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FUNCTION T H E O R E T I C I N T E G R A L O P E R A T O R 
M E T H O D S F O R P A R T I A L D I F F E R E N T I A L EQUATIONS*1» 

BY 

E R W I N KREYSZIG ( 2 ) 

1. Introduction. It is well known that complex analytic functions and har
monic functions of two real variables are closely related, so that from methods 
and results in complex function theory one can easily obtain theorems on those 
harmonic functions. This is the prototype of a relation between complex 
analysis and a partial differential equation (Laplace's equation in two vari
ables). In the case of more general linear partial differential equations, one can 
establish similar relations. So far, two types of useful methods are known, as 
follows. 

1.1. Pseudo-analytic functions. One can replace the Cauchy-Riemann equa
tions by a system of two more general first-order linear partial differential 
equations, for instance, by the Hilbert-Carleman system 

cpx-i/>y = axl<p + a12i\f 

<py + ifc. = a21<p + a22\\f 

and then develop the theory of solutions (<p, i//), taken in complex form as 
f(z) = <p(x, y) + iil/(x, y), along the lines of classical complex analysis. This idea 
goes back to Picard and Beltrami. A detailed theory of these pseudo-analytic 
functions was created by L. Bers [7] and (independently) I. N. Vekua. It has 
found applications in fluid flow and other fields, for instance, in differential 
geometry in connection with global representations of simply-connected C3-
surfaces in IR3 with Gaussian curvature K<0; cf. [14]. This extends classical 
investigations on minimal surfaces (for related work, see [8, 20]). 

1.2. Integra] operators. One can define integral operators which transform 
complex analytic functions into solutions of a given partial differential equa
tion. The idea of introducing operators for utilizing methods and results of 
function theory in the theory of partial differential equations was conceived by 
S. Bergman [5] and (independently) I. N. Vekua [23]. Bergman also developed 
general principles as well as many details of a corresponding theory and its 
applications to fluid dynamics. 
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In this paper we shall be concerned exclusively with problems related to 
integral operators. 

It is not difficult to recognize the reason for the success of the integral 
operator method. Indeed, there is a large number of theorems on specific 
properties of analytic functions, for instance, on the location and type of 
singularities, growth, behaviour near the boundary of the domain of holomor-
phy, coefficient problems of various series developments and so on. And a 
relation to partial differential equations obtained by an integral operator may 
then be used as a principle for translating those and other results into theorems 
on general properties of classes of solutions of a given equation. Theorems of 
this type seem to complement results on partial differential equations obtained 
by other methods, and we should also note that, in contrast to some other 
recent methods, our approach is constructive. 

The method of integral operators to be considered here may be called a 
function theoretic approach to partial differential equations. During the past 
two decades it has become a large field of its own, as can be seen by comparing 
Bergman's classic [5] with more recent publications, such as [13,18]. One 
impetus to the development of the method resulted from the theory of partial 
differential equations itself. Another motivation came from applications to 
transition and other flow problems [6,10], problems in elasticity [9] and 
applications in connection with the indirect, or inverse, method [21] used for 
improperly posed and other problems. A particular advantage of these integral 
operators is that they are useful, on one hand for characterizing classes of 
solutions in a general way, and on the other hand for solving boundary value 
problems, either directly or by the inverse method. 

An equation being given, one generally has available various integral 
operators for representing solutions, and the success of deriving theorems on 
solutions from those in complex analysis will to a large extent depend on the 
"simplicity" of the operator used. Hence one of the central problems of the 
whole method and its applications is the construction of suitable classes of 
kernels. The present paper will be devoted mainly to this problem and its 
ramifications. 

2. Equations in two variables. We consider linear equations of the form 

(2.1) Aw + a(x, y)wx + |3(x, y)wy + Y(X, y)w = 0. 

Assuming the coefficients a, 0, y to be real-analytic in a domain D<=[R2, 
(0,0) G D, we can continue them analytically to the complex domain by 
assuming x and y to be complex. 

For convenience we transform (2.1) by using z=x + iy, z* = x — iy and 
eliminating one of the two first partial derivatives. This yields, say, 

(2.2) Lu = uZ2* + b(z, z*)uz* + c(z, z*)u=0, 
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where b and c are holomorphic in a domain D a C2, (0, 0) e D. We exclude the 
trivial case c = 0 throughout this paper. Note that z* = z, the conjugate, if and 
only if x and y are real. 

A first principle for obtaining integral operators T of the desired kind is the 
substitution of an integral into (2.2). For this purpose we consider 

(2.3) M(z, z*) = (Tf)(z, z*) = J ' g(z, z*, t)/(hiU, t))h2(t) dt, 

where / e C^Go), G0<=C, Oe G0, and t is real. 
It is important that / be a function of a single variable, since the theorems on 

specific properties of analytic functions mentioned above have almost no 
known counterparts for functions of several complex variables. This motivates 
h1:GxJ^ G0, / = [—1,1], G a domain in C And h2 gives some flexibility 
with respect to conditions for the kernel g. 

S. Bergman [5] suggested the standard choice 

(2.4) h,(z, t) = z ( l - t 2 ) / 2 , fi2(0 = ( l -* 2 ) - 1 ' 2 . 

Then the following theorem holds. 

THEOREM 2.1. If g is a holomorphic solution of 

(2.5) Mg = ( l - f 2 ) g z * t - r 1 g 2 * + 2zfLg = 0 

on R = GxG*xJ satisfying 

(2.6a) ( l - r 2 ) 1 / 2 g 2 *^0 as r - > ± l uniformly on GxG* 

(2.6b) gz*/tz continuous on JR, 

then for every fe C™(G0) the function u = Tf in (2.3) is a Cw-solution of (2.2) on 
Q = GxG*. Here G lies in the z-plane and G* is the same domain in the 
z*-plane corresponding to G under the above transformation. 

Conversely, every C2-solution u of (2.2) on Ù can be represented in the 
form 

u = Tf+Tf, 

where f is of the form (2.3) with another kernel g, and / depending on z* 
(instead of z). This can be proved, for instance, by using classical results on the 
continuation of solutions of elliptic equations to the complex domain [19] and 
employing the complex Riemann-Vekua function [23], which is a complex 
analogue of the Riemann function for hyperbolic equations. 

3. Bergman operators of the first kind. The choice of integral operators for a 
given equation (2.2), that is, of kernels g satisfying (2.5), (2.6), depends on the 
purpose. The development of a corresponding systematic method is an open 
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problem, but practically useful classes of kernels have been introduced in an 
ad-hoc fashion and investigated in great detail. Each of them is motivated and 
suggested by a certain requirement. We shall consider three such classes, 
starting with operators which have a particularly simple inverse. This property 
is important, for instance, in connection with the coefficient problem for series 
representations of solutions u of (2.2), where one needs f=T~~1u, obtains 
properties of / from a coefficient theorem in complex analysis, and studies how 
these properties are transformed in (2.3). An operator satisfying that require
ment is defined as follows. 

DEFINITION 3.1. A Bergman operator of the first kind is an integral operator T 
defined by (2.3), (2.4) which has a kernel satisfying (2.5), (2.6) and, for all z, 
z*, t considered, 

(3.1) g(z, 0,f) = l, g(0,z*,t) = l . 

Such a kernel can be obtained by substituting 

g(z,z*,t) = l + £ z ^ f Z q,.(z,£)d£ 

into (2.5), determining the q/s from a recursive system of nonlinear second-
order partial differential equations and proving convergence by Cauchy's 
classical majorant method. This system turns out to be rather manageable in 
most cases of practical interest. The inverse T _ 1 is simple; indeed, / = T_ 1u can 
immediately be obtained from 

u(2,o)=J1 f(^(i-t2])(i-t2rii2dt. 

Note that for T1 to exist, we may have to define an equivalence relation on 
{f\fe Cœ(G0)}, G0 a given domain, 0€ G0, but can then readily characterize a 
minimal representative of each class in terms of the coefficients of Maclaurin 
series. 

4. Exponential kernels. Operators of the first kind yield local solutions, in 
general. This fact suggests the study of "kernels of finite form" for obtaining 
global solutions. An important class of such kernels and operators is defined as 
follows. 

DEFINITION 4.1. L in (2.2) is said to be of class E, written L e E, if solutions 
u ¥"0 of (2.2) can be obtained by using an operator T of class E, that is, an 
operator defined by (2.3), (2.4) with a kernel of the form 

m 

(4.1) g = e\ q(z,z*,t)= £ q„(z, z * ) r (meN) . 

Clearly, the assumption of a special form of g imposes conditions on b and c 
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in (2.2). This fact entails the basic problem of finding out whether a special 
class of kernels is suitable for a sufficiently large class of operators L. For class 
E this holds true, and necessary and sufficient conditions for L eE are known; 
see [1], which also discusses kernels of the form g = peQ, where p and q are 
polynomials in t with coefficients depending on z* and z, respectively. 

A remarkable property of class E operators is as follows. 

THEOREM 4.2. If LeE and /(z) = zn, neN, then u = Tf satisfies an ordinary 
linear differential equation whose order is at most m + 1 and is independent of n. 

This theorem enables us to apply the Fuchs-Frobenius theory of ordinary 
differential equations for investigating singularities and other properties of 
particular solutions of certain partial differential equations, for instance, of the 
Helmholtz equation, for which LeE. 

As an equation for which a kernel g = peQ with p and q as characterized 
above is suitable, we mention 

Mz*)2u,z* + <p(z)Mz*)u)z* = 0 

where <p and ijj are analytic functions of the respective variable, holomorphic in 
a neighborhood of the origin. 

5. Differential operators. E. Peschl and his school [4,22] have recently 
developed a function theory of solutions of the equation 

(5.1) uzz* + m(m +1)(1 + zz*)~2u =0 (meN) 

in analogy to complex analysis. This equation has also been considered by M. 
Eichler, I. N. Vekua and many others. It is important since it occurs in the 
separation of the wave equation A3w = wtt in spherical coordinates under the 
application of a stereographic projection to the equation involving the angular 
variables. The main tool in that recent approach is a differential operator D for 
representing solutions of (5.1). It is interesting that D is a special case of 
differential operators which can be derived from certain integral operators. The 
latter are defined as follows. 

DEFINITION 5.1. L in (2.2) is said to be of class P, written LeP, if solutions 
u ^ O of (2.2) can be obtained by using an operator T of class P, that is, an 
operator defined by (2.3), (2.4) with a kernel of the form 

m 

(5.2) g(z ,z*, r )= I p 2 J z , z*)t2M- (meN). 

Note that in (5.2) odd powers of t have been omitted without loss of 
generality. The determination of explicit necessary and sufficient conditions for 
L e P is an open problem. Implicit conditions are as follows. 
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LEMMA 5.2. Let r0(z) be arbitrary analytic, r2jZ* = —2r0c and 

(2fx + l)r2^+2jZ* = -2Lr2lx p, = 1, 2, • • •. 

Then LeP if and only if there is an meN such that r2m+2 = 0. 

The conversion of a class P operator to a differential operator (and vice 
versa) can be accomplished as follows (cf. [15]). 

THEOREM 5.3. If LeP, then 

(5.3) (Tf)(z, z*) = (Df)(z, z*) = j £ o p ^ z - * W z , z*)f m-*>(z) 

where 

n=o n=o 2 (n + m)! 
n+na 

and B is the beta function. 

For the special equation (5.1) we obtain from Theorems 2.1 and 5.3 the 
representation 

(5.4) u(z, z*)=(Dm, z*) = z ,{2m~»)ii (v^yy^)-
M.=o(m —fx)!jLL! \ l - f zz / 

Here D is the aforementioned differential operator. Converting it back to an 
integral operator, we arrive at (2.3) with the kernel 

/ * x V (™ + v\ (-4zz*Y g ( Z 'Z ' r )%^ol2^ A ï T ^ ) 
and can now establish many results of that function theory for (5.1) simply by 
using the theory of integral operators. Incidentally, the case m = l of (5.1) 
plays a role in connection with minimal surfaces (cf. [20], p. 105), and its 
general solution now follows from (5.4) without employing the Weierstrass 
representation of those surfaces. 

6. An application. Tricomi equation. A part of Bergman's earlier work on 
integral operators was motivated by problems in compressible fluid flow. He 
improved Chaplygin's pioneer work, which failed for flows past obstacles in 
cases requiring analytic continuation; cf. the references given in [6]. We shall 
consider a different approach involving the Tricomi equation 

(6.1) <nfce + «fcnr=0. 

Here i/f is the stream function of the flow, which is assumed stationary, 
two-dimensional, nonviscous and compressible. 6 is the angle between the 
velocity vector v = (vl9 v2) and the i^-axis in the hodograph plane (the vxv2-
plane), and a is defined by da/dq = —plq, where q = |u| is the speed and p is the 
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density. (6.1) is probably the best known equation of mixed type. It occurs in 
transition problems, that is, flows which are subsonic in a portion of the region 
of flow, sonic on a curve (or several curves), and supersonic in the remaining 
portion of the region. An example of a transition problem is a nozzle in the 
case of subsonic flow of high speed; then a supersonic zone may develop in an 
area near the minimal cross section of the nozzle. Another problem is an airfoil 
travelling at a high subsonic speed. In this case, a supersonic zone may develop 
on the upper portion of the wing where the flow is fastest. For a recent method 
of computer design of such airfoils, see [3]. 

Equation (6.1) is an approximation to the famous Chaplygin equation 

(6.2) K(or) (A e e +^ = 0 

in regions such that 

K(<r) = p-2(l-M2)~la (\a\ small), 

where M = q/a is the Mach number, a = (dp/dp)1/2 the speed of sound, and p 
the pressure. We may assume 1 = 1, which can be accomplished by a suitable 
linear transformation of the independent variable. We mention that the transi
tion from the xy -plane of the flow to the hodograph plane corresponds to the 
transition from a nonlinear system 

to the linear equation (6.2). Here, <p is the potential function of the (irrota-
tional) flow and we have denoted the stream function again by i/f, for simplicity. 
Indeed, using q, 6, we first obtain 

M 2 - l q 

pq p 

Introducing the above a yields a system which immediately implies (6.2), 
namely 

cp^ = K(a)ijje, <Pe=-<fcr-
If we set 

z= | c r 3 y 2 + M, z* = fcr 3 / 2 - i0 , u = <r1/4tfc 

then (6.1) becomes 

(6.3) L0u = uzz* + k(z + z*)~2u = 0, k = 5/36. 

We see that this is a special case of (2.2), so that T defined in Sec. 2 is 
applicable. A better choice is the following. 

LEMMA 6.1. Let B be defined by 

(6.4) u(z, z*) = (Bf)(z, **)= f gfe **> 0/ (0 dt-f(z) 

where feC^iGJ, G^C is a domain, z0eGu geC^iG), G = G1xG2xG3, 
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and G2 and G3 correspond to GA in the z* and t planes, respectively. Assume 
that for (z, z*, t)eG we have 

(6.5) (a) Log = 0, (b) gAz,z*,z) = k(z + z*r2. 

Then L0u — L0Bf = 0 on Gx x G2. 

This becomes even simpler if we set 

T = h(t) = ( 2 r - z + z*)(z + z*)-1, g(z,z*,t) = 2(z + z*)-1 dP/dT. 

Then (6.5a) reduces to the Legendre equation for P with parameter -^, and 
(6.5b) gives dP(l)/dr = -k/2. Hence we obtain the following result (cf. also 
[16]). 

THEOREM 6.2. Let 

(6.6) u(z, z*) = j h ( 2 o ) p_ 1 / 6 (T)~ / (T(z + z*)/2 + (2 - z * ) / 2 ) d r 

where P-1/6 is the Legendre function of the first kind of order —\. Then for every 
feC^iGj) with f(z0) = 0 we have L0u = 0 in Gx x G2. 

This theorem can be used in a number of ways. First of all, by inserting 
various functions / (even simple ones, such as powers, polynomials, exponential 
and logarithmic functions) one can obtain particular solutions of the Tricomi 
equation, including those derived by Chaplygin, Falkowitsch, Guderley, 
Tamada and Tomotika from various sources and by different methods. Fur
thermore, (6.6) suggests a study of general properties of classes of solutions 
corresponding to certain classes of analytic functions, such as meromorphic or 
algebraic functions. Finally, one may employ (6.6) in connection with the 
indirect or inverse method and its application to improperly posed problems 
(cf. [21]). 

7. Solutions in domains with corners. As long as we use integral operators 
as a principle for translating methods and results of complex analysis, it is clear 
that we should define the operators on spaces of analytic functions. On the 
other hand, the above and similar representations by means of the complex 
Riemann function (cf. [23]) make sense also under much weaker assumptions. 
This is of interest, for instance, in connection with boundary value problems in 
domains with corners. One can start, say, from Cm+"-solutions (meNU{0}, 
0 < a < 1) in a simply-connected bounded plane domain with corners, and ask 
for differentiability properties of an associated function / of such a solution u 
(that is, u - Tf) in Bergman or Riemann-Vekua representations. Recent results 
by S. C. Eisenstat [11] based on asymptotic expansions developed by H. Lewy 
and his school (cf. [17]) show that, roughly, Holder continuity of the mth 
derivatives of u in the closure of the domain (assumed without interior or 
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exterior cusps) implies the same for / in the Riemann-Vekua representation. 
For another approach to boundary value problems in domains with corners, see 
[2]. 
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