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A DUALITY THEOREM FOR
NONDIFFERENTIABLE CONVEX PROGRAMMING
WITH OPERATORIAL CONSTRAINTS

P. KANNIAPPAN AND SUNDARAM M.A, SASTRY

A duality theorem of Wolfe for non-linear differentiable
programming is now extended to minimization of a non-
differentiable, convex, objective function defined on a general
locally convex topological linear space with a non-differentiable
operatorial constraint, which is regularly subdifferentiable.

The gradients are replaced by subgradients. This extended
duality theorem is then applied to a programming problem where
the objective function is the sum of a positively homogeneous,
lower semi continuous, convex function and a subdifferentiable,
convex function. We obtain another duality theorem which

generalizes a result of Schechter.

1. Introduction

The following pair of programming problems has been studied by Wol fe
[91:

(P) minimize flz)

subject to hi(x) >0, 1 =1,
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m
(D) meximize  flz) - ¥ wh.(x)
i=1 t*t
m
subject to 20 and Vf(x) = Y u.Vh.(x)
=1 v °

. : ' .
Here f 1is a convex function on R and the hi's are concave functions.
f and hi are assumed differentiable. Furthermore a constraint

gqualification is assumed satisfied. Then Wolfe has proved the duality

theorem that if xo is optimal for (P), there exists a vector uo such

that (xo, uo) is optimal for (D) and furthermore the two problems have

the same extremal value. Geoffrian [3] and Rockafellar [7] have studied
duality theory without differentiability in a direction different from that
of Wolfe's. On the other hand Mond and Schechter [5] have studied some

particular problems very much in the spirit of Wolife.

In this paper we derive a duality theorem in Section 3, very much like
Wolfe's in a general locally convex topological linear space. Here we do
not assume differentiability, and we replace functional constraints by
operatorial constraints and gradients by subgradients. Finally in Section
4, by applying this duality theorem to a programming problem where the
objective function is the sum of a positively homogeneous, lower semi
continuous, convex function and a subdifferentiable, convex function, we

get another duality theorem which generalizes a result of Schechter [§].

2. Preliminaries

In this paper V and V* , aswell as Y and Y* , shall be pairs of
real vector spaces in duality, with their respective weak topologies. Thus
all the spaces will be locally convex spaces. We let C c Y be a closed
convex cone defining a partial order in Y- for x, y €Y ; x <y if
y-x € C . (When Y is R , it is understood that the cone C is
[0, ) .) C* shall stand for the polar-cone namely,

C* = {y* € Y* : {y*, y) = 0 for every y € C} .

Let A be a non-empty closed convex subset of V , and let
G:A>Y . G is said to be comvex if G(tx+(1-t)y) = tG(x) + (1-£)G(y)
for all x,y €A and 0S¢t =1
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A continuous linear map T : V + Y is said to be a subgradient of G

at a point u, € A if T(u—uo) = 6lu) - G[uo] for every u € A . The set

0

of all subgradients of G at wu, is called the subdifferential of G at

0

Uy and is denoted by BG(uo) .

G 1is said to be regularly subdifferentiable at N if
A(y* o G)(uo) =y* o BG[uO) for every y* ¢ C* [1}. If G is regularly

subdifferentiable at every point of A , then G 1is said to be regularly

subdifferentiable on A .

3. The duality theorem

Let J : A >R be a lower semi continuous, convex function, and let

G : A>7Y be a convex operator, which is regularly subdifferentiable on

AL
Let U= {u €A : ¢(u) = 0} be non-empty.
The primal problem (P) is
() inf J(u) .
uel
The proof of the following theorem can be found in [1], [2].
THEOREM 1. Let inf J(u) be finite, and assume that there is a
u€y
uy € A such that G(uo) <0 (that is, —G(uo) is an interior point of

C). Then u €A <is a solution of (P) if and only if there is p* € C*
such that (u, p*) satisfies

(1) g(u) +<p*, 6(u)) = J(u) + (p*, (u)) = J(u) + (p*, G(u))
for every u €A, p* € C* . Further, in this case, (p*, &(u)) =0 .

NOTE. From the second inequality in (1), it follows that z is a
minimum point for the function (J+p* o G)(u) , and hence
0 € 3(J+p* o G)(u) ([4]1, page 81).

Consequently, we have the following generalized Kuhn-Tucker theorem

for operatorial constraints.

THEOREM 2. If we further assume that G is contimuous at some point
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in A, then u € A is a solution of (P) if, and only if, there is
p* € C* such that (p*, G(u)) =0 and 0 € 3J(u) + p* o G(u) .

This is so because, if G 1is continuous at some point in A , then,

by the Morean-Rockafellar theorem [6],

87(i) + 3(p* ° 6) (%)
3J() + B* o da(q) ,

3(J+p* © G)(u)

since G 1is regularly subdifferentiable on A .

Based on Theorem 2, we define the following dual problem (D):

(D): maximize J(u) + (y*, Glu))
subject to y* € C* , and 0 € 3J(u) + y* o G(u) .

Now we have the following analogue of Wolfe's duality theorem [9] in

the case of operatorial constraints.
THEOREM 3. Assume the hypotheses of Theorems 1 and 2. If Uy is a
golution for problem (P), then there exists yé € Y* such that (uo, ys)

18 a solution for problem (D). Furthermore, the two problems have the same

extremal value.
Proof. By Theorem 2, feasible solutions exist for (D).

Let (x, y*) be a feasible solution for problem (D). Then y* = 0 ,
and there exist v € 3J(u) and T € 3G(u) such that 0 =v + y* o T |

Now
J@%]—[ﬂuhw*,ﬁu”]

> {v, uo-u) ~-{y*, G(u)) = Ly* o T, uo—u) - Ly*, 6lu)

v

{y*, G(u)-G(uo)) - (y*, Glu)) = Ly*, G(uo))
>0,

since y* 2 0, and G(uo) =0 . Thus

(2) J(uo) > J(u) + (y*, Glu)?

for any feagible solution (u, y*) for problem (D). Since Uy 1is an

optimal solution of problem (P), we have from Theorem 2, that there exists

yg € C* such that (yg, G(uo)) =0 and O € BJ(uO) +yl e aG(uo) . 1In
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other words, (uo, yS) is a feasible solution for (D). Hence
(3) J(uo) = J(uo)'+ (yds G(uo])

This shows that from (2) and (3), (uo, ys) is an optimal solution

for (D), and that the two problems have the same extremal value.

4. Applications

We next apply the above theorem to the case where the objective
function is the sum of a positively homogeneous, lower semi continuous,

convex function and a subdifferentiable convex function.
We shall need the following definition and propositions.

DEFINITION. Let 4 ©be a subset of a locally convex space V* . Then
the support function of A , denoted by S(+/A) is defined by

S(u/4) = supflu, u*) : u* € A}

NOTE. Let F %be a positively homogeneous, lower semi continuous,

convex function, defined on a locally convex space V . Then
9F(0) = {u* € V* : Flu) = Cu, u*) for all u € V} ,
since F(0) =0
The following proposition is proved in ([4], page 192):

PROPOSITION 1. Let F be a positively homogeneous, lower semi
continuous, convex function defined on a locally convex space V . Then F

is the support fumction of 3F(0)

REMARK. Note that 3F(0) is a non-empty, convex, compact subset of
V* . 1In fact, there is a one to one correspondence between compact convex
subsets of V* and positively homogeneous, lower semi continuous, convex

functions on V .

PROPOSITION 2. Let F be a positively homogeneous, lower semi
continuous, convex function defined on a locally convex space V ; and let
u# 0. Then

() F(u) = {u* € 3F(0) : P(u) = (u, u®} .

This follows from Proposition 1, and the result that wu* € 3F(u) if,
and only if, F(u) + F*(u*) = Cu, u*) ([4], page 198), where F* denotes
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the conjugate function of F .
Let the objective function J : A > R be of the form J = Fl + F2 R
where Fl is a positively homogeneous, lower semi continuous, convex

function and F2 is a convex function and let F2 be continuous at some
point of A . Also, let G : A > Y be regularly subdifferentiable on A
The primal problem (P;) is
(P1): minimize J(u) subject to G(u) =0 .
Let (D;) and (D;) denote the following dual problems:
(D1): maximize Fz(u) + {w*, w + (y*, Glu)
subject to y* € C* | w* ¢ BFl(O) , (w*, w = Fl(u)

and O € 8F2(u) +w* + y* o 3G(u) ;

(P2): maximize F2(u) + (wt, W+ (yt, Glu))
subject to y* € C* |, w* ¢ aFl(O)
and O € 3F2(u) + w* + y* o 3G(u)

THEOREM 4. I1f uy ts optiml for (P1), then there exist yg and
wd such that (uo, e ws] is optimal for (D). Further, the two
problems, have the same extremal value.
Proof. Since ug is optimal for (P,), by Theorem 2, there exists
y* € C* such that (y*, G(uo)) =0 and O ¢ BJ(uo) +yto BG(uO) . But
BJ(uO) = BFl(uo] + 3F2(uo) by the Moreau-Rockafellar theorem [6]. Also
agl(uo] = {ut € BFl(O) : Fl(uo) = (uo, ut)} by (4). Therefore,
0 € 3F2(u0) + {u* € oF (0} : Fl(uo) = Cuy, ut} + y* o BG(uO) . Hence
there is w* € SFl(O) satisfying Fl(uo] = (uo, w*)  such that
0 € SFz(uo) +wt + y* o BG(uO) . Thus feasible solutions for (D,) exist.
Let (u, y*, w*) be any feasible solution for (D,). Then y* € C* ,
w* € BFl(O) and there exist v € 8F2(u) and T € 3G(u) such that

O=v +wt+y*tofl,.
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Now

Fo(ug) + Fyluy) - [wt, wer, (i) y*, 6(u))]

v

EFz(uo)_Fe(u)] + [(w*, uy)<w*, w] - (y*, Gu)) (since w* € aFl(OU

v

(v, u —ud + (w¥, uo—u) - (y*, G(u))

0
(v4w*, uo—u) - Cy*, G(u)?

{y* o T, uo_u) - (y*, G(u)?
-y, Tlugu) - g, e
= {y*, G(uo)-G(u)) - {y*, G(u)) (since T € 3G(u))

= Ly*, G(u0)> 20 (since y* €C* —G(uo] €C)

Thus Fl(uo) + F2(u0) = wt, w + FE(u) +{y*, ¢{(u)) for every feasible
solution (u, y*, w*) of (D2).

Now, since u,. is optimal for (P,), there are yg € (G w6 € aFl(O)

0

satisfying Fl(uo) = (uo, ws) such that 0 € an(uo) +wf +ydo BG(uO)

and such that <y6, G(uo)) =0 .

Hence

(y* ) = (p# ) *
Fl(uo) + Fg(uo) +{ygs G(uo) wh, w + Fo(u) + g%, 6(u))

for every feasible solution (u, y*, w*) of (D;). That is, (uo, Yy wa)
is optimal for (D2).

Clearly, the extremal values of the two problems are the same.

REMARKS. (1) In Theorem 4, if Uy is optimal for (P,), then the
(uo, y*, ws) which has been obtained optimizing (P;), in fact, also
optimizes (D1).

(2) Theorem 4 generalizes a result of Schechter [§].
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