ABSOLUTE CONVERGENCE FACTORS FOR H^{*} SERIES

JAMES CAVENY

A famous theorem of Hardy asserts that if $f \in H^1$, then the sequence $(\hat{f}(0), \hat{f}(1), \ldots)$ of Fourier coefficients satisfies $\sum_{n=1}^{\infty} n^{-1}|\hat{f}(n)| < \infty$. For this reason we say that the sequence $(1, 1/2, 1/3, \ldots)$ belongs to the multiplier class (H^1, l^1) . In this paper, we investigate the multiplier classes (H^p, l^1) for $1 \leq p \leq \infty$. Our observations are based on the fact that a sequence $(\lambda(0), \lambda(1), \ldots)$ belongs to (H^p, l^1) independent of the arguments of its terms. We also show that (H^p, l^1) may be thought of as the conjugate space of a certain Banach space.

1. Preliminaries. L^p denotes the space of complex-valued Lebesgue measurable functions f defined on the circle |z| = 1 such that

$$||f||_{p} = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(e^{i\theta})|^{p} d\theta\right]^{1/p}$$

is finite. L^{∞} is the space of essentially bounded complex-valued functions f on |z| = 1 with norm $||f||_{\infty} = \text{ess sup } |f(z)|$. For $1 \leq p \leq \infty$, the Fourier coefficients of an $f \in L^p$ are given by

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta}) e^{-in\theta} d\theta \qquad (n = 0, \pm 1, \pm 2, \ldots).$$

The Hardy class H^p is the closed subspace of L^p consisting of those functions whose Fourier coefficients vanish for negative indices. H^p may also be described as the space of functions f which are analytic in the unit disc |z| < 1 and for which

$$||f||_{p} = \left[\sup_{0 \le r < 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^{p} d\theta\right]^{1/p}$$

is finite. For these and other basic properties, (4) is a convenient reference. c_0 denotes the space of complex null sequences $\lambda = (\lambda(0), \lambda(1), \ldots)$ with norm given by $||\lambda|| = \max_n |\lambda(n)|$, and l^1 is the space of absolutely summable complex number sequences with its usual norm. If f is an H^p function and $\lambda = (\lambda(0), \lambda(1), \ldots)$ is a c_0 sequence, we write $f * \lambda$ for the analytic function with power series

(1.1)
$$f * \lambda(z) = \sum_{n=0}^{\infty} \hat{f}(n)\lambda(n)z^{n},$$

Received August 4, 1967.

JAMES CAVENY

which obviously converges in |z| < 1. In general, if $f(z) = \sum \hat{f}(n)z^n$ and $g(z) = \sum \hat{g}(n)z^n$ are any two power series, then their Hadamard product f * g is the function with formal power series $f * g(z) = \sum \hat{f}(n)\hat{g}(n)z^n$. If both the power series f(z) and g(z) converge in |z| < 1, then so does f * g(z), and furthermore, we have the representation

$$f * g(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\rho e^{it}) f\left(\frac{r}{\rho} e^{i(\theta-t)}\right) dt \qquad (0 \le r < \rho < 1).$$

If $g \in H^p$, then we may put $\rho = 1$ in the above formula, and if $f \in H^q$, q = p/(p-1), it follows that f * g is continuous on the closed disc $|z| \leq 1$ (see 7, p. 38).

In addition to these standard classes, we adopt the notation L_{+}^{1} and L_{+}^{∞} , respectively, for the classes of functions which are analytic projections of the Fourier series of integrable functions or bounded functions. More precisely, $f \in L_{+}^{\infty}$ if, and only if, $f(z) = \sum \hat{f}(n)z^{n}$ and the coefficients $\hat{f}(n)$ are given by

(1.2)
$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{i\theta}) e^{-in\theta} d\theta \qquad (n = 0, 1, 2, \ldots)$$

for some $F \in L^{\infty}$. For $f \in L^{\infty}_+$ and $g \in H^1$, the representation

(1.3)
$$f * g(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(re^{i(\theta-t)}) F(e^{it}) dt$$

is valid for $0 \leq r \leq 1$, and, in particular, f * g is continuous on the closed disc $|z| \leq 1$. The class L_{+^1} is defined in a similar manner, and for $f \in L_{+^1}$ and $g \in H^{\infty}$, a representation analogous to (1.3) shows that f * g is continuous on $|z| \leq 1$.

2. Arguments of coefficients. A multiplier in the class (H^p, l^1) is generally the sequence of coefficients of an H^q function, q = p/(p-1), but much more can be said since a sequence belongs to (H^p, l^1) , independent of the arguments of its terms. We use this notion to obtain a simple but convenient characterization of (H^p, l^1) .

DEFINITION 2.1. (H^p, l^1) is the collection of all complex number sequences $\lambda = (\lambda(0), \lambda(1), \ldots)$ such that $(\hat{f}(0)\lambda(0), \hat{f}(1)\lambda(1), \ldots) \in l^1$ for each $f \in H^p$.

DEFINITION 2.2. Let f and h be analytic in |z| < 1. The function h is called an agitation of f if $|\hat{h}(n)| = |\hat{f}(n)|$ for $n = 0, 1, 2, \ldots$ For $1 \leq p \leq \infty$, the class AH^p is the subset of H^p consisting of those functions f such that every agitation of f belongs to H^p .

Thus, $f \in AH^p$ if, and only if, altering the arguments of the coefficients $\hat{f}(n)$ at random always results in another sequence of coefficients of an H^p function.

THEOREM 2.3. Let 1 and <math>q = p/(p-1). Then $f \in AH^q$ if, and only if, $(\hat{f}(0), \hat{f}(1), ...) \in (H^p, l^1)$.

Proof. If $(\hat{f}(0), \hat{f}(1), \ldots) \in (H^p, l^1)$, then certainly each agitation h of f satisfies $(\hat{h}(0), \hat{h}(1), \ldots) \in (H^p, l^1)$. If $g \in H^p$, then h * g is a bounded analytic function in |z| < 1. By (1, Theorem 1), it must be that $h \in H^q$ and $f \in AH^q$.

If $f \in AH^q$ and g is any H^p function, then define

$$\hat{h}(n) = |\hat{f}(n)| \exp(-i \arg \hat{g}(n)).$$

If $h(z) = \sum \hat{h}(n)z^n$, then $h \in H^q$, and h * g is continuous on $|z| \leq 1$. But then the limit

$$\lim_{r\to 1} h * g(r) = \lim_{r\to 1} \sum_{n=0}^{\infty} |\hat{f}(n)\hat{g}(n)| r^n$$

is finite; therefore the series $\sum |\hat{f}(n)\hat{g}(n)|$ converges and $(\hat{f}(0), \hat{f}(1), \ldots) \in (H^p, l^1)$.

We can extend the above theorem to the cases p = 1 and $p = \infty$ by considering the classes L_{+}^{∞} and L_{+}^{1} .

DEFINITION 2.4. If p = 1 or $p = \infty$, then AL_{+}^{p} is the collection of those analytic functions f such that every agitation of f belongs to L_{+}^{p} .

THEOREM 2.5. Let p = 1 or ∞ and $q = \infty$ or 1, respectively. Then $f \in AL_{+}^{q}$ if, and only if, $(\hat{f}(0), \hat{f}(1), \ldots) \in (H^{p}, l^{1})$.

Proof. If $(\hat{f}(0), \hat{f}(1), \ldots) \in (H^{\infty}, l^1)$, h is any agitation of f, and g is any H^{∞} function, then the coefficients of h * g are in l^1 and

$$\lim_{r\to 1} \sum_{n=0}^{\infty} \hat{h}(n)\hat{g}(n)r^n$$

exists. By the main theorem in (5), it follows that $h \in L_{+}^{1}$. If p and q are interchanged, a similar argument can be based on (1, Theorem 2) to show that $h \in L_{+}^{\infty}$. The other parts are straightforward.

The roles of L_{+}^{q} and H^{p} may be interchanged in Theorem 2.5. To see this we need to observe that any sequence in the multiplier class $(L_{+}^{\infty}, H^{\infty})$ is the sequence of Taylor coefficients of an H^{1} function, and any sequence in the multiplier class (L_{+}^{1}, H^{∞}) is the sequence of Taylor coefficients of an H^{∞} function. To verify the statement about $(L_{+}^{\infty}, H^{\infty})$, recall that H^{1} is isometrically isomorphic to the conjugate space of the quotient space C/\bar{A}_{0} (see 4, p. 137). Here, C denotes the continuous functions on the circle |z| = 1, A_{0} the continuous analytic functions that vanish at the origin, and \bar{A}_{0} the complex conjugates of the functions in A_{0} . Suppose that $\sum_{n=0}^{\infty} \hat{f}(n)\hat{G}(n)z^{n}$ is in H^{∞} for each G in L^{∞} ; then for each fixed $G \in C$, the expression

(2.1)
$$\left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(re^{-i\theta}) G(e^{i\theta}) \, d\theta \right|$$

is bounded for r in the range $0 \leq r < 1$. The integral in (2.1) is independent of the representative of G in C/\bar{A}_0 . Thus, if $f_r(\theta) = f(re^{i\theta})$, then the principle

JAMES CAVENY

of uniform boundedness implies that the norms of the f_r , as linear functionals on C/\bar{A}_0 , are uniformly bounded, i.e., $||f_r||_1 \leq M$ and $f \in H^1$. The analogous relation between (L_+^1, H^{∞}) and H^{∞} may be established in a similar manner by treating H^{∞} as the conjugate space of L^1/\bar{H}_0^1 . The technique of Theorems 2.3 and 2.5 may now be used to prove the following result.

THEOREM 2.6. Let p = 1 or ∞ and $q = \infty$ or 1, respectively. Then $f \in AH^q$ if, and only if, $(\hat{f}(0), \hat{f}(1), \ldots) \in (L_+^p, l^1)$.

Now we return to the case $q = \infty$ of Theorem 2.5 and show that the condition that all agitations of f belong to L_+^{∞} can be significantly weakened. In fact, this condition will be satisfied if merely the agitation with positive coefficients belongs to L_+^{∞} .

THEOREM 2.7. The function f belongs to AL_{+}^{∞} if, and only if, the function with coefficients $|\hat{f}(n)|$ belongs to L_{+}^{∞} .

Proof. It is trivially true that the agitation h given by $h(z) = \sum |\hat{f}(n)| z^n$ is in L_+^{∞} whenever $f \in AL_+^{\infty}$. Assuming that $h \in L_+^{\infty}$, one can modify the proof of Hardy's theorem (4, p. 70) to show that $(|\hat{f}(0)|, |\hat{f}(1)|, \ldots)$ belongs to (H^1, l^1) , but this implies that $f \in AL_+^{\infty}$. Indeed, if g is in H^1 with positive coefficients, then

$$\sum_{n=0}^{\infty} \hat{g}(n) |\hat{f}(n)| = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(e^{i\theta}) H(e^{-i\theta}) d\theta \leq ||g||_{1} ||H||_{\infty}$$

where H is any L^{∞} function whose analytic projection is h. For an arbitrary $g \in H^1$, the fact that g can be factored into the product of H^2 functions shows that there is a G in H^1 with positive coefficients which dominate the coefficients of g, $|\hat{g}(n)| \leq \hat{G}(n)$ (n = 0, 1, 2, ...). Then

$$\sum_{n=0}^{\infty} |\hat{g}(n)| |\hat{f}(n)| \leq \sum_{n=0}^{\infty} \hat{G}(n) |\hat{f}(n)| < \infty.$$

THEOREM 2.8. The function f belongs to AH^{∞} if, and only if, the sequence $(\hat{f}(0), \hat{f}(1), \ldots)$ is in l^1 .

We omit the simple proof, and proceed to investigate the analogous statements for the other values of p. When $1 \leq p \leq 2$ the situation is particularly simple.

THEOREM 2.9. If
$$1 \leq p \leq 2$$
, then $f \in AH^p$ if, and only if, $(\hat{f}(0), \hat{f}(1), \ldots) \in l^2$.

Proof. Because of Parseval's formula, if $(\hat{f}(0), \hat{f}(1), \ldots) \in l^2$ and h is any agitation of f, then $h \in H^2 \subset H^p$ since $1 \leq p \leq 2$. On the other hand, if $f \in AH^p$, then, for every choice of signs, the series $\sum \pm |\hat{f}(n)|e^{in\theta}$ is the formal boundary series of an H^p function. But then $\sum \pm |\hat{f}(n)| \cos n\theta$ is the Fourier series of an L^p function for arbitrary choice of signs, and $\sum |\hat{f}(n)|^2$ cannot diverge (7, Chapter V, (8.14)).

COROLLARY 2.10. If $2 \leq q < \infty$, then $(\hat{f}(0), \hat{f}(1), \ldots) \in (H^q, l^1)$ if, and only if, $f \in H^2$. Furthermore, $(\hat{f}(0), \hat{f}(1), \ldots) \in (L_+^{\infty}, l^1)$ if, and only if, $f \in H^2$.

3. (H^p, l^1) as a dual space. In this section we shall use a construction technique introduced in (3) to build a Banach space which has the multiplier class (H^p, l^1) as its normed conjugate. In the construction we are forced to consider expressions of the form (1.1), where $f \in H^p$ and $\lambda \in c_0$. We cannot in general claim that $f * \lambda$ belongs to a certain Hardy class, but its formal existence is all we require.

DEFINITION 3.1. Let $1 \leq p \leq \infty$. $H^p \otimes c_0$ denotes the collection of all functions $f, f(z) = \sum \hat{f}(n) z^n$ (|z| < 1), for which there exists a sequence (f_0, f_1, f_2, \ldots) of H^p functions and a sequence ($\lambda_0, \lambda_1, \lambda_2, \ldots$) of c_0 sequences such that

(3.1)
$$\sum_{k=0}^{\infty} ||f_k||_p ||\lambda_k|| < \infty$$

(3.2)
$$\hat{f}(n) = \sum_{k=0}^{\infty} \hat{f}_k(n) \lambda_k(n) \qquad (n = 0, 1, 2, \ldots).$$

If (3.1) holds, then the series defining the coefficients in (3.2) are uniformly absolutely convergent, and the formal power series f(z) with coefficients $\hat{f}(n)$ is necessarily convergent in |z| < 1.

THEOREM 3.2. $H^p \otimes c_0$ is a linear space of functions, analytic in |z| < 1, with the usual addition and scalar multiplication. A norm N_p may be defined for $f \in H^p \otimes c_0$ by

(3.3)
$$N_p(f) = \inf \sum_{k=0}^{\infty} ||f_k||_p ||\lambda_k||.$$

The space $H^p \otimes c_0$ equipped with the norm N_p is a Banach space.

The infimum in (3.3) is, of course, to be taken over all sequences $(f_0, f_1, \ldots) \subset H^p$ and $(\lambda_0, \lambda_1, \ldots) \subset c_0$ which satisfy (3.2). The proof that $H^p \otimes c_0$ is a linear space and that N_p is a norm is elementary. A straightforward proof that the normed space is complete may be given by showing that absolutely summable series are summable.

If $\alpha = (\alpha(0), \alpha(1), \ldots)$ is any sequence in (H^p, l^1) , the closed graph theorem shows that the linear operation $f \to (\hat{f}(0)\alpha(0), \hat{f}(1)\alpha(1), \ldots)$ from H^p into l^1 is continuous. Thus, the multiplier class (H^p, l^1) may be viewed as a Banach space of sequences equipped with the operator norm M_p defined by

(3.4)
$$M_p(\alpha) = \sup \frac{\sum |\hat{f}(n)\alpha(n)|}{||f||_p}, \quad f \in H^p.$$

THEOREM 3.3. Let $1 \leq p \leq \infty$. Then (H^p, l^1) with the operator norm (3.4) is isometrically isomorphic to the dual space of $H^p \otimes c_0$. If χ is the identity function $\chi(z) = z$ (|z| < 1), then an isometry is given by $\alpha \leftrightarrow T$, where $T \in (H^p \otimes c_0)^*$ and $\alpha \in (H^p, l^1)$ are related by $T(\chi^n) = \alpha(n), n = 0, 1, 2, \ldots$

Proof. If $\alpha = (\alpha(0), \alpha(1), \ldots) \in (H^p, l^1)$, then, formally, we define

(3.5)
$$T(f) = \sum_{n=0}^{\infty} \hat{f}(n)\alpha(n) \quad \text{for } f \in H^p \otimes c_0$$

The series in (3.5), which defines T(f), is absolutely convergent. Indeed, if $(f_0, f_1, f_2, \ldots) \subset H^p$ and $(\lambda_0, \lambda_1, \lambda_2, \ldots) \subset c_0$ satisfy (3.1) and (3.2), then

$$\begin{aligned} |T(f)| &\leq \sum_{n=0}^{\infty} |\hat{f}(n)\alpha(n)| \\ &\leq \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} |\alpha(n)\hat{f}_{k}(n)| |\lambda_{k}(n)| \\ &\leq M_{p}(\alpha) \sum_{k=0}^{\infty} ||f_{k}||_{p} ||\lambda_{k}||. \end{aligned}$$
nus, $|T(f)| \leq M_{p}(\alpha) N_{p}(f)$ and

Th

$$(3.6) ||T|| \leq M_p(\alpha) for \alpha \in (H^p, l^1).$$

Let $T \in (H^p \otimes c_0)^*$, $\chi(z) = z$, and put $\alpha(n) = T(\chi^n)$ for $n = 0, 1, 2, \ldots$. Let f be a fixed H^p function, and define a linear functional T_0 on c_0 by putting $T_0(\lambda) = T(f * \lambda)$ for $\lambda \in c_0$. Then

$$|T_0(\lambda)| \leq ||T|| N_p(f * \lambda) \leq ||T|| ||f||_p ||\lambda||;$$

thus, T_0 is continuous on c_0 and $||T_0|| \leq ||T|| ||f||_p$. T_0 is given by an inner product with an l^1 sequence $\beta = (\beta(0), \beta(1), \ldots)$; whence, $T(f * \lambda) = T_0(\lambda) =$ $\sum \lambda(n)\beta(n)$ for all $\lambda \in c_0$, and $\sum |\beta(n)| = ||T_0|| \leq ||T|| ||f||_p$. Let $\delta_k(n) = 0$ for $k \neq n$ and $\delta_k(k) = 1$, and put $\delta_k = (\delta_k(0), \delta_k(1), \ldots)$. Then $\hat{f}(k)\alpha(k) = \hat{f}(k)\alpha(k)$ $\hat{f}(k)T(\chi^k) = T(\hat{f}(k)\chi^k) = T(f * \delta_k) = T_0(\delta_k) = \beta(k), \text{ and } \sum |\hat{f}(n)\alpha(n)| \leq 1$ $||T|| ||f||_{n}$. This shows that $\alpha \in (H^{p}, l^{1})$ and

(3.7)
$$M_p(\alpha) \leq ||T|| \quad \text{for } T \in (H^p \otimes c_0)^*.$$

The desired properties of the correspondence $\alpha \leftrightarrow T$ are immediate consequences of (3.6) and (3.7).

In Corollary 2.10 we showed that the multiplier class (H^q, l^1) consists precisely of the square summable sequences when $2 \leq q < \infty$. Because of the relation between (H^q, l^1) and the dual of $H^q \otimes c_0$, and the fact that $(H^2)^* = H^2$, one would expect that $H^q \otimes c_0$ is just the class of H^2 functions. Even more can be proved. In what follows, $H^q * c_0$ denotes the collection of analytic functions of the form $f * \lambda$, where $f \in H^q$ and $\lambda \in c_0$. It is known that $L^1 * L^q = L^q$ for $1 \leq q < \infty$ (see 2). Here, $L^1 * L^q$ is the class of functions which are convolutions of L^q functions with L^1 functions. A simple corollary is the factorization theorem

$$(3.8) L^1 * H^q = H^q (1 \leq q < \infty).$$

CONVERGENCE FACTORS

We shall use this result to obtain a factorization theorem for H^2 .

THEOREM 3.4. Let $2 \leq q < \infty$. Then $f \in H^q * c_0$ if, and only if, $f \in H^2$.

Proof. If $f = g * \lambda$ with $g \in H^q \subset H^2$ and $\lambda \in c_0 \subset l^\infty$, then the sequence of Taylor coefficients of g is square summable and the same is true for the coefficients of f, and so $f \in H^2$.

If $f \in H^2$ and $\hat{f}(n) = a_n + ib_n$ (n = 0, 1, 2, ...), then both the sequences $(a_0, a_1, a_2, ...)$ and $(b_0, b_1, b_2, ...)$ are square summable, and for almost all choices of signs, both the series

(3.9)
$$\sum_{n=0}^{\infty} \pm a_n \cos n\theta \quad \text{and} \quad \sum_{n=0}^{\infty} \pm b_n \sin n\theta$$

have sums in L^r for every r > 0 (see 7, Chapter V, (8.16)). In particular, there exists a choice of signs such that the sum *h* of the series

(3.10)
$$h(\theta) \sim \sum_{n=0}^{\infty} \pm \hat{f}(n) e^{in\theta}$$

is a complex-valued L^q function, and hence belongs to H^q . By (3.8), there is an H^q function g and an L^1 function F such that h = g * F. The Riemann-Lebesgue lemma guarantees that the sequence $(\hat{F}(0), \hat{F}(1), \ldots)$ is in c_0 . Since h is an agitation of f, it follows that $f = g * \lambda$ with $|\lambda(n)| = |\hat{F}(n)|$ $(n = 0, 1, 2, \ldots)$. However, $\lambda \in c_0$ and the desired factorization for H^2 functions is established.

Since (H^p, l^1) is a class of coefficient sequences for functions in H^q , it is natural to ask how the multiplier norm M_p and the H^q norm $||\cdot||_q$ are related. In describing the relation, it is convenient to consider the classes AL_+^q $(1 \leq q \leq \infty)$ whose definitions are obvious. The norm in L_+^q is the quotient norm of L^q/H_0^q , and will be denoted by $||\cdot||_{q^+}$. Because of the M. Riesz theorem (4, p. 151), the classes AL_+^q and AH^q consist of the same analytic functions for $1 < q < \infty$.

THEOREM 3.5. Let $1 \leq p \leq \infty$. If $(\hat{f}(0), \hat{f}(1), \ldots) \in (H^p, l^1)$, then $M_p(f) = \sup ||h||_{q^+} (1/p + 1/q = 1)$, where the supremum is taken over all agitations h of f.

Proof. Let g be any H^p function. Define h by putting

$$h(z) = \sum \hat{f}(n) \exp(-i \arg \hat{g}(n)) z^n$$

Then

$$\sum_{n=0}^{\infty} |\hat{f}(n)\hat{g}(n)| = \frac{1}{2\pi} \int_{0}^{2\pi} h(e^{i\theta})g(e^{-i\theta}) d\theta \leq ||h||_{q^{+}} ||g||_{p}.$$

It follows that $M_p(f) \leq \sup ||h||_{q^+}$.

For any fixed agitation h of f and any $\epsilon > 0$ there is an H^p function g such that $||g||_p = 1$ and

$$||h||_{q^+} - \epsilon < \frac{1}{2\pi} \int_{-\pi}^{\pi} h(e^{i\theta})g(e^{-i\theta}) d\theta.$$

JAMES CAVENY

But then

$$|h||_{q^+} - \epsilon < \sum \hat{h}(n)\hat{g}(n) \leq \sum |\hat{f}(n)\hat{g}(n)| \leq M_p(f),$$

and

$$||h||_{q^+} \leq M_p(f).$$

THEOREM 3.6. Let $1 < q < \infty$ and let $f \in AH^q$. The set A(f) of all possible agitations of f is a norm bounded set in H^q .

Proof. By M. Riesz's theorem there exists a constant A_q such that $||h||_q \leq A_q ||h||_{q^+}$. Thus, for any $h \in A(f)$ we have that $||h||_q \leq A_q ||h||_{q^+} \leq A_q M_p(h) = A_q M_p(f)$.

4. Duality. In this section we state some results that are obtained by simple duality arguments.

THEOREM 4.1. For 1 and <math>1/p + 1/q = 1, we have that $(c_0, H^p) = (H^q, l^1)$.

Proof. If $\lambda \in (c_0, H^p)$ and α is any c_0 sequence, then $\alpha * \lambda(z) = \sum \alpha(n)\lambda(n)z^n$ is the power series of an H^p function $\alpha * \lambda$. As usual, the closed graph theorem guarantees the existence of a constant M such that $||\alpha * \lambda||_p \leq M||\alpha||$. If f is any member of H^q , then $f * (\alpha * \lambda)$ is continuous on the closed disc $|z| \leq 1$, and we can define a continuous linear functional L on c_0 by putting

$$L(\alpha) = \lim_{r \to 1} \sum \hat{f}(n)\lambda(n)\alpha(n)r^n = \lim_{r \to 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(re^{-it})\alpha * \lambda(e^{it}) dt$$

and $|L(\alpha)| \leq (M||f||_q)||\alpha||$. However, L is realized through an l^1 sequence, $L(\alpha) = \sum \alpha(n)\beta(n), \ \beta = (\beta(0), \ \beta(1), \ldots) \in l^1$. Appropriate choices of the sequences α show that $\hat{f}(n)\lambda(n) = \beta(n)$ $(n = 0, 1, 2, \ldots)$; thus, $\lambda \in (H^q, l^1)$. This shows that $(c_0, H^p) \subset (H^q, l^1)$, and a similar argument may be used to establish the containment $(H^q, l^1) \subset (c_0, H^p)$.

For the extreme cases we have the following result.

THEOREM 4.2. (i) $(c_0, H^{\infty}) = (L_+^1, l^1);$ (ii) $(c_0, L_+^{\infty}) = (H^1, l^1);$ (iii) $(c_0, H^1) = (C_+, l^1) = (L_+^{\infty}, l^1).$

Proof. Cases (i) and (ii) may be established by means of an argument similar to the proof of Theorem 4.1 since H^{∞} and L_{+}^{∞} can be associated, respectively, with the duals of L_{+}^{1} and H^{1} . In part (iii), C_{+} is the class of analytic projections of the continuous functions, and $(c_{0}, H^{1}) = (C_{+}, l^{1})$ follows since H^{1} can be identified with the conjugate space of C/\bar{A}_{0} . Moreover, a simple argument, similar to those given in § 2, shows that (C_{+}, l^{1}) consists of the sequences of Taylor coefficients of AH^{1} functions, i.e., the sequences in (L_{+}^{∞}, l^{1}) .

194

5. Questions. We conclude with several questions which these investigations have left unanswered. Theorem 3.4 guarantees that any H^2 function can be factored into the Hadamard product of an H^q function and a c_0 sequence, where q is any finite positive number. Is each H^2 function factorable into the Hadamard product of an H^{∞} function and a c_0 sequence?

For each p there are two other classes which arise naturally from the problem (H^p, l^1) . $S(H^p)$ denotes the collection of all those power series f(z) such that some agitation of f(z) belongs to H^p . X^p is the maximal sequence space that is mapped to l^1 under inner product with the members of the class (H^p, l^1) . Thus, $X^p = ((H^p, l^1), l^1)$. When $2 \leq p < \infty$ it is easy to see that $f \in S(H^p)$ if, and only if, its coefficient sequence belongs to $X^p = l^2$. For other values of p it is clear that if $f \in S(H^p)$, then $(\hat{f}(0), \hat{f}(1), \ldots) \in X^p$. Does X^p ever contain sequences which are not coefficient sequences of $S(H^p)$ functions?

Added in proof. Professor J. Fournier has pointed out that Corollary 2.10 actually holds for $q = \infty$. For the stronger result, see (R. Paley, A note on power series, J. London Math. Soc. 7 (1932), 122–130). For a more recent paper, see (H. Helson, Conjugate series and a theorem of Paley, Pacific J. Math. 8 (1958), 437–446).

References

- 1. D. J. Caveny, Bounded Hadamard products of H^p functions, Duke Math. J. 33 (1966), 389-394.
- P. C. Curtis, Jr. and A. Figà-Talamanca, Factorization theorems in Banach algebras; Function algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), pp. 169– 185 (Scott Foresman, Chicago, Ill., 1966).
- 3. A. Figà-Talamanca, Translation invariant operators in L^p, Duke Math. J. 32 (1965), 495-501.
- 4. K. Hoffman, Banach spaces of analytic functions (Prentice-Hall, Englewood Cliffs, N.J., 1962).
- 5. G. Piranian, A. L. Shields, and J. H. Wells, Bounded analytic functions and absolutely continuous measures, Proc. Amer. Math. Soc. 18 (1967), 818-826.
- 6. J. H. Wells, Some results concerning multipliers of H^p (to appear).
- 7. A. Zygmund, Trigonometric Series, Vol. I, 2nd ed. (Cambridge Univ. Press, New York, 1959).

Florida State University, Tallahassee, Florida