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Crystal structure of 3,3′-(E)-diazene-1,2-diylbis{4-[(3,4-dinitro-1H-pyrazol-1-yl)-
NNO-azoxy]-1,2,5-oxadiazole}
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The crystal structure of a novel high-energy density material 3,3′-(E)diazene-1,2-diylbis{4-[(3,4-dini-
tro-1H-pyrazol-1-yl)-NNO-azoxy]-1,2,5-oxadiazole} (C10H2N18O12) was determined and refined
using laboratory powder diffraction data. The title compound crystallizes in space group P21/c
with a = 9.5089(3) Å, b = 11.6331(4) Å, c = 10.6270(3) Å, β = 116.2370(12), V = 1054.43(6) Å3.
The asymmetric unit contains half of the molecule. The molecular conformation contains a weak intra-
molecular hydrogen bond C–H⋯O–N, both nitro groups are disordered, and the structure is domi-
nated by weak O⋯π and O⋯O contacts. © The Author(s), 2021. Published by Cambridge
University Press on behalf of International Centre for Diffraction Data.
[doi:10.1017/S0885715621000208]
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I. INTRODUCTION

X-ray powder diffraction techniques are routinely used in
analysis of high-energy density materials. Their main objec-
tives are phase analysis and the calculation of crystal density
at room temperature. When single-crystal experiments are
unavailable, they are also used to determine the crystal struc-
ture (and thus confirm the molecular structure) (Klenov et al.,
2016).

High-energy density materials (HEDMs) containing
azoxy groups are a subject of intensive research (Fischer
et al., 2014; Yu et al., 2015; Liu et al., 2016). However,
only few (and not high-energy) compounds with an azoxy
group bonded to a nitrogen atom of a heterocycle were
reported (Moriarty et al., 1990; Semenov et al., 1992).
Additional N–N bonds can increase the enthalpy of formation
and thus energy density. A two-dimentional molecular
diagram for 3,3′-(E)-diazene1,2-diylbis{4-[(3,4-dinitro-1H-
pyrazol-1-yl)-NNO-azoxy]-1,2,5-oxadiazole} (C10H2N18O12)
is shown in Figure 1.

II. EXPERIMENTAL

A. Safety precautions

Although we have encountered no difficulties during the
preparation and handling of compound described in this
paper, it is potentially explosive energetic material which is
sensitive to impact and friction. Mechanical actions of this
energetic material, involving scratching or scraping, must be
avoided. Any manipulations must be carried out by using
appropriate standard safety precautions (face shield, ear

protection, body armor, Kevlar® gloves, and grounded
equipment).

3,3′-(E)-Diazene-1,2-diylbis{4-[(3,4-dinitro-1H-pyrazol-
1-yl)-NNO-azoxy]1,2,5-oxadiazole} was synthesized in three
steps from known 1-amino-3,4-dinitropyrazole (Yin et al.,
2014) as part of Russian Science Foundation project 19-13-
00276.

The compound is an impact and friction sensitive explo-
sive, so caution is needed during sample preparation. The
sample was ground in agate mortar in small (∼5 mg) portions
and placed between two Kapton films with a PTFE spatula.

The powder pattern was measured on a Bruker AXS D8
Advance Vario X-ray powder diffractometer equipped with
a primary monochromator (CuKα1, λ = 1.54056 Å) and 1D
LynxEye PSD. Data were collected at room temperature in
the range 6–90° 2θ with a 0.01° 2θ step size in the transmis-
sion mode (Figure 2).

The diffraction pattern was indexed on a primitive mono-
clinic cell with a = 9.5089(3) Å, b = 11.6331(4) Å, c = 10.6270
(3) Å, β = 116.2370(12) using the SVD (singular value decom-
position) index algorithm (Coelho, 2003) as implemented in
Bruker TOPAS 5.0 (Coelho, 2018), and space group determi-
nation was carried out using statistical systematic absences
analysis as implemented in ExtSym (Markvardsen et al.,
2008). The resulting most probable space group P21/c was
later confirmed by structure solution and refinement.

Parallel tempering, as implemented in FOX (Favre-
Nicolin and Černý, 2002), was used to solve the crystal struc-
ture in direct space. The Rietveld refinement (with Bruker
TOPAS 5.0) was carried out using bond and angle restraints
derived from periodic dispersion-corrected density functional
theory (PW-DFT-D) calculations and a “riding” model for
hydrogen atom. Restraint weight was automatically decreased
during the refinement, and refinement result of more restrained
model served as a starting structure for the next less restrained
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one. For detailed explanation of the methodology, see
Dmitrienko and Bushmarinov (2015).

PW-DFT-D calculations were performed in VASP 5.4.4
(Kresse and Hafner, 1993, 1994; Kresse and Furthmüller,
1996a, 1996b) using the PBE functional (Perdew et al.,
1996) corrected by Grimme D3 van der Waals correction

(Grimme et al., 2010) with Becke-Jonson damping (Grimme
et al., 2011). A plane-wave basis set with “normal” projector
augmented wave (PAW) pseudopotentials (Blöchl, 1994;
Kresse and Joubert, 1999) as supplied with VASP was
employed. All optimizations were performed using energy
cutoff of 600 eV. Default 0.5 Å−1 k-point mesh and 8 k-points
were used in all calculations.

Root-mean-square (rms) Cartesian displacement between
the Rietveld refined structure and the PW-DFT-D optimized
ones were calculated as suggested by Neumann (van de
Streek and Neumann, 2014).

III. RESULTS AND DISCUSSION

The cell and molecular volume indicate Z′ = 1/2. Parallel
tempering runs in FOX lead to two global minimization solu-
tions with almost identical χ2; views of their asymmetric units
are shown on Figures 3 and 4. The only difference between the
structures is the mutual arrangement of C-H and N-lone pair
fragments of the pyrazole ring.

It is difficult to distinguish two 7 electron fragments given
only diffraction data, but it can often be done by analyzing
intermolecular contacts. Structure 2 contains highly unusual
contact C-H⋯π with furazan ring with H⋯O distance of
2.09 Å (Figure 5). The shortest H⋯Oaromatic distance (with
normalized C-H bond length) in the Cambridge Structural
Database (CSD) is 2.15 Å and only 10 structures has H⋯O
distance less than 2.3 Å. None of them are C-H⋯π interac-
tions: the C-H bonds in all of them are almost parallel to the
ring planes. It is unlikely that the structure contains such
unprecedented contact; we should prefer structure 1.

As an additional evidence, structures 1 and 2 were
energy-optimized with PW-DFT-D in VASP with both fixed
and free unit cell and the energies were compared. For struc-
ture 1, PW-DFT-D optimized energies are −603.410/
−603.446 eV for fixed/relaxed cell calculations. For structure
2, optimized energies are −601.852/−601.979 eV. So struc-
ture 1 is more than 8 kcal/mol more energetically favorable.

Rietveld refinement was performed with fixed-cell
energy-optimized structure 1 as source of bond and angle
restraints. The N1O1O2 group got distorted during the refine-
ment and thermal parameters for O1 and O2 became large

Figure 2. Final observed (black), calculated (red) and difference profiles for the Rietveld refinement.

Figure 1. Molecular structure of the 3,3′-(E)-diazene-1,2-diylbis
{4-[(3,4dinitro-1H-pyrazol-1-yl)-NNO-azoxy]-1,2,5-oxadiazole}.
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when refined independently. A CSD search showed several
hundreds of disordered nitro groups. So, we constructed and
refined a disordered model; the occupancy of the minor com-
ponent was close to 0.33. Even though no issues were found
with distortion or thermal parameters of the second nitro
group we added its minor component to the model to prevent
short O⋯O contacts. That did not improve the R factors
though. Final refinement with 108 variables and 69 restraints

over 8017 data points yielded Rp/R′
p/Rwp/R′

wp/RBragg = 2.18/
8.17/2.94/7.45/0.91%, GOF = 1.44 and occupancy of the
minor component 0.378(11) (Figure 6).

Powder data can give us very few hints about disorder
details. To check if our model makes sense, we optimized
the minor component with PW-DFTD (in addition to already
optimized major component). For it PW-DFT-D optimized
energies are −603.372/−603.400 eV for fixed/relaxed cell

Figure 4. General view of 2 in a crystal.

Figure 5. Unusual contact in structure 2.

Figure 3. General view of 1 in a crystal.
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calculations. The energy difference between components is as
small as 0.25 kcal/mol, which is expected.

The root mean Cartesian displacement between free-cell
energy-optimized structure and final Rietveld refined structure
is 0.11 Å for the major component and 0.09 Å for the minor
component, which is within the range expected for correct
structures. Comparison of the final Rietveld refined structure
with fixed-cell energy-minimized structures of major and
minor components are shown on Figures 7 and 8.

Figure 9 depicts the packing of 1. The shortest intermolec-
ular contact in the structure is O⋯π interaction between the
nitro group and the furozan cycle with O⋯O distance 2.769
Å. The only hydrogen atom participates in a weak C-H⋯O
hydrogen bond with the azoxy group (C⋯O distance is
3.228 Å). Other notable contacts are NO2⋯O2N (O⋯O dis-
tance is 3.154 Å) and NO2⋯ONN (O⋯O distance is 3.134
Å). Lack of strong intermolecular interactions is typical for
HEDMs.

Figure 7. Comparison of energy-optimized (orange) and Rietveld refined (green) major component of the disordered structure.

Figure 8. Comparison of energy-optimized (orange) and Rietveld refined (green) minor component of the disordered structure.

Figure 6. Final refined structure with atom numbering. The atoms are represented by 50% probability spheroids.
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IV. DEPOSITED DATA

The Crystallographic Information File (ak1696.cif) which
contains the results of the Rietveld Refinement and the
raw powder diffraction pattern, and six files (VASP_1_major_
refined_cell.cif, VASP_1_minor_fixed_cell.cif, VASP_1_minor_
refined_cell.cif, VASP_2_fixed_cell.cif, VASP_2_refined_cell.
cif) related to the PW-DFT-D calculations using VASP were
deposited with ICDD. The VASP files were used to obtain
the bond length and angle restraints for structures 1 and 2, as
discussed the EXPERIMENTAL section of this paper. These
data files can be requested at info@icdd.com. The first file is
also available from CCDC 2026495.
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