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ABSTRACT

Background: The association between sleep quality and cognition is widely established, but the role of aging in
this relationship is largely unknown.

Objective: To examine how age impacts the sleep–cognition relationship and determine whether there are
sensitive ranges when the relationship between sleep and cognition is modified. This investigation could help
identify individuals at risk for sleep-related cognitive impairment.

Subjects: Sample included 711 individuals (ages 36.00–89.83, 59.66 ± 14.91, 55.7 % female) from the Human
Connectome Project-Aging (HCP-A).

Methods: The association between sleep quality (Pittsburgh Sleep Quality Index, PSQI) and cognition (Crystallized
Cognition Composite and Fluid Cognition Composite from the NIHToolbox, the Trail Making Test, TMT, and the
Rey Auditory Verbal Learning Test, RAVLT)wasmeasured using linear regressionmodels, with sex, race, use of sleep
medication, hypertension, and years of education as covariates. The interaction between sleep and age on cognitionwas
tested using the moderation analysis, with age as both continuous linear and nonlinear (quadratic) terms.

Results: There was a significant interaction term between the PSQI and nonlinear age term (age2) on TMT-B
(p = 0.02) and NIH Toolbox crystallized cognition (p = 0.02), indicating that poor sleep quality was associated
with worse performance on these measures (sensitive age ranges 50–75 years for TMT-B and 66–70 years for
crystallized cognition).

Conclusions: The sleep–cognition relationship may be modified by age. Individuals in the middle age to early
older adulthood age band may be most vulnerable to sleep-related cognitive impairment.

Keywords: cognitive assessment, sleep, risk factors, aging

Introduction

Age-related cognitive declines are prevalent in both
pathological and nonpathological aging (Dzierzewski
et al., 2018; Keller, 2006; Li et al., 2004) and are
difficult to reverse after declines begin. For instance,
pharmaceutical trials have shown limited ability to
improve cognitive outcomes in patients with Alzhei-
mer’s disease (Alexander et al., 2021; Doody et al.,
2014). Thus, researchers are increasing attention to
lifestyle modifications that may ameliorate age-related
cognitive decline (Shatenstein et al., 2015) and
Alzheimer’s disease progression (Bhatti et al., 2019).
Sleep is a variable in older adults’ cognitive functioning
that may bemodifiable through treatment (Taylor and
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Pruiksma, 2014), given its association with various
types of memory, including memory consolidation
and retrieval (Bonnet, 2005; Nadel et al., 2012; Plihal
and Born, 1997; Scullin and Bliwise, 2015); therefore,
improving sleep presents a potential avenue to
enhance cognition (Dzierzewski et al., 2018).

Given changes in sleep architecture (e.g. reduced
slow-wave sleep) and reductions in sleep need as
individuals age (Hirshkowitz et al., 2015), it is hypothe-
sized that sleep’s influence on cognition may vary
depending on age (Wilckens et al., 2014). Cognitive
functioning also changes with advancing age; therefore,
it is postulated that the cognitive impacts of various
lifestyle and clinical factors also differ by age group.

Previous studies that compared the effects of sleep
disturbance (e.g. sleep deprivation and poor self-
reported sleep quality) in different age groups (e.g. 20–
25 vs. 50–60; 50–64 vs. 65+ ) have found worse
performance in the older adult group across multiple
domains of cognitive function, such as word detection
(distinguishing words from nonwords), word mem-
ory, processing speed, psychomotor vigilance task,
executive functions (EFs), and verbal fluency (Miller
et al., 2014;Webb, 1985) (Bartolacci et al., 2020; Kim
et al., 2013), even though older adults reported lower
levels of subjective level of sleepiness in some of these
studies (Bartolacci et al., 2020; Kim et al., 2013).

On this note, it is postulated that more cognitively
demanding tasks of executive functioning governed by
the frontal network system, such as inhibitory control
(Harrison andHorne, 1998;Wilckens et al., 2014) and
decision-making (Harrison and Horne, 1998, 1999;
Muzur et al., 2002), are particularly vulnerable to poor
sleep. Sleep deprivation literatures also noted that
sleep-relatedEFdeficits remain, even though vigilance
may be resilient via mechanisms such as stimulant use
(Killgore, 2010). The frontal network, including the
fronto-striatal systems, is implicated in age-related
changes in attention and EF (Buckner, 2004; Hedden
and Gabrieli, 2004; Pace et al., 2011), and the
combination of the aging process and sleep distur-
bance may lead older adults with sleep disturbance to
be particularly susceptible to impairment in EF tasks.

Nonetheless, some studies have indicated no age
effect or less sleep-related susceptibility in older
adults, further contributing to the unclear under-
standing in this area. For instance, research has
shown sleep may be less beneficial in older adults
compared to younger adults in terms of improving
memory performance, particularly declarativemem-
ory and slow-wave sleep-dependent memory con-
solidation (Scullin and Bliwise, 2015; Spencer et al.,
2007; Stickgold, 2005). In other studies, psycho-
motor vigilance was less impacted by sleep distur-
bance in older adults (Bliese et al., 2006; Stenuit and

Kerkhofs, 2005), indicating that the effect of age on
the sleep–cognition relationship may be dependent
on the cognitive domain that is being examined.

In addition, previous studies were limited by their
use of age as a categorical concept (by age groups,
e.g. young, middle-aged, and older adults), which
may have underestimated the changes that happen
within each age group due to lower statistical power
(Altman and Royston, 2006). Examining age as a
continuous variable may help to understand the
relationship between sleep and cognition along with
the broad continuum of the aging process and allow
for the identification of specific age ranges during
which the change in the relationship between sleep
and cognition occurs. This is especially important in
brain aging research, given that age-related changes
in brain structures and networks may affect sleep
quality, cognition, and the interaction between these
two variables (Hukkelhoven et al., 2003; Scullin and
Bliwise, 2015; Yagi et al., 2020).

In this study, we examined the associations of age
with the relationship between sleep quality and
cognitive performance within an age-diverse adult
sample using theHumanConnectome Project-Aging
(HCP-A) data. We hypothesized that there will be a
significant age × sleep quality interaction in various
cognitive domains, particularly in demanding execu-
tive functioning tasks, fluid cognition, and episodic
memory. Specifically, we examined sleep’s interac-
tion with age, with age as both a linear and nonlinear
(quadratic) term, which allows us to identify the
“sensitive age ranges” outside of traditionally defined
age groups, where the relationship between sleep
quality and cognitive performance is modified. We
hypothesized that ages in midlife to older adulthood
(ages 50–70 years) would be particularly vulnerable
to sleep-related cognitive changes, given that signifi-
cant changes in both sleep architecture and age-
related neurodegenerative processes begin in midlife
and continue with the aging process (Holanda and de
Almondes, 2016). We also examined different
cognitive domains included in the HCP-A study,
such as executive function, episodic memory, and
fluid and crystallized cognition that are part of the
NIH Toolbox (TB) Cognition Battery (Weintraub
et al., 2013). Of note, it may be important to specify
which specific EF tasks are implicated in sleep
disturbance because EF tasks more broadly have
shown mixed associations with sleep disturbance
(Killgore, 2010). Therefore, we added the Trail
Making Test (TMT), a measure of set-shifting
abilities, given that sleep has a crucial role in tasks
that require the ability to quickly change behaviors
and adapt flexibly to modifying conditions
(Couyoumdjian et al., 2010).
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Methods

Participants
Data analyses were performed using the most recent
HCP-A dataset release (available at https://www
.humanconnectome.org/). A detailed description of
the dataset has been previously published (Book-
heimer et al., 2019). Briefly, the HCP-A participants
were recruited to represent the current US popula-
tion, with regard to age, gender, race, ethnicity, and
socioeconomic metrics. Participants were recruited
from four sites (Washington University St Louis,
University of Minnesota, Massachusetts General
Hospital, and University of California, Los
Angeles), and all sites strived for a balance of
participants with low, middle, and high socioeco-
nomic status. Participants were recruited through
advertisements and flyers, active senior centers,
places of worship, public lectures and workshops on
aging, and senior living centers.

Participant eligibility was determined through
phone screens to identify exclusionary health
conditions. For instance, individuals diagnosed
and treated for major psychiatric disorders (e.g.
schizophrenia, bipolar disorder, and severe depres-
sion) or neurological disorders (e.g. stroke, brain
tumors, and Parkinson’s disease), scoring <30 on
the Telephone Interview for Cognitive Status
modified (TICS-M) (for participants aged 60–80
years) (de Jager et al., 2003), not passing critical
orientation items (day of the week, date, season, age,
and phone number) of the TICS-M for participants
over 80 years, and scoring below age-bracket
thresholds (<20 for ages 36–79 years, <18 for
ages >79 years) for the Montreal Cognitive Assess-
ment (MoCA) were excluded (Nasreddine et al.,
2005). For the current study, we used a dataset of
725 individuals from HCP-A who completed
neuropsychological tests and had self-reported sleep
data. A flow chart of sample selection is presented in
Supplemental Figure 1.

Measures
The Pittsburgh Sleep Quality Index (PSQI)
(Buysse et al., 1989) is a self-rated measure of sleep
quality and disturbances over the past month. The
PSQI contains 19 items, which produce a total score
and 7 component scores: subjective sleep quality,
sleep latency, sleep duration, habitual sleep effi-
ciency, sleep disturbance, use of sleeping medica-
tion, and daytime dysfunction. Each component
score is rated on a 0–3 scale, with higher scores
representing poorer sleep, and adds up to a 0–21
total score. The PSQI total score has acceptable
internal homogeneity, consistency, and validity
(Buysse et al., 1989).

The NIH Toolbox (TB) Cognition Battery
(Weintraub et al., 2013) consists of seven measures
assessing subdomains of executive function, epi-
sodic memory, language, processing speed, working
memory, and attention. Composite measures have
been developed using factor analytic methods
(Akshoomoff et al., 2013) to represent overall
cognition and/or certain categories of abilities that
change across the lifespan. The Crystallized Cogni-
tion Composite score includes the Oral Reading
Recognition Test and the Picture Vocabulary Test,
and the Fluid Cognition Composite score includes
the Dimensional Change Card Sort Test (cognitive
flexibility), the List Sorting Working Memory Test,
the Picture Sequence Memory Test (episodic
memory), the Pattern Comparison Processing
Speed Test, and the Flanker Inhibitory Control
and Attention Test. Higher scores on the NIH TB
Cognition Battery reflect better performance. The
NIH TB Cognition Battery demonstrated strong
test–retest reliabilities and adequate convergent and
discriminant validities (Weintraub et al., 2013). Full
descriptions of the tasks are provided in Weintraub
et al., 2013. For the analysis, the uncorrected
standard scores were used to model with age.

While the NIH Toolbox has the advantage of
compiling crystallized and fluid cognition broadly,
its construct validity with standard executive
function measures is limited, and it does not
encompass some key executive functions such as
cognitive set-shifting abilities or learning and recall
that may be impacted by sleep (Ott et al., 2022; Scott
et al., 2019). Therefore, we added the following
individual neuropsychological tests included in the
HCP-A dataset to supplement our cognitive out-
come measures.

The Trail Making Test (TMT) A and B (Army
Individual Test Battery, 1944; Reitan and Wolfson,
1985) consists of two tests of processing speed and
working memory. In TMT-A, an individual draws
lines connecting 25 circled numbers that are spread
out on a sheet of paper, and in TMT-B the person
does a similar task but alternates between numbers
and letters (Tombaugh, 2004). Accordingly, TMT-B
has been shown to measure cognitive set shifting
(Olivera-Souza et al., 2000). In both TMT-A and
TMT-B, higher scores reflect poorer performance.
The TMT has strong interrater reliability (Strauss
et al., 2006) and construct validity (Sanchez-Cubillo
et al., 2009).

The Rey Auditory Verbal Learning Test
(RAVLT) (Rey, 1964) is a test of verbal episodic
memory where participants are asked to learn 15
words across 5 learning trials (Ivnick et al., 1990).
The tester reads List A before each recall trial, and
then the tester reads a separate list, List B, and asks
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the subject to freely recall the words. In trial 6, the
tester then asks the participant to recall the words
from List A. The HCP-A employs an alternate
RAVLT administration, which does not include the
additional 20-min delayed recall in the standard
RAVLT (Bookheimer et al., 2019). This abbreviated
version reduces the length of the testing battery,
which may otherwise be overly burdensome for
older participants, and is supported by findings that
short-term delayed recall is equivalent to long-term
delayed recall in identifying amnestic mild cognitive
impairment and other neurological dysfunctions
(Bookheimer et al., 2019; Schoenberg et al., 2006;
Zhao et al., 2012). Higher scores on the RAVLT
reflect better performance. The RAVLT has shown
adequate test–retest reliability, internal consistency,
and divergent and convergent validity (de Sousa
Magalhães et al., 2012).

Statistical analyses
Residual diagnoses were performed to test for
normality and homoscedasticity of cognitive out-
comes. Multicollinearity was examined using the
variance inflation factor (VIF). For our analyses, one
individual with a TMT-A score <1 s was removed
and two individuals with a TMT-B score <20 s were
removed. In addition, TMT-B was truncated at
300 s, so three individuals’ scores were lowered to
300. The following numbers of individuals had
cognitive outcomes for each of the measures
indicated: TMT-A: 705, TMT-B: 706, NIH TB
Fluid Cognition: 608, NIH TB Crystallized Cogni-
tion: 607, and RAVLT: 694.

Descriptive analysis was used to profile the
characteristics of the participants (Table 1) using
mean, standard deviation, and range for continuous
variables and frequency and percentage for discrete
variables. For the primary analysis, we tested the
association of PSQI and agemoderation using linear
regression models. Since previous studies reported
the quadratic association of age (Hukkelhoven et al.,
2003), we added the quadratic term of age (age2).
Age moderation was tested by adding age × PSQI
and age2 × PSQI interaction terms. For the models
with significant age × PSQI or age2 × PSQI
interactions, we performed post hoc contrast analyses
to identify age ranges with significant PSQI
associations. All models included sex, race, educa-
tion, hypertension, and sleep medication as covari-
ates (Knutson et al., 2009; Lee et al., 2022), and age
was centered on the mean age (59.66 years).

Since our models are hypothesis-driven and
primarily aim to evaluate agemoderation to examine
the consistency of the existing literature, we reported
regression coefficients (B) with their 95% confi-
dence intervals and standardized regression

coefficients (β) to inform future studies. We also
performed multiple comparison corrections using
the False Discovery Rate corrections. Additionally,
we reran the models without quadratic age terms to
test the robustness of the interactive association.
When defining the sensitive period at which the
association between sleep quality and cognitive
performance is most strongly presented, we deter-
mined the areas of significance by inspecting when
the confidence intervals for the PSQI beta coeffi-
cient stopped including zero. We also conducted
analyses to examine whether there are other higher-
order polynomial terms of age (e.g. cubic and
quartic terms) that interact with sleep and found that
the quadratic model performed the best for all
cognitive outcomes based on the Bayesian informa-
tion criterion (BIC) (e.g. For crystallized cognition,
BIC for quadratic was the smallest [4508.10]

Table 1. Demographics of the study sample

TOTAL (N = 711)
...........................................................................................................................................................

Age (mean, range ± SD) 59.66
(36.00− 89.83 ± 14.91)

Sex (n, %)
Male 315 (44.3%)
Female 396 (55.7%)
Race
Asian 52 (7.3%)
Black or African American 100 (14.1%)
More than one race 30 (4.2%)
Unknown or not reported 16 (2.3%)
White 513 (72.2%)
Education (y) (mean ± SD) 17.51 ± 2.19
Employment (n, %) 442 (68.7%)
Annual family income per person

($, mean ± SD)
45,935.47 ± 45,831.23

PSQI total (mean ± SD) 4.59 ± 2.67
PSQI ≥ 5 (“poor sleep”) (n,%) 323 (45.4%)
No sleep meds or < once week 611 (85.9%)
Sleep meds ≥ once a week 100 (14.0%)
NIH Fluid Cog Comp

(mean ± SD)
99.37 ± 12.34

NIH Cryst Cog Comp
(mean ± SD)

110.97 ± 9.20

TMT-A (mean ± SD) 29.91 ± 11.76
TMT-B (mean ± SD) 74.29 ± 40.97
RAVLT SD TC (mean ± SD) 60.08 ± 14.09
RAVLT SD LB TC (mean ± SD) 5.15 ± 1.90
RAVLT Trials 1-5 SD TC

(mean ± SD)
45.54 ± 10.32

SD, standard deviation; PSQI, Pittsburgh Sleep Quality Index;
RAVLT SD TC, Rey Auditory Verbal Learning Test Short Delay
Total Correct; TMT-A, Trails Making Test A; TMT-B, Trails
Making Test B; RAVLT LB TC, Rey Auditory Verbal Learning
Test Short Delay List B Total Correct; RAVLTTrials 1-5 SDTC,
Rey Auditory Verbal Learning Test Short Delay Trials 1-5 Total
Correct. Uncorrected scores were used for composite scores from
the NIH Toolbox.
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followed by cubic [4511.80] and qartic [4523.88].
Similar patterns were evident for other cognitive
outcomes). All analyses were performed using R 4
.1.2, and p values <0.05 were considered to indicate
statistical significance.

Results

Demographic characteristics
Demographic characteristics of the study sample are
presented in Table 1. The mean age of the study
sample (N= 711) was 59.66 (SD= 14.91), and
55.7% were females. The sample consisted of
predominately White (72.2%) participants. The
mean years of education in the sample was 17.51
years (SD= 2.19).

The association between sleep quality and
cognitive performance
The associations between sleep, age, and cognitive
performance are presented in Table 2, with the main
associations of PSQI and age presented in Model 1
and their interactive terms presented in Model 2. In
Model 1, higher PSQI scores (i.e. poorer sleep) were
associated with worse performance on TMT-B
(β = 0.09; Std. CI= 0.02 – 0.17; p= 0.02), but not
with other cognitive outcomes (Ps ≥ 0.42) after
adjusting for race, sex, hypertension, use of sleep
medication, and years of education (Table 2. Model
1). In Model 2, higher PSQI scores were associated
with poorer performance on TMT-B (β = 0.09; Std.
CI= 0.02 – 0.17; p= 0.001) and crystallized cognition
tasks (β= − 0.03; 95%CI= − 0.11 to 0.05; p= 0.03),
but not TMT-A, fluid cognition tasks, or RAVLT
short-term delayed total recall (Table 2. Model 2).

The association between age and cognitive
performance
In Model 1, higher age was associated with poorer
performance on all cognitive measures (linear term,
p< 0.001) except for crystallized cognition tasks
(Table 2. Model 1). When the nonlinear (quadratic)
term for age was examined, age2 was only associated
with TMT-A (β = 0.15; Std. CI= 0.08 – 0.22;
p< 0.001) and TMT-B (β = 0.13; Std. CI= 0.06
– 0.19; p< 0.001) (Table 2. Model 1).

Age moderation on the association between
sleep quality on cognitive performance
In Model 2, there was a significant interaction term
between the PSQI and age (linear) on crystallized
cognition (β = − 0.09; Std. CI= − 0.16 to − 0.02;
p= 0.01) (Table 2. Model 2). TMT-A, TMT-B,
fluid cognition, and RAVLT short-term delayed

recall were not significantly associated with the
interaction of age (linear) and sleep. The interaction
between the nonlinear age term (age2) and PSQIwas
significantly associated with crystallized cognition
(β= 0.08; Std.CI= 0.01 – 0.15; p= 0.02) andTMT-B
(β = − 0.08; Std. CI= − 0.15 to − 0.02; p= 0.02)
(Table 2. Model 2), and these findings remained
significant after the false discovery rate correction.

Finally, when the estimates of PSQI’s association
with cognitive performance (y-axis) were visualized
with age (x-axis) for TMT-B and crystallized
cognition (Figures 1 and 2, along with 95%
confidence intervals), the sensitive age ranges
were determined to be ages 50–75 years for
TMT-B and ages 66–70 years for crystallized
cognition, indicating that poorer sleep quality and
worse cognitive performance were most strongly
associated in these age ranges.

Discussion

The present study examined the relationship
between sleep quality, age, and cognition. We first
examined the association between sleep quality and
cognitive performance and found that worse sleep
quality was significantly associated with poorer
performance on a measure of cognitive set shifting
and speed (TMT-B). Furthermore, we tested the
hypothesis that age would significantly modify the
relationship between sleep quality and cognitive
performance, using age as both linear and nonlinear
quadratic terms. Our results showed that there was a
significant interaction between the quadratic age
term and sleep quality in cognitive set shifting and
crystallized cognition. These findings suggest that
worse sleep quality begins to negatively affect set-
shifting abilities at the age of 50 years, with this effect
peaking around the age of 62 years, and crystallized
cognition may be most associated with sleep quality
for individuals between 66 and 70 years. There was
also a significant interaction between the linear age
term and sleep quality on crystallized cognition.
These findings suggest that age could modify the
association between sleep quality and cognitive
performance and that there are more sensitive age
ranges, namely midlife and early late-life, for when
sleep-related cognitive changes are evident.

Identification of these sensitive age ranges
suggests that individuals in younger ages (e.g. under
50 years) may be able to preserve cognitive
performance in certain domains even in the presence
of sleep disturbance. In contrast, older individuals
(e.g. aged >50 years for Trails B) may experience a
more salient negative impact from sleep distur-
bance. This finding is somewhat consistent with a
previous study that demonstrated the preservation
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Table 2. Regression of sleep quality and age on cognition

MODEL 1 MODEL 2

(MAIN ASSOCIATIONS) (WITH INTERACTION TERMS)

COGNITIVE MEASURES B CI β STD. CI P B CI β STD. CI P COHEN’S F2

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Trail Making Test-A
PSQI 0.11 − 0.23 – 0.46 0.03 − 0.05 – 0.10 0.52 0.27 − 0.20 – 0.73 0.02 − 0.05 – 0.10 0.26
Age (Linear) 0.33 0.27 – 0.39 0.42 0.35 – 0.49 <0.001 0.26 0.15 – 0.37 0.42 0.35 – 0.49 <0.001
Age2 (Quadratic) 0.01 0.01 – 0.01 0.15 0.08 – 0.22 <0.001 0.01 0.004 – 0.019 0.15 0.08 – 0.21 0.003
PSQI * Age (Linear) 0.02 − 0.01 – 0.04 0.06 − 0.02 – 0.13 0.12 0.003
PSQI * Age2 (Quadratic) − 0.001 − 0.002 – 0.001 − 0.03 − 0.10 – 0.03 0.32 0.001
Trail Making Test-B
PSQI 1.453 0.26 –2.60 0.09 0.02 – 0.17 0.02 2.74 1.15 – 4.33 0.09 0.02 – 0.17 0.001
Age (Linear) 1.04 0.84 –1.23 0.38 0.31 – 0.45 <0.001 0.85 0.47 –1.22 0.38 0.31 – 0.45 <0.001
Age2 (Quadratic) 0.02 0.01 – 0.04 0.13 0.06 – 0.19 <0.001 0.05 0.03 –0.08 0.13 0.06 – 0.19 <0.001
PSQI * Age (Linear) 0.04 − 0.03 – 0.12 0.04 − 0.03 – 0.11 0.23 0.002
PSQI * Age2 (Quadratic) − 0.01 − 0.011 – − 0.001 − 0.08 − 0.15 – − 0.02 0.02 0.008
Crystallized Cognition
PSQI − 0.12 − 0.39 – 0.16 − 0.03 − 0.11 – 0.05 0.42 − 0.41 − 0.78 – − 0.04 − 0.03 − 0.11 – 0.05 0.03
Age (Linear) 0.03 − 0.13 – 0.08 0.05 − 0.02 – 0.12 0.16 0.13 0.04 – 0.22 0.04 − 0.03 – 0.11 0.005
Age2 (Quadratic) 0 − 0.003 – 0.003 0.001 − 0.07 – 0.07 0.97 − 0.01 − 0.0122 – 0.0004 0.01 − 0.06 – 0.08 0.07
PSQI * Age (Linear) − 0.02 − 0.04 – − 0.01 − 0.09 − 0.16 – − 0.02 0.01 0.01
PSQI * Age2 (Quadratic) 0.001 0.0002 – 0.0026 0.08 0.01 – 0.15 0.02 0.009
Fluid Cognition
PSQI − 0.12 − 0.45 – 0.22 − 0.03 − 0.10 – 0.05 0.50 − 0.04 − 0.48 – 0.41 − 0.02 − 0.10 – 0.05 0.87
Age (Linear) − 0.54 − 0.60 – − 0.49 − 0.63 − 0.69 – − 0.57 <0.001 − 0.51 − 0.61 – − 0.40 − 0.63 − 0.69 – 0.56 <0.001
Age2 (Quadratic) − 0.001 − 0.005 – 0.002 − 0.02 − 0.08 – 0.04 0.44 0.001 − 0.01 – 0.01 − 0.02 − 0.08 – 0.04 0.87
PSQI * Age (Linear) − 0.01 − 0.03 – 0.01 − 0.03 − 0.09 – 0.04 0.42 0.001
PSQI * Age2 (Quadratic) 0 − 0.002 – 0.001 − 0.02 − 0.08 – 0.04 0.56 0.001
RAVLT Short Delay Total Recall
PSQI 0.05 − 0.24 – 0.35 0.01 − 0.06 – 0.09 0.72 − 0.05 − 0.45 – 0.35 0.01 0.06 – 0.09 0.80
Age (Linear) − 0.30 − 0.33 – − 0.24 − 0.42 − 0.49 – − 0.35 <0.001 − 0.24 − 0.34 – 0.15 − 0.42 − 0.49 – 0.35 <0.001
Age2 (Quadratic) − 0.002 − 0.01 – 0.001 − 0.05 − 0.12 – 0.02 0.14 − 0.005 − 0.011 – 0.002 − 0.05 − 0.11 – 0.02 0.16
PSQI * Age (Linear) − 0.01 − 0.03 – 0.01 − 0.04 − 0.11 – 0.03 0.31 0.001
PSQI * Age2 (Quadratic) 0 − 0.0007 – 0.0017 0.03 − 0.04 – 0.09 0.43 0.005

PSQI, Pittsburgh Sleep Quality Index; Crystalized Cognition, NIH-TB Crystalized Cognition Composite; Fluid Cognition, NIH-TB Fluid Cognition Composite.
Covariates: sex, race, use of sleep medication, and years of education.
*Higher scores on Trail Making Test-A, Trail Making Test-B, and PSQI indicate poorer cognitive performance/sleep. For all other metrics, a higher score indicates stronger cognitive performance.
NOTE: Separate regression models were conducted to examine the main effect of sleep (“Model 1”) and the interactive effect of sleep and age on cognitive performance (“Model 2”).
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of multiple aspects of frontal network functioning,
such as sustained attention, inhibition, and
decision-making in sleep-restricted young adults
(ages 18–35 years) (Schaedler et al., 2018) and
another study that indicated the impairment of
similar cognitive domains in sleep-deprived middle-
aged adults ranging from ages 50 to 60 years (Webb,
1985). Nevertheless, our findings contradicted
other studies which suggested that cognition in
older adults (e.g. ages 55–65 years) may be resilient
to sleep deprivation (Bliese et al., 2006; Stenuit and
Kerkhofs, 2005). Our results also indicate that
within older adulthood, sleep’s association with
cognitive performance becomes notably reduced in
the oldest old group (mid-70s and older).

The sensitive age ranges of 50–75 years (Trails B)
and 66–70 (Crystalized Cognition) may be supported
by age-related changes in sleep and sleep need. As
adults may need less sleep as they age, the association
between sleep-related neurobiological mechanisms
(e.g. slow-wave-dependent cognitive performance)
and cognition in older adultsmay beweaker compared
to young andmiddle-aged adults (Scullin and Bliwise,
2015). Our findings are in line with previous literature

that showed sleep-related executive function impair-
ments may begin as early as midlife (Wilckens et al.,
2014). Furthermore, these data are consistent with the
literature on modifiable risk factors for age-related
cognitive impairments that highlight the importance of
risk management in midlife (Barnes and Yaffe, 2011;
Nishtala et al., 2014).

While sleep quality and the interaction between
sleep quality and agewere not associatedwith poorer
performance on NIH Toolbox fluid cognition tests,
an additional test of fluid cognition, TMT-B,
demonstrated such an association. The TMT-B
assays different executive functioning subdomains,
such as cognitive set shifting, and was demonstrated
to measure a separate construct than the NIH fluid
cognition measures (Ott et al., 2022; Scott et al.,
2019). To this point, TMT-B’s association with the
sleep quality and age interaction termwas consistent
with findings suggesting that performance on
executive functioning tasks is sensitive to sleep
deficits in early older adulthood (Wilckens et al.,
2014). Declines in executive cognitive control tasks
may be especially impacted by sleep deprivation due
to reliance on the prefrontal cortex functioning

Figure 1. PSQI total interaction with age for TMT-B.
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(Harrison and Horne, 1998, 1999; Muzur et al.,
2002; Wilckens et al., 2014), which may become
evident when performing everyday tasks (Rana et al.,
2018; Waters and Bucks, 2011)

Though crystallized cognition has been shown to
remain stable (or improve) as individuals age
(Dzierzewski et al., 2018), as was the case in our
study, the interaction between sleep quality and age
(both linear and quadratic) was significantly associ-
ated with poorer crystallized cognition performance.
This finding could be due to older adults experienc-
ing difficulties with retrieval (Craik and Bialystok,
2006; Kurdziel et al., 2017). For instance, word
reading and recognition tasks that make up
“crystallized cognition” in the current neuropsy-
chological battery may depend on the information
that was acquired throughout the lifespan but may
also reflect the ability to retrieve previously learned
information. As there are few studies conducted on
sleep and crystallized cognition, further studies are
needed to elucidate the relationship and mechanism
between sleep and crystallized cognition in the brain
aging process.

A strength of this paper is the use of age as a
continuous variable (both as a linear and quadratic
term), which may help clarify previous contradictory
findings when comparing sleep and cognition between
two distinct age groups. For instance, while we found
that older individuals’ cognition generally declines,
poor sleep quality may be especially problematic for
the maintenance of crystallized cognition and perfor-
mance on cognitive set-shifting tasks during midlife
and early late-life. Furthermore, examining quadratic
age terms in sleep and cognition research is novel and
allowed us to identify sensitive age ranges when sleep
quality is most strongly associated with cognition.
Finally, the current study includesmultiple domains of
cognitive functioning, which allows us to parse out the
relationships between sleep quality with different
cognitive domains. Our findings have important
clinical implications in that they suggest that timely
detection and intervention of sleep disturbance could
benefit cognitive health, particularly in midlife to early
older adulthood. Although prolonged use of pharma-
cological sleep treatments, such as benzodiazepines
and non-benzodiazepine receptor agonists, are

Figure 2. PSQI total interaction with age for crystallized cognition.
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associatedwith poorer cognitive outcomes and adverse
side effects (e.g. drowsiness andmemory impairment)
(Schroeck et al., 2016), nonpharmacological treat-
ments, such as cognitive-behavioral therapy for
insomnia, could be effective without side effects and
have superior long-term benefits compared with
commonly prescribed sleep aids (Morin et al., 1999).

A limitation of the paper is that it used a cross-
sectional sample. Thus, we cannot make conclusions
about the causal relationship between sleep, aging, and
cognition. Another limitation of the paper is that we
used a subjective rating of sleep quality (PSQI), which
may capture sleep less accurately compared with
polysomnography. Nonetheless, the PSQI is the most
common measure of sleep quality, particularly in
large-scale studies (Pilz et al., 2018). The NIH
Toolbox Fluid Cognition Composite is limited in
the cognitive domains that it assesses and does not
include a strong measure of memory and recall due to
a lack of a delayed memory component. Similarly, it
may have lower construct validity in domains such as
attention, executive function, and processing speed
and estimate different levels of performance compared
to standard neuropsychological tests (Ott et al., 2022;
Scott et al., 2019). To address some of these
limitations, we additionally examined TMT-B, which
assesses cognitive set shifting. It is also notable that the
effect sizes for our findings are small; nonetheless, our
sample is adequately powered to answer our research
question, and heterogeneity and large unexplained
variance in cognition are expected in large-scale,
multisite studies as those in the HCP-A project.

Lastly, our sample consisted of predominantly
White and highly educated participants (i.e. average
years of education equivalent to a master’s degree),
which limits generalizability to a broader population.

Conclusion

In summary, findings from this study suggest the
relationship between sleep quality and cognitive
performance may be modified by age and related
mechanisms. There may be a sensitive period,
encompassing midlife to early late-life, that increases
the risk of sleep-related cognitive performance
decrements.

Conflict of interest

Daniel Cohen: Nothing to Disclose
Hyun Kim: Nothing to Disclose
Alina Levine: Nothing to Disclose
Davangere Devanand: Grant support: National
Institute on Aging, Alzheimer’s Association.

DSMB Chair: BioExcel Therapeutics.
Scientific Advisory Board member: Eisai, Biogen,

Corium, Genentech, Acadia, Jazz
Pharmaceuticals, Tau Rx.
Seonjoo Lee: Nothing to Disclose
Terry Goldberg: Grant support: National Insti-

tute on Aging

Description of authors’ roles

D. Cohen and H. Kim designed the study and
oversaw the manuscript preparation. A. Levine
conducted statistical analyses and assisted with
manuscript preparation. D. Devanand assisted
with manuscript preparation and revisions. S. Lee
conducted statistical analyses and assisted with
manuscript preparation. T. Goldberg assisted with
study design,manuscript preparation, and revisions.

Acknowledgements

The authors thank all Human Connectome
Project-Aging participants. This research did not
receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors.
Dr Kim is supported by the National Institute on
Aging (1K23AG080117-01). Dr Lee is supported
by R01AG062578. Data and/or research tools used
in the preparation of this manuscript were obtained
from the National Institute of Mental Health
(NIMH) Data Archive (NDA). NDA is a collabo-
rative informatics system created by the National
Institutes of Health to provide a national resource
to support and accelerate research inmental health.
Dataset identifier(s): 10.15154/1528398. This
manuscript reflects the views of the authors and
may not reflect the opinions or views of the NIH or
of the Submitters submitting original data to NDA.

Supplementary material

The supplementary material for this article can
be found at https://doi.org/10.1017/S1041610223
000911.

References

Akshoomoff, N. et al. (2013). VIII. NIHToolbox Cognition
Battery (CB): composite scores of crystallized, fluid, and
overall cognition. Monographs of the Society for Research in
Child Development, 78, 119–132.

Effects of age on sleep and cognition 9

https://doi.org/10.1017/S1041610223000911 Published online by Cambridge University Press

https://doi.org/10.1017/S1041610223000911
https://doi.org/10.1017/S1041610223000911
https://doi.org/10.1017/S1041610223000911
https://doi.org/10.1017/S1041610223000911
https://doi.org/10.1017/S1041610223000911


Alexander, G. C., Emerson, S. and Kesselheim, A. S.
(2021). Evaluation of Aducanumab for Alzheimer disease:
scientific evidence and regulatory review involving
efficacy, safety, and futility. JAMA, 325, 1717–1718.

Altman, D. G. and Royston, P. (2006). The cost of
dichotomising continuous variables. BMJ, 332, 1080.

Army Individual Test Battery, I. (1944). Manual of
Directions and Scoring. Washington, DC: War Department,
Adjunct General’s Office.

Barnes, D. E. and Yaffe, K. (2011). The projected effect of
risk factor reduction on Alzheimer’s disease prevalence.
The Lancet Neurology, 10, 819–828.

Bartolacci, C., Scarpelli, S., D'Atri, A., Gorgoni, M.,
Annarumma, L., Cloos, C., Giannini, A. M. and
De Gennaro, L. (2020). The influence of sleep quality,
vigilance, and sleepiness on driving-related cognitive
abilities: a comparison between young and older adults.
Brain Sciences, 10(6), 327.

Bhatti, G. K., Reddy, A. P., Reddy, P. H. and Bhatti,
J. S. (2019). Lifestyle modifications and nutritional
interventions in aging-associated cognitive decline and
Alzheimer’s disease. Frontiers in Aging Neuroscience, 11, 369.

Bliese, P. D., Wesensten, N. J. and Balkin, T. J. (2006).
Age and individual variability in performance during sleep
restriction. Journal of Sleep Research, 15, 376–385.

Bonnet, M. H. (2005). Acute Sleep Deprivation. In: M. H.
Kryger (Eds.), Principles and Practice of Sleep Medicine (pp
51–66). Philadelphia, PA: W.B. Saunders Company.

Bookheimer, S. Y. et al. (2019). The lifespan human
connectome project in aging: an overview.Neuroimage, 185,
335–348.

Buckner, R. L. (2004). Memory and executive function in
aging and AD: multiple factors that cause decline and
reserve factors that compensate. Neuron, 44, 195–208.

Buysse, D. J., Reynolds C. F., Monk, T. H., Berman, S.
R. and Kupfer, D. J. (1989). The Pittsburgh Sleep Quality
Index: a new instrument for psychiatric practice and
research. Psychiatry Research, 28, 193–213.

Couyoumdjian, A. et al. (2010). The effects of sleep and
sleep deprivation on task-switching performance. Journal of
Sleep Research, 19, 64–70.

Craik, F. I. and Bialystok, E. (2006). Planning and task
management in older adults: cooking breakfast. Memory &
Cognition, 34, 1236–1249.

de Jager, C. A., Budge, M. M. and Clarke, R. (2003).
Utility of TICS-M for the assessment of cognitive function
in older adults. International Journal of Geriatric Psychiatry,
18, 318–324.

de Sousa Magalhães, S., Mallow-Diniz, L. F. and
Hamdan, A. C. (2012). Validity convergent and reliability
test-tetest of the Rey Auditory Verbal Learning Test.
Clinical Neuropsychiatry, 9, 129–137.

Doody, R. S. et al. (2014). Phase 3 trials of solanezumab for
mild-to-moderate Alzheimer’s disease.New England Journal
of Medicine, 370, 311–321.

Dzierzewski, J. M., Dautovich, N. and Ravyts, S. (2018).
Sleep and cognition in older adults. Sleep Medicine Clinics,
13, 93–106.

Harrison, Y. and Horne, J. A. (1998). Sleep loss impairs
short and novel language tasks having a prefrontal focus.
Journal of Sleep Research, 7, 95–100.

Harrison, Y. and Horne, J. A. (1999). One night of sleep
loss impairs innovative thinking and flexible decision
making. Organizational Behavior and Human Decision
Processes, 78, 128–145.

Hedden, T. and Gabrieli, J. D. (2004). Insights into the
ageing mind: a view from cognitive neuroscience. Nature
Reviews Neuroscience, 5, 87–96.

Hirshkowitz, M. et al. (2015). National sleep foundation’s
sleep time duration recommendations: methodology and
results summary. Sleep Health, 1, 40–43.

Holanda, F. W. N. J. and de Almondes, K. M. (2016).
Sleep and executive functions in older adults: a systematic
review. Dementia & Neuropsychologia, 10, 185–197.

Hukkelhoven, C. W. et al. (2003). Patient age and outcome
following severe traumatic brain injury: an analysis of 5600
patients. Journal of Neurosurgery, 99, 666–673.

Ivnick, R. J., Malec, J. F., Tangalos, E. G., Petersen,
R. C., Kokmen, E. and Kurkland, L. T. (1990). The
Auditory-Verbal Learning Test (AVLT): norms for ages
55 years and older. Psychological Assessment: A Journal of
Consulting and Clnical Psychology, 2, 304–312.

Keller, J. N. (2006). Age-related neuropathology, cognitive
decline, and Alzheimer’s disease.Ageing Research Reviews, 5,
1–13.

Killgore, W. D. (2010). Effects of sleep deprivation on
cognition. Progress in Brain Research, 185, 105–129.

Kim, H., Suh, S., Cho, E. R., Yang, H. C., Yun, C. H.,
Thomas, R. J., Lee, S. K. and Shin, C. (2013).
Longitudinal course of insomnia: age-related differences
in subjective sleepiness and vigilance performance in a
population-based sample. Journal of Psychosomatic
Research, 75(6), 532–538.

Knutson, K. L. et al. (2009). Association between sleep and
blood pressure inmidlife: the CARDIA sleep study.Archives
of Internal Medicine, 169, 1055–1061.

Kurdziel, L. B. F., Mantua, J. and Spencer, R. M. C.
(2017). Novel word learning in older adults: a role for sleep?
Brain and Language, 167, 106–113.

Lee, S., Vigoureux, T. F., Hyer, K. and Small, B. J.
(2022). Prevalent insomnia concerns and perceived need for
sleep intervention among direct-care workers in long-term
care. Journal of Applied Gerontology, 41, 274–284.

Li, S.C.,Huxhold,O. andSchmiedek, F. (2004). Aging and
attenuated processing robustness. Evidence fromcognitive and
sensorimotor functioning. Gerontology, 50, 28–34.

Miller, M. A., Wright, H., Ji, C. and Cappuccio, F. P.
(2014). Cross-sectional study of sleep quantity and quality
and amnestic and non-amnestic cognitive function in an
ageing population: the English Longitudinal Study of
Ageing (ELSA). PLoS One, 9, e100991.

Morin, C. M., Colecchi, C., Stone, J., Sood, R. and
Brink, D. (1999). Behavioral and pharmacological
therapies for late-life insomnia: a randomized controlled
trial. JAMA, 281, 991–999.

Muzur, A., Pace-Schott, E. F. and Hobson, J. A. (2002).
The prefrontal cortex in sleep. Trends in Cognitive Sciences, 6,
475–481.

Nadel, L., Hupbach, A., Gomez, R. and Newman-
Smith, K. (2012). Memory formation, consolidation and
transformation. Neuroscience & Biobehavioral Reviews, 36,
1640–1645.

10 D.E. Cohen et al.

https://doi.org/10.1017/S1041610223000911 Published online by Cambridge University Press

https://doi.org/10.1017/S1041610223000911


Nasreddine, Z. S. et al. (2005). The Montreal Cognitive
Assessment, MoCA: a brief screening tool for mild cognitive
impairment. Journal of the American Geriatrics Society, 53,
695–699.

Nishtala, A. et al. (2014).Midlife cardiovascular risk impacts
executive function: Framingham offspring study. Alzheimer
Disease & Associated Disorders, 28, 16–22.

Olivera-Souza, R. D. et al. (2000). Trail making and
cognitive set-shifting. Arquivos de Neuro-Psiquiatria, 58,
826–829.

Ott, L. R. et al. (2022). Construct validity of theNIH toolbox
cognitive domains: a comparison with conventional
neuropsychological assessments. Neuropsychology, 36,
468–481.

Pace, V., Treloar, A. and Scott, S. (2011).Dementia: From
Advanced Disease to Bereavement. Oxford Specialist
Handbooks.

Pilz, L. K., Keller, L. K., Lenssen, D. and Roenneberg,
T. (2018). Time to rethink sleep quality: PSQI scores reflect
sleep quality on workdays. Sleep, 41(5).

Plihal, W. and Born, J. (1997). Effects of early and late
nocturnal sleep on declarative and procedural memory.
Journal of Cognitive Neuroscience, 9, 534–547.

Rana, B. K. et al. (2018). Association of sleep quality on
memory-related executive functions in middle age. Journal
of the International Neuropsychological Society, 24, 67–76.

Reitan, R.M. andWolfson, D. (1985). The Halstead-Reitan
Neuropsychological Test Battery: Theory and Clinical
Interpretation. Tucson, Ariz: Neuropsychology Press.

Rey, A. (1964). L' examen clinique en psychologie (The Clinical
Psychological Examination). Paris: Presses Universitaires de
France.

Sanchez-Cubillo, I. et al. (2009). Construct validity of the
Trail Making Test: role of task-switching, working memory,
inhibition/interference control, and visuomotor abilities.
Journal of the International Neuropsychological Society, 15,
438–450.

Schaedler, T., Santos, J. S., Vincenzi, R. A., Pereira,
S. I. R. and Louzada, F.M. (2018). Executive functioning
is preserved in healthy young adults under acute sleep
restriction. Sleep Science, 11, 152–159.

Schoenberg,M.R.,Dawson, K.A.,Duff, K., Patton,D.,
Scott, J. G. and Adams, R. L. (2006). Test performance
and classification statistics for the Rey Auditory Verbal
Learning Test in selected clinical samples. Archives of
Clinical Neuropsychology, 21, 693–703.

Schroeck, J. L. et al. (2016). Review of safety and efficacy of
sleep medicines in older adults. Clinical Therapeutics, 38,
2340–2372.

Scott, E. P., Sorrell, A. and Benitez, A. (2019).
Psychometric properties of the NIH toolbox cognition
battery in healthy older adults: reliability, validity, and
agreement with standard neuropsychological tests. Journal of
the International Neuropsychological Society, 25, 857–867.

Scullin, M. K. and Bliwise, D. L. (2015). Sleep, cognition,
and normal aging: integrating a half century of
multidisciplinary research. Perspectives on Psychological
Science, 10, 97–137.

Shatenstein, B., Barberger-Gateau, P. and Mecocci, P.
(2015). Prevention of age-related cognitive decline: which
strategies, when, and for whom? Journal of Alzheimer’s
Disease, 48, 35–53.

Spencer, R. M., Gouw, A. M. and Ivry, R. B. (2007).
Age-related decline of sleep-dependent consolidation.
Learning & Memory, 14, 480–484.

Stenuit, P. and Kerkhofs, M. (2005). Age modulates the
effects of sleep restriction in women. Sleep, 28, 1283–1288.

Stickgold, R. (2005). Sleep-dependent memory
consolidation. Nature, 437, 1272–1278.

Strauss, E., Sherman, E. M. S. and Spreen, O. (2006).
A Compendium of Neuropsychological Tests : Administration,
Norms, and Commentary. Oxford: Oxford University Press.

Taylor, D. J. and Pruiksma, K. E. (2014). Cognitive and
behavioural therapy for insomnia (CBT-I) in psychiatric
populations: a systematic review. International Review of
Psychiatry, 26, 205–213.

Tombaugh, T. N. (2004). Trail Making Test A and B:
normative data stratified by age and education. Archives of
Clinical Neuropsychology, 19, 203–214.

Waters, F. and Bucks, R. S. (2011). Neuropsychological
effects of sleep loss: implication for neuropsychologists. Journal
of the International Neuropsychological Society, 17, 571–586.

Webb, W. B. (1985). A further analysis of age and sleep
deprivation effects. Psychophysiology, 22, 156–161.

Weintraub, S. et al. (2013). Cognition assessment using the
NIH Toolbox. Neurology, 80, S54–64.

Wilckens, K. A., Woo, S. G., Kirk, A. R., Erickson, K. I.
and Wheeler, M. E. (2014). Role of sleep continuity and
total sleep time in executive function across the adult
lifespan. Psychology and Aging, 29, 658–665.

Yagi, A., Nouchi, R., Murayama, K., Sakaki, M. and
Kawashima, R. (2020). The role of cognitive control in
age-related changes in well-being. Frontiers in Aging
Neuroscience, 12, 198.

Zhao, Q., Lv, Y., Zhou, Y., Hong, Z. andGuo, Q. (2012).
Short-term delayed recall of auditory verbal learning test is
equivalent to long-term delayed recall for identifying
amnestic mild cognitive impairment. PLoS One, 7, e51157.

Effects of age on sleep and cognition 11

https://doi.org/10.1017/S1041610223000911 Published online by Cambridge University Press

https://doi.org/10.1017/S1041610223000911

	Effects of age on the relationship between sleep quality and cognitive performance: Findings from the Human Connectome Project-Aging cohort&Dagger;
	ABSTRACT
	Introduction
	Methods
	 Participants
	 Measures
	 Statistical analyses

	Results
	 Demographic characteristics
	 The association between sleep quality and cognitive performance
	 The association between age and cognitive performance
	 Age moderation on the association between sleep quality on cognitive performance

	Discussion
	Conclusion
	Conflict of interest
	Description of authors' roles
	Acknowledgements
	Supplementary material
	References


