_2 | t - 2$.

If we write

(8)
$$t+2=m_1D_1, t-2=m_2D_2.$$

52

then a relation

(9)
$$m_1 D_1 = m_2 D_2 + 4$$

holds. From (7) we have

$$(10) u^2 = m_1 m_2.$$

If m_1 and m_2 have a common divisor, from (9) it must be 1, 2 or 4. Let $(m_1, m_2) = 2^{\delta}$ ($\delta = 0, 1$ or 2), $m_1 = 2^{\delta}m'_1$ and $m_2 = 2^{\delta}m'_2$ then (10) becomes

(11)
$$u^2 = (2^{\delta})^2 m'_1 m'_2, \qquad (m'_1, m'_2) = 1.$$

Hence m'_1 and m'_2 are both square-numbers. Let $m'_1 = \ell^2$, $m'_2 = m^2$ and $D_2 = \Delta$ (resp. $D_1 = \Delta$), then, from (8) and (13), we have

$$\begin{cases} t = 2^{\delta} m^2 \varDelta + 2 & (\text{resp. } t = 2^{\delta} \measuredangle^2 \varDelta - 2) \\ u = 2^{\delta} \measuredangle m & (\text{resp. } u = 2^{\delta} \measuredangle m) \\ D_1 = (m^2 \varDelta + 4/2^{\delta})/\measuredangle^2 & (\text{resp. } D_2 = (\measuredangle^2 \varDelta - 4/2^{\delta})/m^2). \end{cases}$$

But $\delta = 1$ does not happen. In fact if $D = \Delta (m^2 \Delta + 2)/\ell^2$, we have

(12)
$$\Delta(m^2 \Delta + 2) \equiv \ell^2 \pmod{4\ell^2}.$$

Then (i) when (m, 2) = 1 eq.(12) becomes $1 + 2 \Delta \equiv \ell^2 \pmod{4}$. Hence $\ell = \text{odd}$ and $\Delta \equiv 2 \pmod{4}$ and so

$$D = \Delta (m^2 \Delta + 2)/\ell^2 \equiv 2(m^2 \Delta + 2)/\ell^2 \not\equiv 1 \pmod{4}.$$

On the other hand (ii) when (m, 2) = 2 let m = 2m' then from (9) \checkmark is even and this contradicts $(\checkmark, m) = 1$.

(II) Let t = 2s then the Pell's equation becomes

(13)
$$Du^2 = (s+1)(s-1).$$

Hence we have $D = D_1D_2$ such that $(D_1, D_2) = 1$, $D_1|s+1$ and $D_2|s-1$. If we write

(14)
$$s+1=m_1D_1, s-1=m_2D_2,$$

then, for m_1 and m_2 , $m_1D_1 = m_2D_2 + 2$ holds. From (13) we have

(15)
$$u^2 = m_1 m_2$$

Let $(m_1, m_2) = 2^{\delta}(\delta = 0 \text{ or } 1)$, $m_1 = 2^{\delta}m'_1$ and $m_2 = 2^{\delta}m'_2$, then m'_1 and m'_2 are both square numbers. Therefore let $m'_1 = \ell^2$, $m'_2 = m^2$ and $D_2 = \Delta$ (resp. $D_1 = \Delta$), then from (14) and (15) we have

AKIRA TAKAKU

$$\begin{cases} t = 2(2^{\delta}m^{2}\Delta + 1) & (\text{resp. } t = 2(2^{\delta} \checkmark^{2}\Delta - 1)) \\ u = 2^{\delta} \checkmark m & (\text{resp. } u = 2^{\delta} \checkmark m) \\ D_{1} = (m^{2}\Delta + 2/2^{\delta})/\checkmark^{2} & (\text{resp. } D_{2} = (\checkmark^{2}\Delta - 2/2^{\delta})/m^{2} \end{cases}$$

(B) Since $2 \neq \Delta$ for $\delta = 0$ and 1, the biggest square-factor \checkmark^2 of $\Delta(m^2 \Delta \pm 4/2^\delta)$ is the biggest square-factor of $m^2 \Delta \pm 4/2^\delta$. As Pell's equation $t^2 - du^2 = 4$ of $Q(\sqrt{D}) = Q(\sqrt{\Delta(m^2 \Delta \pm 4/2^\delta)})$ has a solution

$$\begin{cases} t = 2^{\delta} m^2 \varDelta \pm 2, \\ u = 2^{\delta} \measuredangle m, \end{cases}$$

we have (6). q.e.d.

Remark 1. Let $\varepsilon = (t + u\sqrt{p})/2$ be the fundamental unit of the real quadratic fields $Q(\sqrt{p})$ $(p \equiv 1 \pmod{4})$. Then for primes $p = m^2 \pm 4$ or $p = 4m^2 \pm 1$ we have

$$u \not\equiv 0 \pmod{p}$$
.

In fact when $p = m^2 + 4$, from lemma (B), we have $u < \sqrt{p}$. When $p = m^2 - 4$ or $4m^2 \pm 1$, from lemma (B), we have $u < 4\sqrt{p}$. If $4\sqrt{p} \ge p$ i.e., p = 5 or 13 then

$$u = 1 \not\equiv 0 \pmod{p}$$

holds.

Remark 2. Applying the method of the proof of lemma we see the following. Let p and q be primes $(\neq 2)$ and let D = square-free > 0, $D \equiv 1 \pmod{4}$. Suppose that Q_1/\overline{D} has not a unit of norm - 1. Then the necessary and sufficient conditions in order that Q_1/\overline{D} has a unit $\varepsilon = (t + u\sqrt{D})/2$ of u = pq is that D is one of the following four forms

or
$$D = m(mp^{2} \pm 4)/q^{2},$$
$$D = m(mp^{2}q^{2} \pm 4),$$

where m is a square-free integer and 2 + m. The proof is easy.

Remark 3. There exist infinitely many fields $Q(\sqrt{D}) (D = \Delta(m^2\Delta \pm 4) =$ square-free). There also exist infinitely many fields $Q(\sqrt{D}) (D = \Delta (m^2\Delta \pm 2) =$ square-free or $D = \Delta(m^2\Delta \pm 1) =$ square-free). In fact from the prime number

54

theorem of arithmetic progression, for $m(\neq 1)$ with (m, 4) = 1, there exist infinitely many primes p which satisfy

$$p \equiv 4 \pmod{m^2}$$
.

Then for primes p and q which satisfy

$$\begin{cases} p = m^2 m_1^2 \Delta_1' + 4 > q = m^2 m_2' \Delta_2' + 4, \\ \Delta_1 = m_1^2 \Delta_1', \quad \Delta_2 = m_2^2 \Delta_2' \end{cases}$$

where Δ'_1 , Δ'_2 are both square-free, if $p\Delta'_1 = q\Delta'_2$ then

$$1 > \frac{\varDelta'_2}{p} = \frac{\varDelta'_1}{q}$$

holds. This is a contradiction. For $D = \Delta (m^2 \Delta \pm 2)$ and $D = \Delta (m^2 \Delta \pm 1)$, the proofs are also similar.

Proof of theorem; For $D = \Delta (m^2 \Delta \pm 4/2^{\delta})/\ell^2$, from lemma(B) we have $\varepsilon_D \leq \{2^{\delta} m^2 \Delta + 2 + 2^{\delta} m \sqrt{\Delta (m^2 \Delta + 4/2^{\delta})}\}/2$ $(16) \qquad \qquad = \frac{2^{\delta} \ell^2}{2} \left\{ \frac{1}{\ell^2} \left(m^2 \Delta + \frac{2}{2^{\delta}} \right) + \frac{m}{\ell} \sqrt{\Delta \left(m^2 \Delta + \frac{4}{2^{\delta}} \right)/\ell^2} \right\}$ $< \frac{2^{\delta} \ell^2}{2} \left(D + \sqrt{D} \sqrt{D} \right) = 2^{\delta} \ell^2 D.$

Inequalities (3) and (4) are evidence by (16).

Reference

 L.K. Hua, On the least solution of Pell's equation, Bull. Amer. Math. Soc. 48 (1942) 731-735.

Tokyo Metropolitan University