
ABSOLUTE CONVERGENCE FACTORS FOR H* SERIES 

JAMES CAVENY 

A famous theorem of Hardy asserts that if / £ H1, then the sequence 
( / (0 ) , / ( l ) , . . .) of Fourier coefficients satisfies J^n=i ^ _ 1 | / M I < °°. For this 
reason we say that the sequence (1, 1/2, 1/3, . . .) belongs to the multiplier 
class (H1,11). In this paper, we investigate the multiplier classes (Hp, I1) for 
1 S P â °°. Our observations are based on the fact that a sequence 
(\(0), X(l), . . .) belongs to (Hp, I1) independent of the arguments of its terms. 
We also show that (Hp, I1) may be thought of as the conjugate space of a 
certain Banach space. 

1. Preliminaries. LP denotes the space of complex-valued Lebesgue 
measurable functions/ defined on the circle \z\ = 1 such that 

is finite. Lœ is the space of essentially bounded complex-valued functions/ on 
\z\ = 1 with norm \\f\\œ = ess sup \f(z)\. For 1 ^ p ^ œ, the Fourier coeffi
cients of a n / £ Lp are given by 

j\n) = ±- f f(eie)e-ine dd (n = 0, ± 1 , ± 2 , . . .). 

The Hardy class Hp is the closed subspace of Lp consisting of those functions 
whose Fourier coefficients vanish for negative indices. Hp may also be described 
as the space of functions/ which are analytic in the unit disc \z\ < 1 and for 
which 

11/11, = [ sup ^ f \f(reie)\»de]1,P 

is finite. For these and other basic properties, (4) is a convenient reference. 
Co denotes the space of complex null sequences X = (X(0), X(l), . . .) with 
norm given by ||X|| = ma,xn\\(n)\, and I1 is the space of absolutely summable 
complex number sequences with its usual norm. If / is an Hp function and 
X = (X(0), X(l), . . .) is a c0 sequence, we wr i te / * X for the analytic function 
with power series 

oo 

(i.i) f*xoo = D/(»)x(»y\ 
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which obviously converges in \z\ < 1. In general, if f{z) = J^f(n)zn and 
g0s) = HÉM^1 a r e a nY two power series, then their Hadamard product / * g 
is the function with formal power series f * g(z) = ^2f(n)g(n)zn. If both the 
power series f(z) and g(z) converge in \z\ < 1, then so d o e s / * g ( z ) , and 
furthermore, we have the representation 

f*g(reie) = ± fTi(peU)f{yiit-i>>)dt (0 ^ r < p < 1). 

If g G Hp, then we may put p = 1 in the above formula, and if / G Hq
y 

q = p/(p — 1), it follows t h a t / * g is continuous on the closed disc \z\ ^ 1 
(see 7, p. 38). 

In addition to these standard classes, we adopt the notation L+l and L+°°, 
respectively, for the classes of functions which are analytic projections of the 
Fourier series of integrable functions or bounded functions. More precisely, 
/ G L+00 if, and only if, f(z) = Y,f(n)zn and the coefficients/(w) are given by 

(1.2) / («) = ~ f F(eie)e-tn° dd {n = 0, 1, 2 , . . .) 

for some F Ç L00. F o r / G L+°° and g £ H1, the representation 

(1.3) /*«(«*') = ̂ - f g ^ ' - 0 ) ^ " ) ^ 

is valid for 0 ^ r ^ 1, and, in particular,/ * g is continuous on the closed disc 
\z\ S 1. The class L+1 is defined in a similar manner, and for / Ç L+1 and 
g G i?°°, a representation analogous to (1.3) shows t h a t / * g is continuous on 
\z\ ^ 1. 

2. Arguments of coefficients. A multiplier in the class (Hp, I1) is generally 
the sequence of coefficients of an HQ function, q = p/(p — 1), but much more 
can be said since a sequence belongs to (Hp, I1), independent of the arguments 
of its terms. We use this notion to obtain a simple but convenient characteriza
tion of ( iP, I1). 

DEFINITION 2.1. (Hp, I1) is the collection of all complex number sequences 
X = (\(0), X(l), . . .) such that ( / (0) \ (0) , / ( l )A(l ) , . . .) G l1 for each f G Hp. 

DEFINITION 2.2. Letf and h be analytic in \z\ < 1. The function h is called an 
agitation of f if \h(n)\ = \f(n)\ for n = 0, 1, 2, . . . . For 1 S P ^ °° , the class 
AHV is the subset of W consisting of those functions f such that every agitation of 

f belongs to Hp. 

T h u s , / G AHP if, and only if, altering the arguments of the coefficients/^) 
at random always results in another sequence of coefficients of an Hp function. 

THEOREM 2.3. Let 1 < p < œ and q = p/(p — 1). Then f G AHq if, and 
only if, ( / ( 0 ) , / ( ! ) , . . . ) G (Hp, /i). 
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Proof. If ( / (0 ) , / ( l ) , . . . ) G ( iP , / 1 ) , then certainly each agitation h of 
/ satisfies (h(0), h(l), . . .) 6 (#*, Z1)- H g € ^ , then A * g is a bounded 
analytic function in \z\ < 1. By (1, Theorem 1), it must be that h G Hq and 
/ G AH*. 

If / G ^4i7ff and g is any i ïp function, then define 

h(n) = \f(n)\exp(-i arg g(n)). 

If A(z) = ^h(n)zn, then A G i?*, and h * g is continuous on |s| ^ 1. But then 
the limit 

oo 

l i m Â * ^ ) = lim 2^ \f(n)g(n)\rn 

r-^l r->l n=0 

is finite; therefore the series J2\fWg(n)\ converges and (jf(0)f/(l), . . .) € 
( f lV 1 ) . 

We can extend the above theorem to the cases p = 1 and p = oo by con
sidering the classes L+

œ and L+1. 

DEFINITION 2.4. If p = 1 or p = <*>} then AL+
P is the collection of those 

analytic functions f such that every agitation of f belongs to L+
v. 

THEOREM 2.5. Letp = 1 or œ a ^ g = <*>or\, respectively. Thenf G -4L+ff if, 
and only if, ( f (0) , / ( l ) , . . .) G (iï*, Z1). 

Proa/. If ( / (0) , / ( l ) , . . .) G (Hœ, l1), h is any agitation of / , and g is any Hœ 

function, then the coefficients of h * g are in I1 and 

oo 

lim 2^ h(n)g(n)rn 

7- -> l W = 0 

exists. By the main theorem in (5), it follows that h G £+*. If £ and q are inter
changed, a similar argument can be based on (1, Theorem 2) to show that 
h G L+

œ. The other parts are straightforward. 
The roles of L+

q and Hv may be interchanged in Theorem 2.5. To see this 
we need to observe that any sequence in the multiplier class (L+°°, Hœ) is the 
sequence of Taylor coefficients of an H1 function, and any sequence in the 
multiplier class (X+\ Hœ) is the sequence of Taylor coefficients of an Hœ 

function. To verify the statement about (L+
œ,Hœ), recall that H1 is iso-

metrically isomorphic to the conjugate space of the quotient space C/Ào 
(see 4, p. 137). Here, C denotes the continuous functions on the circle \z\ = 1, 
Ao the continuous analytic functions that vanish at the origin, and A0 the 
complex conjugates of the functions in A$. Suppose that J2n=of(n)G(n)zn is in 
H°° for each G in U° ; then for each fixed G G C, the expression 

(2.1) U - f f(re-ie)G(eie) dd\ 

is bounded for r in the range 0 ^ r < 1. The integral in (2.1) is independent 
of the representative of G in C/ÂQ. Thus, if fT(6) = f(reid), then the principle 
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of uniform boundedness implies that the norms of t h e / r , as linear functionals 
on C/Ao, are uniformly bounded, i.e., | | / r | | i ^ M a n d / G H1. The analogous 
relation between (L+\ H°°) and Hœ may be established in a similar manner by 
treating iï00 as the conjugate space of L1/H0

1. The technique of Theorems 2.3 
and 2.5 may now be used to prove the following result. 

THEOREM 2.6. Let p = 1 or œ and a = <» ar 1, respectively. Thenf G /Iff' if, 
a»i only if, (f(O)J(l), . . .) G (L+*, I1). 

Now we return to the case a = oo 0f Theorem 2.5 and show that the condi
tion that all agitations of/ belong to L+

œ can be significantly weakened. In iact, 
this condition will be satisfied if merely the agitation with positive coefficients 
belongs to L+°°. 

THEOREM 2.7. The function f belongs to AL+
œ if, and only if, the function with 

coefficients \f(n)\ belongs to L+°°. 

Proof. It is trivially true that the agitation h given by hiz) = Y,\fW\zn is in 
L+°° whenever/ G AL+

œ. Assuming that h G L+°°, one can modify the proof 
of Hardy's theorem (4, p. 70) to show that (|/(0)|, | /(1)| , . . .) belongs to 
(H1,11), but this implies t h a t / G AL+

œ. Indeed, if g is in Hl with positive 
coefficients, then 

OO -I /»7T 

E !(»)!/(»)I = j - g(ei6)H(e~ie) dd ^ ||g||,||ff|L 
w=0 ^7T « / - * • 

where H is any L°° function whose analytic projection is h. For an arbitrary 
g G H1, the fact that g can be factored into the product of H2 functions shows 
that there is a G in H1 with positive coefficients which dominate the coefficients 
of g, \g(n)\ ^ G{n) (« = 0, 1, 2, . . .). Then 

Ê \È(n)\\f(n)\è £ G{n)\f(n)\< œ. 

THEOREM 2.8. The function f belongs to AHœ if, and only if, the sequence 
(f($),f(l),...)isinl\ 

We omit the simple proof, and proceed to investigate the analogous state
ments for the other values of p. When 1 ^ p g 2 the situation is particularly 
simple. 

THEOREM 2.9. If 1 Sp g 2, thenf G AHHf, and only if, ( f ( O ) J ( l ) , . . . ) G /2. 

Proof. Because of Parseval's formula, if ( / (0) , / ( l ) , . . .) G I2 and h is any 
agitation of / , then h G H2 C Hp since 1 ^ p ^ 2. On the other hand, if 
/ G AHP, then, for every choice of signs, the series J^ ± \f(n)\eine is the formal 
boundary series of an Hp function. But then 2Z =*= l /MI C(>s ^0 is the Fourier 
series of an Lv function for arbitrary choice of signs, and ]C | /M | 2 cannot 
diverge (7, Chapter V, (8-14)). 
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COROLLARY 2.10. If2^q< » , then ( / (0) , / ( l ) , . . .) 6 {H\ I1) if, and only 
if, f 6 # 2 . Furthermore, (f(O)J(l), . . .) G (^+œ, Z1) #, and only if, f G H2. 

3. ( iP , Z1) as a dual space. In this section we shall use a construction 
technique introduced in (3) to build a Banach space which has the multiplier 
class (Hp, I1) as its normed conjugate. In the construction we are forced to 
consider expressions of the form (1.1), where/ Ç Hp and X 6 c0. We cannot in 
general claim tha t / * X belongs to a certain Hardy class, but its formal existence 
is all we require. 

DEFINITION 3.1. Let 1 g p ^ oo. Hp ® Co denotes the collection of all functions 
fy /0 s) = Jlf(n)zn (\z\ < 1), for which there exists a sequence (fc/1,/2, • . •) of 
Hp functions and a sequence (X0, Xi, X2, . • •) of c0 sequences such that 

00 

(3-D E ll/*ll„l|X*ll < -
k=0 

and 
00 

(3.2) f(n) = E fk{n)\k(n) (» = 0, 1, 2, . . .)• 

If (3.1) holds, then the series defining the coefficients in (3.2) are uniformly 
absolutely convergent, and the formal power series f(z) with coefficients/^) 
is necessarily convergent in \z\ < 1. 

THEOREM 3.2. Hp ® CQ is a linear space of functions, analytic in \z\ < 1, 
with the usual addition and scalar multiplication. A norm Nv may be defined for 
f e Hp ® c0 by 

oo 

(3.3) N,(f) = ini Z ||/t|U|X*||. 

The space Hp ® c0 equipped with the norm Nv is a Banach space. 

The infimum in (3.3) is, of course, to be taken over all sequences 
(/o,/i, . . .) C Hp and (X0, Xi, . . .) C c0 which satisfy (3.2). The proof that 
Hp (8) Co is a linear space and that Nv is a norm is elementary. A straightforward 
proof that the normed space is complete may be given by showing that 
absolutely summable series are summable. 

If a = (a(0), a(l), . . .) is any sequence in (Hp, I1), the closed graph theorem 
shows that the linear operation/ —» (f(0)a(Q),f(l)a(l), . . .) from HP into l1 is 
continuous. Thus, the multiplier class (Hp, I1) may be viewed as a Banach 
space of sequences equipped with the operator norm Mv defined by 

(3.4) (̂a) = supS^y, /6fl*. 

THEOREM 3.3. Let 1 ^ p ^ «5. Then (Hp, I1) with the operator norm (3.4) is 
isometrically isomorphic to the dual space of Hp ® cQ. If x is the identity function 
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x(z) = z (\z\ < 1), then an isometry is given by a <-» T, where T G (Hp ® c0)* 
and a G (£P, Z1) are related by T(xn) = a(ra), « = 0, 1, 2, . . . . 

Pros/. If a = (a(0), a ( l ) , . . .) G (iïp, I1), then, formally, we define 
oo 

(3.5) T(f) = 2 f(n)a(n) for / € fl" ® c0. 

The series in (3.5), which defines T(f), is absolutely convergent. Indeed, if 
(/o,/i,/2 , • • .) C Hp and (Xo, Xi, X2, . . .) C c0 satisfy (3.1) and (3.2), then 

oo 

in/)i ^ z i/(»)«(»)i 

^ £ Ë l«(»)A(»)l |X*(»)I 
oo 

^^,(«) £ ll/*IUNI. 
Thus, | T ( / ) | ^ Mp{a)N,(f ) and 

(3.6) | | r | | ^ M » f o r a Ç (iï», Z1). 

Let T e (fl» ® Co)*, x(s) = z, and put a{n) = T(x
n) for » = 0, 1, 2, 

L e t / be a fixed i P function, and define a linear functional T0 on c0 by putting 
r0(X) = T ( / * X) for X € Co. Then 

|r„(x)| ^||r||iUf*x)^||r||||/||,||\||; 
thus, T0 is continuous on c0 and ||Po|| ^ | |P | | 11/ \\p- To is given by an inner 
product with an I1 sequence /3 = (0(0), /3(1), . . . ) ; whence, T(f * X) = r0(X) = 
EX(»)/3(n) for all X G c0l and E |0 (» ) | = ||Po|| ^ | |P | | 11/IL, Let «*(») = 0 
for k j* n and ôk(k) = 1, and put ôk = (ô*(0), <5*(1), . . .) . Then f(k)a(k) = 
/(fe)r(x

fc) = P(/(*)x*) = T(f*ôk) = r 0 f e ) = 0(fe), and E | / ( * ) * ( * ) | ^ 
11 T\ | 11 / | \v. This shows that a G (# p , Z1) and 

(3.7) Mp(a) £\\T\\ for T G (IP 0 c0)*. 

The desired properties of the correspondence a <-» T are immediate conse
quences of (3.6) and (3.7). 

In Corollary 2.10 we showed that the multiplier class (Hq, I1) consists 
precisely of the square summable sequences when 2 ^ q < °°. Because of the 
relation between (HQ, I1) and the dual of Hq ® c0, and the fact that (iJ2)* = H2, 
one would expect that Hq ® c0 is just the class of H2 functions. Even more can 
be proved. In what follows, Hq * c0 denotes the collection of analytic functions 
of the form/ * X, where / G Hq and X G CQ. I t is known that L1 * Lq = Lq for 
1 ^ q < oo (see 2). Here, L1 * L5 is the class of functions which are convolu
tions of Lq functions with Ll functions. A simple corollary is the factorization 
theorem 

(3.8) V*H« = H" (1 ^ q < oo ). 

https://doi.org/10.4153/CJM-1969-018-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-018-9


CONVERGENCE FACTORS 193 

We shall use this result to obtain a factorization theorem for H2. 

THEOREM 3.4. Let 2 S q < œ. Thenf £ HQ * c0 if, and only if,f 6 H2. 

Proof. Hf = g*\ with g G Hq C H2 and X Ç c0 C ^°, then the sequence of 
Taylor coefficients of g is square summable and the same is true for the 
coefficients of/, and s o / G H2. 

If / G i72 and f(n) = an + ibn (n = 0, 1, 2, . . .), then both the sequences 
(a0, #i, a2, . . .) and (60, &i, 62, • • •) are square summable, and for almost all 
choices of signs, both the series 

00 00 

(3.9) ^3 =t= an cos nd and YL ±bn sin w0 

have sums in 7 / for every r > 0 (see 7, Chapter V, (8.16)). In particular, there 
exists a choice of signs such that the sum h of the series 

(3.10) A(0 )~ £ ±kn)etne 

is a complex-valued 7,ç function, and hence belongs to Hq. By (3.8), there is 
an Hq function g and an L1 function F such that h = g * F. The Riemann-
Lebesgue lemma guarantees that the sequence (7(0), 7(1), . . .) is in c0. 
Since h is an agitation of / , it follows that / = g * X with \\(n)\ = \F(n)\ 
(n = 0, 1, 2, . . .). However, X G CQ and the desired factorization for H2 

functions is established. 
Since (7P, I1) is a class of coefficient sequences for functions in Hq, it is 

natural to ask how the multiplier norm Mp and the Hq norm || • \\q are related. 
In describing the relation, it is convenient to consider the classes AL+Q 

(1 ^ q ^ œ ) whose definitions are obvious. The norm in L+
q is the quotient 

norm of Lq/H0
q, and will be denoted by |H|Ç+. Because of the M. Riesz 

theorem (4, p. 151), the classes AL+
q and AHq consist of the same analytic 

functions for 1 < q < 00. 

THEOREM 3.5. Let 1 ^ p ^ » . 7/ ( f (0) , / ( l ) , . . .) e (7P, Z1), then MP(f ) = 
sup| \h\ I c+ ( l /£ + 1/q = 1), w/zer£ ^e supremum is taken over all agitations h of f. 

Proof. Let g be any Hp function. Define h by putting 

Hz) = Y,f(n)exp(-i arg g(n))zn. 
Then 

OO -I /»27T 

H \Kn)gin)\ = ~ Heie)g{e-i6) dd S \\h\\Q+\\g\\v. 
w=0 ^7T «/0 

It follows that Mp(f) ^ sup||A||ff+. 
For any fixed agitation h of / and any e > 0 there is an Hv function g such 

that \\g\\v = 1 and 
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But then 

||*||,+ - « < £ * ( » ) ! ( » ) è Z\f(n)g(n)\ =g Mv{f), 

and 

||A||8+ £M,(f). 

THEOREM 3.6. Let 1 < q < oo and letf 6 ylff?. 77ze set A{f) of all possible 
agitations off is a norm bounded set in HQ. 

Proof. By M. Riesz's theorem there exists a constant Aq such that \\h\\q ^ 
Aq\\h\\q+. Thus, for any h G 4̂ ( / ) we have that \\h\\q ^ AQ\\h\\q+ ^ 4flM„(fc) = 

4 A ( / ) . 

4. Duality. In this section we state some results that are obtained by 
simple duality arguments. 

THEOREM 4.1. For 1 < p < oo and l/p + 1/q = 1, we have that (c0, i ^ ) = 

Proof. If X G (co, -fiP) and a is any c0 sequence, then a * X(z) = ]Ta(?z)X(w)2;w 

is the power series of an Hp function a * X. As usual, the closed graph theorem 
guarantees the existence of a constant M such that ||o: * X\\p ^ -&f||a||. If / is 
any member of Hg, t hen / * (a * X) is continuous on the closed disc |z| = 1, and 
we can define a continuous linear functional L on c0 by putting 

L(o0 = lim j:î(n)X(n)a(n)rn = lim ~ - f f{re'u)a*\{eu)dt 

and |£(a) | ^ (Af| | / | | ç) | |a | | . However, L is realized through an ll sequence, 
L(a) = 2>(w)/3(»), 0 = (0(0), j8(l), . . .) £ Z1. Appropriate choices of the 
sequences a show that/(w)X(w) = P(n) (n = 0, 1, 2, . . . ) ; thus, X Ç (Hq, ll). 
This shows that (co, -#*0 C (i^7, Z1), and a similar argument may be used to 
establish the containment (Hq,ll) C (c0,H

p). 
For the extreme cases we have the following result. 

THEOREM 4.2. (i) (c0, #
œ ) = (L+1,11) ; 

(ii) (c0,L+~) = ( tf1 , /1) ; 
(iii) (co,^1) = (C+.J1) = (L+00,/1). 

Proof. Cases (i) and (ii) may be established by means of an argument 
similar to the proof of Theorem 4.1 since Hœ and L+

œ can be associated, 
respectively, with the duals of L+1 and H1. In part (iii), C+ is the class of 
analytic projections of the continuous functions, and (c0, H

1) = (C+, Z1) 
follows since i?1 can be identified with the conjugate space of C/Â0. Moreover, 
a simple argument, similar to those given in § 2, shows that (C+, I1) consists of 
the sequences of Taylor coefficients of AH1 functions, i.e., the sequences in 
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5. Questions. We conclude with several questions which these investiga
tions have left unanswered. Theorem 3.4 guarantees that any H2 function can 
be factored into the Hadamard product of an HQ function and a c0 sequence, 
where q is any finite positive number. Is each H2 function factorable into the 
Hadamard product of an H00 function and a Co sequence? 

For each p there are two other classes which arise naturally from the problem 
(Hp, I1). S(HP) denotes the collection of all those power series f(z) such that 
some agitation oif(z) belongs to Hp. Xv is the maximal sequence space that is 
mapped to I1 under inner product with the members of the class (Hp, Z1). Thus, 
Xp = ((Hp, I1), I1). When 2 ^ p < oo it is easy to see that / .G S(HP) if, and 
only if, its coefficient sequence belongs to Xp — I2. For other values of p it is 
clear that if / G S(HP), then ( / ( 0 ) , / ( l ) , . . .) e Xp. Does Xp ever contain 
sequences which are not coefficient sequences of S(HP) functions? 

Added in proof. Professor J. Fournier has pointed out that Corollary 2.10 
actually holds for q = oo. For the stronger result, see (R. Paley, A note on 
power series, J. London Math. Soc. 7 (1932), 122-130). For a more recent 
paper, see (H. Helson, Conjugate series and a theorem of Paley, Pacific J. Math. 8 
(1958), 437-446). 
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