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Abstract We prove that the Kodaira dimension of the n-fold universal family of lattice-polarised
holomorphic symplectic varieties with dominant and generically finite period map stabilises to the moduli
number when n is sufficiently large. Then we study the transition of Kodaira dimension explicitly,
from negative to nonnegative, for known explicit families of polarised symplectic varieties. In particular,
we determine the exact transition point in the Beauville–Donagi and Debarre–Voisin cases, where the
Borcherds �12 form plays a crucial role.
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1. Introduction

The discovery of Beauville and Donagi [3] that the Fano variety of lines on a smooth cubic

fourfold is a holomorphic symplectic variety deformation equivalent to the Hilbert squares
of K3 surfaces of genus 8 was the first example of explicit geometric construction of

polarised holomorphic symplectic varieties. Gradually, further examples – all deformation

equivalent to Hilbert schemes of K3 surfaces – have been found:

• Iliev and Ranestad [14], with varieties of sums of powers of cubic fourfolds;
• O’Grady [26], with double EPW sextics;
• Debarre and Voisin [8], with the zero loci of sections of a vector bundle on the

Grassmannian G(6,10);
• Lehn, Lehn, Sorger and van Straten [18], using the spaces of twisted cubics on

cubic fourfolds; and
• Iliev, Kapustka, Kapustka and Ranestad [13], with double EPW cubes.

The moduli spaces M of these polarised symplectic varieties are unirational by

construction. However, if we consider the n-fold fibre product Fn → M of the universal
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family F →M (more or less the moduli space of the varieties with n marked points or its

double cover), its Kodaira dimension κ(Fn) is nondecreasing with respect to n [16] and

bounded by dimM = 20 [12]. The main purpose of this paper is to study the transition
of κ(Fn) as n grows, especially from κ = −∞ to κ ≥ 0, by using modular forms on the

period domain. Moreover, we prove that κ(Fn) stabilises to dimM at large n for more

general families of lattice-polarised holomorphic symplectic varieties.
Our main result is summarised as follows:

Theorem 1.1. Let Fn be the n-fold universal family of polarised holomorphic

symplectic varieties of Beauville–Donagi (BD), Debarre–Voisin (DV), Lehn–Lehn–

Sorger–van Straten (LLSS), Iliev–Ranestad (IR), O’Grady (OG) or Iliev–Kapustka–
Kapustka–Ranestad (IKKR) type. Then Fn is unirational, κ(Fn) ≥ 0 and κ(Fn) > 0 for

the bounds of n given in the table.

BD DV LLSS IR OG IKKR

unirational 13 5 5 1 0 0

κ ≥ 0 14 6 7 6 11 16

κ > 0 23 13 12 12 19 20

In all cases, κ(Fn) = 20 when n is sufficiently large. The stabilisation κ(Fn) = dimM
at large n holds more generally for families F → M of lattice-polarised holomorphic

symplectic varieties whose period map is dominant and generically finite.

This table means that, in the Beauville–Donagi case, for example, Fn – the moduli

space of Fano varieties of cubic fourfolds with n marked points (or equivalently, cubic

fourfolds with n marked lines) – is unirational when n ≤ 13, has κ(Fn) ≥ 0 when n ≥ 14
and has κ(Fn) > 0 when n ≥ 23. In particular, we find the exact transition point from
κ = −∞ to κ ≥ 0 in the BD and DV cases, and a nearly exact one in the LLSS case. On

the other hand, it would not be easy to explicitly calculate a bound for κ = 20; in fact, we

expect that the transition of Kodaira dimension would be sudden, so the actual bound
for κ = 20 would be quite near to the (actual) bound for κ ≥ 0. (In this sense, the bound

for κ > 0 should be temporary.)

Markman [23] gave an analytic construction of general marked universal families over
(non-Haussdorff, unpolarised) period domains. Here we take a more ad hoc construction.

The space Fn (birationally) parametrises the isomorphism classes of the n-pointed
polarised symplectic varieties except for the two double-EPW cases, where it is a double

cover of the moduli space.
Theorem 1.1 in the direction of κ ≥ 0 is proved by using modular forms on the period

domain. For a family F → M of lattice-polarised holomorphic symplectic varieties of

dimension 2d whose period map is dominant and generically finite, we construct an
injective map (Theorem 3.1)

Sb+dn(�, det) ↪→ H 0(KF̄n ), (1.1)

where F̄n is a smooth projective model of Fn , � is an arithmetic group containing the

monodromy group, Sk (�, det) is the space of �-cusp forms of weight k and character det
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and b = dimM. For the six cases in Theorem 1.1, we construct cusp forms explicitly by
using the quasi-pullback of the Borcherds �12 form [4, 5] and its product with modular

forms obtained by the Gritsenko lifting [9]. The same technique of construction should

also be applicable to lattice-polarised families, of which more examples would be available.
The proof of unirationality is done by geometric argument, but in the BD and DV

cases, we also make use of the “transcendental” results κ(FBD
14 ) ≥ 0 and κ(FDV

6 ) ≥ 0
when checking the nondegeneracy of certain maps in the argument (Claim 4.3).

A similar result has been obtained for K3 surfaces of low genus g [21], where the
quasi-pullback �K3,g of �12 was crucial too. Moreover, when 3 ≤ g ≤ 10, the weight of

�K3,g minus 19 coincided with the dimension of a representation space appearing in the

projective model of the K3 surfaces. In the present paper we see no such a direct identity,
but we observe a “switched” identity between K3 surfaces of genus 2 and cubic fourfolds

(Remark 4.4).

This paper is organised as follows. Section 2 is a recollection of holomorphic symplectic
manifolds and modular forms. In Section 3 we construct map (1.1) (Theorem 3.1) and

prove the latter half of Theorem 1.1 (Corollary 3.3). The first half of Theorem 1.1 is

proved in Sections 4–8.

Throughout this paper, a lattice means a free abelian group of finite rank endowed with
a nondegenerate integral symmetric bilinear form. Ak , Dl and Em stand for the negative-

definite root lattices of respective types. The even unimodular lattice of signature (1,1)

is denoted by U . No confusion is likely to occur when U is also used for an open set
of a variety. The Grassmannian parametrising r -dimensional linear subspaces of CN are

denoted by G(r,N ) = G(r −1,N −1). We freely use the fact [24] that if G = PGLN acts

on a projective variety X and U is a G-invariant Zariski open set of X contained in
the stable locus, then a geometric quotient U /G exists. If no point of U has nontrivial

stabiliser, then U → U /G is a principal G-bundle in the étale topology. In that case,

every G-linearised vector bundle on U descends to a vector bundle on U /G . Similarly,

if V is a representation of SLN , a geometric quotient (PV ×U )/G exists as a Brauer–
Severi variety over U /G . If Y is a normal G-invariant subvariety of PV ×U , its geometric

quotient Y /G exists as the image of Y in (PV ×U )/G .

2. Preliminaries

In this section we recall basic facts about holomorphic symplectic manifolds (§2.1) and

orthogonal modular forms (§2.2).

2.1. Holomorphic symplectic manifolds

A compact Kähler manifold X of dimension 2d is called a holomorphic symplectic manifold

if it is simply connected and H 0(�2
X ) = Cω for a nowhere degenerate 2-form ω. There

exists a nondivisible integral symmetric bilinear form qX of signature (3,b2(X )− 3) on

H 2(X ,Z), called the Beauville form [2], and a constant cX called the Fujiki constant,

such that
∫
X v2d = cX · qX (v,v)d for every v ∈ H 2(X ,Z). In particular, for ω ∈ H 0(�2

X ),
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we have qX (ω,ω) = 0 and

qX (ω,ω̄)d = C
∫
X

(ω∧ ω̄)d (2.1)

for a suitable constant C .

A holomorphic symplectic manifold X is said to be of K3[m] type if it is deformation-
equivalent to the Hilbert scheme of m points on a K3 surface. The Beauville lattice of

such X is isometric to L2t = 3U ⊕ 2E8 ⊕ 〈−2t〉, where t = m − 1 [2]. Let h ∈ L2t be a

primitive vector of norm 2D > 0. The orthogonal complement h⊥ ∩L2t is described as
follows [10, §3]. For simplicity we assume (t,D) = 1, which holds in later sections except

§8.2. We have either (h,L2t ) = Z or 2Z. In the former case, h is of split type, and h⊥ ∩L2t
is isometric to 2U ⊕2E8 ⊕〈−2t〉⊕〈−2D〉. In the latter case, h is of nonsplit type, and

h⊥ ∩L2t  2U ⊕2E8 ⊕
(−2t t

t −(D + t)/2

)
, (2.2)

which has determinant tD . In Sections 4–7, h will be of nonsplit type and the determinant

tD will be a prime number of class number 1.

2.2. Modular forms

Let L be a lattice of signature (2,b) with b ≥ 3. The dual lattice of L is denoted by L∨.
We write AL = L∨/L for the discriminant group of L. AL is equipped with a natural

Q/Z-valued bilinear form, which when L is even is induced from a natural Q/2Z-valued
quadratic form. The Hermitian symmetric domain D = DL attached to L is defined as

either of the two connected components of the space

{Cω ∈ PLC | (ω,ω) = 0,(ω,ω̄) > 0 }.
Let O+(L) be the subgroup of the orthogonal group O(L) preserving the component D.

We write Õ+(L) for the kernel of O+(L) → O(AL). When AL  Z/p for a prime p, which
holds in Sections 4–7, we have O(AL) = {±id} and so O+(L) = 〈Õ+(L), − id〉.
Let L be the restriction of the tautological line bundle OPLC

(−1) over D. L is naturally

O+(LR)-linearised. Let � be a finite-index subgroup of O+(L) and χ be a unitary character

of �. A �-invariant holomorphic section of L⊗k ⊗χ over D is called a modular form of
weight k and character χ with respect to �. When it vanishes at the cusps, it is called a

cusp form (for the precise definition, see, e.g., [11, 21]). We write Mk (�,χ) for the space

of �-modular forms of weight k and character χ , and Sk (�,χ) for the subspace of cusp
forms. We denote Mk (�) = Mk (�,1). If �′ �� is a normal subgroup of finite index, the

quotient group �/�′ acts on Mk (�′,χ) by translating �′-invariant sections by elements

of �. We also remark that when χ = det and k ≡ b mod 2, −id acts trivially on L⊗k ⊗det,
so that

Mk (〈�, − id〉, det) = Mk (�, det). (2.3)

When k �≡ b mod 2, Mk (〈�, − id〉, det) is zero.
The Hermitian form (·, ·̄) on LC defines an O+(LR)-invariant Hermitian metric on the

line bundle L. This defines a �-invariant Hermitian metric on L⊗k ⊗χ which we denote
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by (, )k,χ . For brevity, we write (, )k instead of (, )k,1. Let vol be the O+(LR)-invariant
volume form on D, which exists and is unique up to constant.

Lemma 2.1. Let M′ be a Zariski open set of �\D and D′ ⊂ D be its inverse image.

Let � be a �-invariant holomorphic section of L⊗k ⊗χ defined over D′ with k ≥ b. Then
� ∈ Sk (�,χ) if and only if

∫
M′(�,�)k,χvol < ∞.

Proof. In [21, Proposition 3.5], this is proved when D′ = D, – that is, � ∈ Mk (�,χ).
Hence it suffices here to show that

∫
M′(�,�)k,χvol < ∞ implies holomorphicity of �

over D. Let H be an irreducible component of D−D′. We may assume that H is of

codimension 1. If � has a pole along H , say of order a > 0, a local calculation shows that
in a neighbourhood of a general point of H , with H locally defined by z = 0, the integral

∫
ε≤|z |≤1

(�,�)k,χvol ≥ C
∫

ε≤|z |≤1
|z |−2adz ∧dz̄

= C
∫ 2π

0
dθ

∫ 1

ε

r−2a+1dr (z = reiθ )

must diverge as ε → 0.

Let II2,26 = 2U ⊕3E8 be the even unimodular lattice of signature (2,26). Borcherds [4]

discovered a modular form �12 of weight 12 and character det for O+(II2,26). The quasi-

pullback of �12 is defined as follows [4, 5]. Let L be a sublattice of II2,26 of signature (2,b)

and N = L⊥ ∩ II2,26. Let r(N ) be the number of (−2)-vectors in N . Then

�12|L := �12∏
δ(δ,·)

∣∣∣∣
DL

,

where δ runs over all (−2)-vectors in N up to ±1, is a nonzero modular form on DL of

weight 12+ r(N )/2 and character det for Õ+(L). Moreover, when r(N ) > 0, �12|L is a

cusp form [11].

In later sections, we will embed h⊥ ∩ L2t into II2,26 by embedding the last rank 2
component of formula (2.2) into E8. The following model of E8 will be used:

E8 = { (xi) ∈ Q8 | (xi) ∈ Z8 or (xi) ∈ (Z+1/2)8, x1 +·· ·+x8 ∈ 2Z }. (2.4)

Here we take the standard (negative) quadratic form on Q8. The (−2)-vectors in E8 are

as follows. For j �= k we define δ±j,±k = (xi ) by xj = ±1, xk = ±1 and xi = 0 for i �= j,k . For
example, δ+1,−2 = (1, −1,0, . . . ,0). For a subset S of {1, . . . ,8} consisting of even elements,

we define δ′
S = (xi ) by xi = 1/2 if i ∈ S and xi = −1/2 if i �∈ S . These are the 240 roots

of E8.
We will also use the Gritsenko lifting [9]. Assume that L is even and contains 2U . We

shall specialise to the case b = 20 for later use. For an odd number k , let Mk (ρL) be the

space of modular forms for SL2(Z) of weight k with values in the Weil representation ρL

on CAL. The Gritsenko lifting with b = 20 is an injective, O+(L)-equivariant map

Mk (ρL) ↪→ Mk+9(Õ
+(L)).
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The dimension of Mk (ρL) for k > 2 can be explicitly computed by using the formula in [6].

A similar formula for the O(AL)-invariant part Mk (ρL)O(AL) is given in [20].

3. Cusp forms and canonical forms

In this section we establish, in a general setting, a correspondence between canonical

forms on an n-fold universal family of holomorphic symplectic varieties and modular

forms on the period domain. This is the basis of this paper. As a consequence, we deduce

in Corollary 3.3 the latter half of Theorem 1.1. The first half of Theorem 1.1 will be
proved case by case in later sections.

Let M be a hyperbolic lattice and L be a lattice of signature (2,b). We say that a

smooth algebraic family π : F → M of holomorphic symplectic manifolds is M -polarised
with polarised Beauville lattice L if R2π∗Z contains a sub local system �pol in its (1,1)-

part whose fibre is isometric to M with the orthogonal complement isometric to L. Let
�per = (�pol )

⊥ ∩R2π∗Z and choose an isometry (�per )x0  L at some base point x0 ∈M.
If a finite-index subgroup � of O+(L) contains the monodromy group of �per , we can

define the period map

P : M → �\DL, x �→ [H 2,0(Fx ) ⊂ (�per )x ⊗C].

By Borel’s extension theorem, P is a morphism of algebraic varieties. Our interest will
be in the case rk(M ) = 1, but the proof of the following theorem works in the general

lattice-polarised setting as well:

Theorem 3.1. Let L be a lattice of signature (2,b) and � be a finite-index subgroup

of O+(L). Let F → M be a smooth algebraic family of lattice-polarised holomorphic
symplectic manifolds of dimension 2d with polarised Beauville lattice L whose monodromy

group is contained in �. Assume that the period map P : M → �\D is dominant and

generically finite. If Fn =F ×M · · ·×MF (n times) and F̄n is a smooth projective model

of Fn , we have a natural injective map

Sb+dn(�, det) ↪→ H 0(KF̄n ) (3.1)

which makes the following diagram commutative:

F̄n
φK �������

���
�
� |KF̄n |∨

(3.1)∨
���
�
�

�\D
φ
����� PSb+dn(�, det)∨.

(3.2)

Here φK is the canonical map of F̄n and φ is the rational map defined by the sections

in Sb+dn(�, det). Furthermore, if the period map P is birational and � does not contain

−id, map (3.1) is an isomorphism.

Proof. Let M′ = P(M) ⊂ �\D and D′ ⊂ D be the inverse image of M′. Shrinking M
as necessary, we may assume that both M → M′ and D′ → M′ are unramified. We take

the universal cover M̃ → M of M and pull back the family: write F̃ = F ×M M̃ with
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the projection π : F̃ → M̃. We obtain a lift P̃ : M̃ → D′ ⊂ D of the period map P which

is equivariant with respect to the monodromy representation π1(M) → �. Since P is

unramified, P̃ is unramified too. We first construct an injective map

H 0(D′,L⊗b+dn ⊗det)� ↪→ H 0(Fn,KFn ), (3.3)

where H 0(Fn,KFn ) means the space of holomorphic (rather than regular) canonical forms

on Fn .
We have a natural O+(LR)-equivariant isomorphism KD  L⊗b ⊗ det of line bundles

over D (see, e.g., [11, 21]), and hence a π1(M)-equivariant isomorphism

KM̃  P̃∗KD  P̃∗(L⊗b ⊗det) (3.4)

over M̃. Here π1(M) acts on P̃∗L, P̃∗ det through the �-action on L, det and the

monodromy representation π1(M) → �.

On the other hand, by the definition of the period map, we have a canonical isomorphism
π∗�2

π  P̃∗L sending a symplectic form to its cohomology class. Since π : F̃ → M̃
is a family of holomorphic symplectic manifolds, both π∗�2

π and π∗Kπ are invertible

sheaves, and the homomorphism (π∗�2
π )⊗d → π∗Kπ defined by the wedge product

is isomorphic. Therefore we have a natural isomorphism π∗Kπ  P̃∗L⊗d . Since the

natural homomorphism π∗π∗Kπ → Kπ is isomorphic, we find that Kπ  π∗P̃∗L⊗d . By

construction this is π1(M)-equivariant. If we write F̃n = Fn ×M M̃ with the projection

πn : F̃n → M̃, this shows that

Kπn  π∗
n P̃∗L⊗dn (3.5)

as π1(M)-linearised line bundles on F̃n . Combining formulas (3.4) and (3.5), we obtain

a π1(M)-equivariant isomorphism

KF̃n
 π∗

n P̃∗(L⊗b+dn ⊗det)

over F̃n . Hence pullback of sections of L⊗b+dn ⊗det over D′ by P̃ ◦πn defines a π1(M)-

equivariant injective map

H 0(D′,L⊗b+dn ⊗det) ↪→ H 0(F̃n,KF̃n
). (3.6)

Taking the invariant parts by � and π1(M), respectively, we obtain map (3.3).

Next we prove that restriction of map (3.3) gives the desired map (3.1). Let � be
a �-invariant section of L⊗b+dn ⊗det over D′ and ω ∈ H 0(KFn ) be the image of � by

map (3.3). We shall show that

∫
Fn

ω∧ ω̄ = C
∫
M′

(�,�)b+dn,detvol

for some constant C . Our assertion then follows from Lemma 2.1 and the standard fact

that ω extends over a smooth projective model of Fn if and only if
∫
Fn

ω∧ ω̄ < ∞.

https://doi.org/10.1017/S1474748021000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000013


1856 S. Ma

Since the problem is local, it suffices to take an arbitrary small open set U ⊂ M̃ and

prove ∫
π−1
n (U )

ω∧ ω̄ = C
∫
P̃(U )

(�,�)b+dn,detvol (3.7)

for some constant C independent of U . In what follows, C stands for any such unspecified

constant. Since U is small, we may decompose � as � = �1⊗�⊗dn
2 , with �1 a local section

of L⊗b ⊗det and �2 a local section of L. Let ω1 be the canonical form on U  P̃(U )

corresponding to �1, and ω2 be the relative symplectic form on F̃ |U → U corresponding

to P̃∗�2. On the one hand, we have

ω1 ∧ ω̄1 = C (�1,�1)b,detvol (3.8)

(see, e.g., [21, §3.1]). On the other hand, at each fibre X of F̃ |U the pointwise Petersson
norm (�2,�2)1 = (�2,�̄2) is nothing but the pairing qX (ω2,ω̄2) in the Beauville form of

X . Since

qX (ω2,ω̄2)
d = C

∫
X

(ω2 ∧ ω̄2)
d

by equation (2.1), we find that

(�⊗dn
2 ,�⊗dn

2 )dn = C
∫
Xn

(p∗
1ω2 ∧·· ·∧p∗

nω2)
d ∧ (p∗

1ω̄2 ∧·· ·∧p∗
n ω̄2)

d, (3.9)

where pi : X n → X is the ith projection. Since (p∗
1ω2 ∧·· ·∧p∗

nω2)
d is the canonical form

on X n corresponding to the value of �⊗dn
2 at [X ] ∈ U , equations (3.8) and (3.9) imply

equation (3.7). Thus we obtain map (3.1). Since this map is defined by pullback of sections
of line bundles, diagram (3.2) is commutative.

Finally, when P is birational, we may assume as before that it is an open immersion.

If � does not contain −id, � acts on D effectively, and the monodromy group coincides
with �. We can kill the monodromy by pulling back the family F → M to D′ instead of

to M̃. If we rewrite F̃n =Fn ×MD′, then map (3.6) is isomorphic. Taking the �-invariant

part, we see that map (3.3) is isomorphic. Finally, taking the subspace of finite norm, we
see that map (3.1) is isomorphic. This completes the proof of Theorem 3.1.

Remark 3.2. The last statement of Theorem 3.1 can also be proved more directly by

using the line bundles onM⊂ �\D coming from the �-linearised line bundles L, det on D.

Corollary 3.3. If n is sufficiently large, then κ(Fn) = b.

Proof. Since Fn → Fn−1 is a smooth family of holomorphic symplectic varieties, κ(Fn)

is nondecreasing with respect to n by Iitaka’s subadditivity conjecture known in this

case [16]. We also have the bound κ(Fn) ≤ dimM = b by Iitaka’s addition formula [12].

We take a weight k0 such that Sk0(�, det) �= {0}. Then we take a weight k1 such that

k1 ≡ b −k0 mod d and that �\D ��� PMk1(�)∨ is generically finite onto its image. (When
� contains −id, we must have k0 ≡ b mod 2, so b − k0 + dZ contains sufficiently large

even k1.) Since

Sk0(�, det) ·Mk1(�) ⊂ Sk0+k1(�, det),
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Theorem 3.1 implies that for n0 = (k0 +k1 −b)/d , the image of the canonical map of F̄n0

has dimension ≥ b. Hence κ(Fn0) ≥ b, and so κ(Fn) = b for all n ≥ n0.

This proves the latter half of Theorem 1.1. In the following sections, we apply

Theorem 3.1 to the six explicit families in Theorem 1.1. In practice, one needs to identify
the group �. For example, according to [22, Remark 8.5] and [11, Remark 3.15], the

monodromy group of a family of polarised symplectic manifolds of K3[2] type with

polarisation vector h is contained in Õ+(h⊥ ∩L2).

4. Fano varieties of cubic fourfolds

In this section we prove Theorem 1.1 for the case of Fano varieties of cubic fourfolds

[3]. Let Y ⊂ P5 be a smooth cubic fourfold. The Fano variety F (Y ) ⊂ G(1,5) of Y
is the variety parametrising lines on Y , which is smooth of dimension 4. Beauville and

Donagi [3] proved that F (Y ) is a holomorphic symplectic manifold of K3[2] type polarised

by the Plücker, and its polarised Beauville lattice is isometric to Lcub = 2U ⊕ 2E8 ⊕
A2. In fact, the polarised Beauville lattice of F (Y ) is isomorphic to the primitive part

of H 4(Y ,Z) as polarised Hodge structures, where the intersection form on H 4(Y ,Z) is

(−1)-scaled.
Let U ⊂ |OP5(3)| be the parameter space of smooth cubic fourfolds. By GIT [24],

the geometric quotient U /PGL6 exists as an affine variety of dimension 20. Let � =
Õ+(Lcub). The period map U /PGL6 → �\D is an open immersion by Voisin [28], and

the complement of its image was determined by Looijenga [19] and Laza [17].

Lemma 4.1 (cf. [17]). The cusp form �12|Lcub has weight 48. Moreover, S66(�, det) and
S68(�, det) have dimension ≥ 2.

Proof. Write L = Lcub . The weight of �12|L is computed in [17]. (A⊥
2  E6 has 72 roots.)

We have dimMk (ρL) = [(k +3)/6] by computing the formula in [6]. The product of �12|L
with the Gritsenko lift of M9(ρL) and M11(ρL) proves the second assertion.

We consider the parameter space of smooth cubic fourfolds with n marked lines,

Fn = { (Y ,l1, · · · ,ln) |Y ∈ U , l1, · · · ,ln ∈ F (Y ) } ⊂ U ×G(1,5)n,

and let Fn = Fn/PGL6. Then Fn is smooth over the open locus of U /PGL6 where
cubic fourfolds have no nontrivial stabiliser. By Lemma 4.1, with 48 = 20 + 2 · 14 and

66 = 20+2 ·23, we see that F14 has positive geometric genus and κ(F23) > 0. (Cusp forms

of weight 68 will be used in Section 6.) It remains to prove that F13 is unirational.

Proposition 4.2. F13 is rational.

Proof. Consider the second projection π : F13 → G(1,5)13. If (l1, . . . ,l13) ∈ π(F13), the

fibre π−1(l1, . . . ,l13) is a nonempty open set of the linear system of cubics containing

l1, . . . ,l13, which we denote by

PV (l1, . . . ,l13) = PKer(H 0(OP5(3)) → ⊕13
i=1H

0(Oli (3))).
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This shows that F13 is birationally a PN -bundle over π(F13) with

N = dimF13 −dimπ(F13) ≥ dimF13 −dimG(1,5)13 = 3.

Hence we are reduced to the following assertion:

Claim 4.3. π : F13 → G(1,5)13 is dominant.

Assume to the contrary that π is not dominant. Then we have dimV (l1, . . . ,l13) ≥
5 for a general point (l1, . . . ,l13) of π(F13). Consider the similar projection π ′ : F14 →
G(1,5)14 in n = 14. Since F14 =F14/PGL6 cannot be uniruled as just proved, we must have

dimV (l1, . . . ,l14) = 1 for general (l1, . . . ,l14) ∈ π ′(F14). On the other hand, V (l1, . . . ,l14)
can be written as

V (l1, . . . ,l14) = Ker(V (l1, . . . ,l13)
ρ→ H 0(Ol14(3))),

where ρ is the restriction map. Hence for general (l1, . . . ,l13) ∈ π(F13), we have

dimV (l1, . . . ,l13) = 5, ρ is surjective and π(F13) is of codimension 1 in G(1,5)13.
The last property implies that the similar projection π ′′ : F12 → G(1,5)12 in n = 12

must be dominant, because otherwise π(F13) would be dense in the inverse image of

π ′′(F12) ⊂ G(1,5)12 by the projection G(1,5)13 → G(1,5)12, which contradicts the S13-
invariance of π(F13). This in turn shows that

dimV (l1, . . . ,l12) = dimF12 −dimG(1,5)12 +1 = 8

for a general point (l1, . . . ,l12) of G(1,5)12. However, since V (l1, . . . ,l13) → H 0(Ol14(3)) is

surjective, V (l1, . . . ,l12) → H 0(Ol14(3)) is surjective too. Hence dimV (l1, . . . ,l12,l14) = 4.
But since (l1, . . . ,l12,l14) is a general point of π(F13), this is absurd. This proves Claim 4.3

and so finishes the proof of Proposition 4.2.

Remark 4.4. In the analogous case of K3 surfaces of genus g [21], when 3 ≤ g ≤ 10, the
weight of the quasi-pullback �K3,g of �12 coincided with

weight(�K3,g) = dimVg +19 = dimVg +dim(moduli)

for a representation space Vg related to the projective model of the K3 surfaces. Here,

for �K3,2 and �cubic = �12|Lcub , the “switched” equalities

weight(�K3,2)−19 = 56 = h0(OP5(3))

weight(�cubic)−20 = 28 = h0(OP2(6))

hold. Is this accidental?

5. Debarre–Voisin fourfolds

In this section we prove Theorem 1.1 for the case of Debarre–Voisin fourfolds [8]. Let E be

the dual of the rank 6 universal sub vector bundle over the Grassmannian G(6,10). The
space H 0(

∧3 E) is naturally isomorphic to
∧3

(C10)∨. Debarre and Voisin [8] proved that

the zero locus Xσ ⊂ G(6,10) of a general section σ of
∧3 E is a holomorphic symplectic

manifold of K3[2] type, and the polarisation given by the Plücker has Beauville norm 22
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and is of nonsplit type. The polarised Beauville lattice is hence isometric to

LDV = 2U ⊕2E8 ⊕K, K =
(−2 1

1 −6

)
.

Let � = Õ+(LDV ).

Lemma 5.1. There exists an embedding K ↪→ E8 with r(K⊥) = 40. The resulting cusp

form �12|LDV has weight 32. Moreover, S46(�, det) has dimension ≥ 2.

Proof. Let v1,v2 be the basis of K in the matrix expression. We embed K into E8, in

model (2.4) of E8, by

v1 �→ (1, −1,0, . . . ,0), v2 �→ (0,1,1,2,0, . . . ,0).

The roots of E8 orthogonal to these two vectors are δ±i,±j with i,j ≥ 5 and ±δ′
S with

1,2,3 ∈ S and 4 �∈ S . The total number is 24+ 16 = 40. Hence the weight of �12|LDV is

12+20 = 32. Working out the formula in [6], we also see that dimMk (ρLDV ) = (k −1)/2.
Taking the product of �12|LDV with the Gritsenko lift of M5(ρLDV ), we obtain the last

assertion.

Let U be the open locus of P(
∧3

C10)∨ where Xσ is smooth of dimension 4 and

[σ ] is PGL10-stable with no nontrivial stabiliser. The period map U /PGL10 → �\D is
generically finite and dominant [8]. Consider the incidence

Fn = { ([σ ],p1, · · · ,pn) ∈ U ×G(6,10)n |pi ∈ Xσ } ⊂ U ×G(6,10)n

and let Fn = Fn/PGL10. By Lemma 5.1, with 32 = 20 + 2 · 6 and 46 = 20 + 2 · 13, we
see that F6 has positive geometric genus and κ(F13) > 0. It remains to show that F5 is

unirational.

Proposition 5.2. F5 is rational.

Proof. Consider the second projection π : Fn → G(6,10)n . The fibre π−1(p1, . . . ,pn)

over (p1, . . . ,pn) ∈ π(Fn) is a nonempty open set of the linear system PV (p1, . . . ,pn) ⊂
PH 0(

∧3 E) of sections vanishing at p1, . . . ,pn . When n = 5, we have

dimV (p1, . . . ,p5) ≥ h0(∧3E)−5 · rk(∧3E) = 20,

so F5 → π(F5) is birationally a PN -bundle with N ≥ 19. Furthermore, by the same

argument as for Claim 4.3, the result κ(F6) ≥ 0 enables us to conclude that F5 → G(6,10)5

is dominant. Therefore F5 is rational.

6. Lehn–Lehn–Sorger–van Straten eightfolds

In this section we prove Theorem 1.1 for the case of Lehn–Lehn–Sorger–van Straten

eightfolds [18]. They have the same parameter space and period space as the Beauville–

Donagi case.
Let Y ⊂ P5 be a smooth cubic fourfold which does not contain a plane. The space

M gtc(Y ) of generalised twisted cubics on Y is defined as the closure of the locus of

twisted cubics on Y in the Hilbert scheme Hilb3m+1(Y ). By [18], M gtc(Y ) is smooth and
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irreducible of dimension 10, and there exists a natural contraction M gtc(Y ) → X (Y ) to

a holomorphic symplectic manifold X (Y ) with general fibres P2. The variety X (Y ) is of

K3[4] type [1] and has a polarisation of Beauville norm 2 and nonsplit type (see [7, footnote
22]). Hence its polarised Beauville lattice is isometric to the lattice Lcub = 2U ⊕2E8 ⊕A2
considered in Section 4, and the monodromy group is evidently contained in O+(Lcub). We

can reuse Lemma 4.1: since O+(Lcub) = 〈Õ+(Lcub),− id〉 and the weights in Lemma 4.1 are

even, the cusp forms there are not just Õ+(Lcub)-invariant but also O+(Lcub)-invariant,
as remarked in equation (2.3).

Let H = Hilbgtc(P5) be the irreducible component of the Hilbert scheme Hilb3m+1(P
5)

that contains the locus of twisted cubics in P5. Then H is smooth of dimension 20, and we
have M gtc(Y ) = H ∩Hilb3m+1(Y ) for Y above [18]. Let U ⊂ |OP5(3)| be the parameter

space of smooth cubic fourfolds which does not contain a plane and has no nontrivial

stabiliser in PGL6. The period map U /PGL6 → �\D, where � =O+(Lcub), is generically
finite and dominant [18, 1]. We consider the incidence

M gtc
n = { (Y ,C1, . . . ,Cn) ∈ U ×H n |Ci ∈ M gtc(Y ) } ⊂ U ×H n .

As noticed in [18], the construction of X (Y ) can be done in families. This produces

a smooth family X → U of symplectic eightfolds and a contraction M gtc
1 → X over

U with general fibres P2. Taking the n-fold fibre product Xn = X ×U · · · ×U X , we

obtain a morphism M gtc
n → Xn over U with general fibres (P2)n . Let Fn = Xn/PGL6.

By Lemma 4.1, now with 48 = 20+4 ·7 and 68 = 20+4 ·12 (d = 4 in place of d = 2) and
with � =O+(Lcub) in place of Õ+(Lcub), we see that F7 has positive geometric genus and

κ(F12) > 0. It remains to show that F5 is unirational.

Proposition 6.1. M gtc
5 is unirational.

Proof. We enlarge M gtc
n to the complete incidence over |OP5(3)|:

(M gtc
n )∗ = { (Y ,C1, . . . ,Cn) ∈ |OP5(3)|×H n |Ci ⊂ Y }.

The fibre of the projection π : (M gtc
n )∗ → H n over (C1, . . . ,Cn) ∈ H n is the linear

system PV (C1, . . . ,Cn) ⊂ |OP5(3)| of cubics containing C1, . . . ,Cn . When n = 5, we

have dimV (C1, . . . ,C5) ≥ 6 for any (C1, . . . ,C5) ∈ H 5, so π is surjective, and there is a
unique irreducible component of (M gtc

5 )∗ of dimension ≥ 105 that is birationally a PN -

bundle over H 5 with N ≥ 5. On the other hand, M gtc
5 is an open set of the unique

irreducible component of (M gtc
5 )∗ of dimension 105 that dominates |OP5(3)|. We want to

show that these two irreducible components coincide: then M gtc
5 → H 5 is dominant, and

M gtc
5 is birationally a P5-bundle over H 5 and hence unirational.

Let (C1, . . . ,C5) be a general point of H 5. By genericity we may assume that each Ci is

smooth and spans a 3-plane Pi ⊂P5, Pi ∩Pj is a line and Ci ∩Pj = ∅. Let (Y ,C1, . . . ,C5) be
a general point of π−1(C1, . . . ,C5) =PV (C1, . . . ,C5). It suffices to show that generalisation

of (Y ,C1, . . . ,C5) – that is, small perturbation inside (M gtc
5 )∗ – contains (Y ′,C ′

1, . . . ,C
′
5)

with Y ′ ∈ U .
We may assume that Y is irreducible and contains no 3-plane, because the locus of

(Y ,C1, . . . ,C5) with Y reducible or containing a 3-plane has dimension < 105. Since each
Ci is smooth, the results of [18, §2] tell us that the cubic surface Si = Y ∩ Pi either
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has at most ADE singularities, or is integral but nonnormal (singular along a line) or is

reducible. By comparison of dimension again, we may assume that at least one, say S1,

is of the first type.
Now (C2, . . . ,C5) is a general point of H 4. The projection M gtc

4 → H 4 is dominant,

as can be checked similarly in an inductive way. Therefore there exists a cubic fourfold

Y ′′ ∈ U containing C2, . . . ,C5. Let Y ′ be a general member of the pencil 〈Y ,Y ′′〉. Since
Y ′′ ∈ U , we have Y ′ ∈ U . Since both Y and Y ′′ contain C2, . . . ,C5, Y ′ contains C2, . . . ,C5
too. In the fixed 3-plane P1, the cubic surface S ′ = Y ′ ∩P1 degenerates to the cubic surface

S1 = Y ∩P1 with at most ADE singularities, so S ′ has at most ADE singularities too. By
[18, Theorem 2.1], the nets of twisted cubics on cubic surfaces degenerate flatly in such

a family. Therefore we have a twisted cubic C ′ ⊂ S ′ which specialises to C1 ⊂ S1 as Y ′
specialises to Y . Therefore (Y ′,C ′,C2, . . . ,C5) ∈ M gtc

5 specialises to (Y ,C1,C2, . . . ,C5).

This proves our assertion.

7. Varieties of sums of powers of cubic fourfolds

In this section we prove Theorem 1.1 for the case of Iliev–Ranestad fourfolds [14]. Let H be

the irreducible component of the Hilbert scheme Hilb10|OP5(1)| of length 10 subschemes

of |OP5(1)| that contains the locus of 10 distinct points. For a cubic fourfold Y ⊂ P5 with
defining equation f ∈ H 0(OP5(3)), its variety of sums of 10 powers VSP(Y ) =VSP(Y ,10)

is defined as the closure in H of the locus of distinct ([l1], . . . ,[l10]) such that f = ∑
i λi l3i

for some λi ∈ C. Iliev and Ranestad [14, 15] proved that when Y is general, VSP(Y ) is
a holomorphic symplectic manifold of K3[2] type, with polarisation of Beauville norm 38
and nonsplit type. (See also [25] for the computation of polarisation.) Hence its polarised

Beauville lattice is isometric to

LIR = 2U ⊕2E8 ⊕K, K =
(−2 1

1 −10

)
.

Let � = Õ+(LIR).

Lemma 7.1. There exists an embedding K ↪→ E8 with r(K⊥) = 40. The resulting cusp

form �12|LIR has weight 32. Moreover, S44(�, det) has dimension ≥ 2.

Proof. Let v1,v2 be the basis of K in the matrix expression. We embed K ↪→ E8 by

sending, in model (2.4) of E8,

v1 �→ (1, −1,0, · · · ,0), v2 �→ (0,1,3,0, · · · ,0).

The roots of E8 orthogonal to these two vectors are δ±i,±j with i,j ≥ 4, whose number is

2 ·5 ·4 = 40. Hence �12|LIR has weight 12+20 = 32. Furthermore, computing the formula

in [6], we see that dimMk (ρLIR ) = [(5k −3)/6]. The product of �12|LIR with the Gritsenko
lift of M3(ρLIR ) implies the last assertion.

Let U be the open locus of |OP5(3)| where VSP(Y ) is smooth of dimension 4 and Y
is smooth with no nontrivial stabiliser. The period map U /PGL6 → �\D is generically
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finite and dominant [14, 15]. Consider the incidence

VSPn = { (Y ,�1, . . . ,�n) ∈ U ×H n |�i ∈ VSP(Y ) } ⊂ U ×H n

and let Fn = VSPn/PGL6. By Lemma 7.1, with 32 = 20+ 2 · 6 and 44 = 20+ 2 · 12, we
see that F6 has positive geometric genus and κ(F12) > 0. On the other hand, as observed

in [14], VSP1 is birationally a P9-bundle over H and hence rational. Therefore F1 is

unirational. This proves Theorem 1.1 in the present case.

Remark 7.2. There also exist embeddings K ↪→ E8 with r(K⊥) = 30 (send v2 to
(0,1,1,2,2,0,0,0) or to (0,1,1,1,1,1,1,2)), but the resulting cusp form has weight 27, which
is not of the form 20+2n. This, however, suggests that κ ≥ 0 would actually start from

at least n = 4.

8. Double EPW series

In this section we prove Theorem 1.1 for double EPW sextics [26] and double EPW

cubes [13]. They share some common features: both are parametrised by the Lagrangian
Grassmannian LG = LG(

∧3
C6), where

∧3
C6 is equipped with the canonical symplectic

form
∧3

C6 ×∧3
C6 → ∧6

C6. Both are constructed as double covers of degeneracy loci

related to
∧3

C6. And both have LEPW = 2U ⊕ 2E8 ⊕ 2A1 as the polarised Beauville
lattices. Thus they share the same parameter space and essentially the same period

space.

The presence of covering involution requires extra care in the construction of the
universal (or perhaps we should say “tautological”) family over a Zariski open set of

the moduli space.

8.1. Double EPW sextics

We recall the construction of double EPW sextics following [26, 27]. Let F be the vector

bundle over P5 whose fibre over [v ] ∈ P5 is the image of Cv ∧ (
∧2

C6) → ∧3
C6. For [A] ∈

LG we write YA[k ] ⊂ P5 for the locus of those [v ] ∈ P5 such that dim(A∩Fv ) ≥ k . We say
that A is generic if YA[3] = ∅ and PA∩G(3,6) = ∅ in P(

∧3
C6). In that case, YA = YA[1]

is a sextic hypersurface in P5 singular along YA[2], YA[2] is a smooth surface and YA

has a transversal family of A1-singularities along YA[2]. Let λA : F → (
∧3

C6/A)⊗OP5

be the composition of the inclusion F ↪→ ∧3
C6 ⊗OP5 and the projection

∧3
C6 ⊗OP5 →

(
∧3

C6/A)⊗OP5 . Then coker(λA) = i∗ζA for a coherent sheaf ζA on YA, where i :YA ↪→P5

is the inclusion. Let ξA = ζA ⊗OYA(−3). If we choose a Lagrangian subspace B of∧3
C6 transverse to A, we can define a multiplication ξA × ξA → OYA . Although B

is necessary for the construction, the resulting multiplication does not depend on the

choice of B [27, p. 152]. Then let XA = Spec(OYA ⊕ ξA). This is a double cover of YA.

If A is generic, XA is a holomorphic symplectic manifold of K3[2] type. The polarisation
(pullback of OP5(1)) has Beauville norm 2 and is of split type, and the polarised

Beauville lattice is isometric to LEPW . If LG◦ ⊂ LG is the open locus of generic A, the

period map LG◦/PGL6 → �\D, where � = Õ+(LEPW ), is birational according to [26, §6]
and [22, §8].
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Lemma 8.1. The cusp form �12|LEPW has weight 42. Moreover, S58(�, det) has
dimension ≥ 2.

Proof. We embed 2A1 in E8 in any natural way. Then (2A1)
⊥  D6 has 60 roots, so

�12|LEPW has weight 42. Working out the formula in [6], we see that dimMk (ρLEPW ) =
[k/3]. The product of �12|LEPW with the Gritsenko lift of M7(ρLEPW ) implies the second

assertion.

The construction of double EPW sextics can be done over a Zariski open set of the

moduli space as follows (cf. [27]). Let LG ′ ⊂ LG◦ be the open locus where A has no
nontrivial stabiliser, and π1 : LG ′ ×P5 → LG ′, π2 : LG ′ ×P5 → P5 be the projections. Let

Y = ∪AYA ⊂ LG ′ ×P5 be the universal family of EPW sextics over LG ′.

Lemma 8.2. There exists a PGL6-invariant Zariski open set LG ′′ of LG ′ such that

OLG ′′×P5(Y )  π∗
2OP5(6) as PGL6-linearised line bundles over LG ′′ ×P5.

Proof. Consider the quotient Y = Y /PGL6, which is a divisor of the Brauer–Severi

variety P = (LG ′ ×P5)/PGL6 over M = LG ′/PGL6. Each fibre of Y → M is a canonical

divisor of the fibre of π : P → M. This implies that OP(Y)  Kπ ⊗π∗OM(D) for some

divisor D of M. Removing the support of D from M, we obtain OP(Y)  Kπ over its
complement. Pulling back this isomorphism to LG ′ ×P5 → LG ′, we obtain the desired

PGL6-equivariant isomorphism.

We rewrite LG ′′ = LG ′ and Y |LG ′′ = Y . Let E be the universal quotient vector bundle

of rank 10 over LG ′. We have a natural homomorphism λ : π∗
2F → π∗

1E over LG ′ ×P5

whose restriction to {A} × P5 is λA, and coker(λ) = i∗ζ for a coherent sheaf ζ on Y
where i : Y → LG ′ ×P5 is the inclusion. As was done in [27], if we choose B ∈ LG and

let UB ⊂ LG ′ be the open locus of those A transverse to B , we have a multiplication
ζ × ζ → OY (Y ) over Y |UB . Since the multiplication does not depend on the choice of

B at each fibre, we obtain an SL6-equivariant multiplication ζ × ζ → OY (Y ) over the

whole Y . If we set ξ = ζ ⊗OY (−3), Lemma 8.2 enables us to pass to an SL6-equivariant
multiplication ξ ×ξ →OY . Since the scalar matrices in SL6 act trivially on ξ , ξ is actually

PGL6-linearised and this multiplication is PGL6-equivariant.

Now taking X = Spec(OY ⊕ξ), we obtain a universal family of double EPW sextics over

LG ′ acted on by PGL6. Let M = LG ′/PGL6, F = X /PGL6 and Fn = F ×M · · ·×MF
(n times). Note that this is not a moduli space even birationally, as we have not divided

out by the covering involution. By Lemma 8.1, with 42 = 20+2 ·11 and 58 = 20+2 ·19,
we see that F11 has positive geometric genus and κ(F19) > 0. This proves Theorem 1.1
in the case of double EPW sextics.

8.2. Double EPW cubes

We recall the construction of double EPW cubes following [13]. For [U ] ∈ G(3,6), we

write TU = (
∧2 U )∧C6 ⊂ ∧3

C6. For [A] ∈ LG , let DA
k ⊂ G(3,6) be the locus of those

[U ] with dim(A∩TU ) ≥ k . We say that A is generic if DA
4 = ∅ and PA∩G(3,6) = ∅ in

P(
∧3

C6). In that case, DA
2 is a sixfold singular along DA

3 , DA
3 is a smooth threefold and

the singularities of DA
2 are a transversal family of 1

2 (1,1,1) quotient singularity along DA
3 .
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Let D̃A
2 → DA

2 be the blowup at DA
3 and E ⊂ D̃A

2 be the exceptional divisor. Then D̃A
2

is smooth and E is a smooth bicanonical divisor of D̃A
2 [13, p. 254]. Take the double

cover ỸA → D̃A
2 branched over E and contract the P2-ruling of the ramification divisor

by using pullback of some multiple of ODA
2

(1). This produces a holomorphic symplectic

manifold YA of K3[3] type [13, Theorem 1.1].

The polarisation has Beauville norm 4 and divisibility 2, so the polarised Beauville
lattice is isometric to LEPW by [10]. The monodromy group is evidently contained

in O+(LEPW ) (but whether it is smaller seems unclear to me). The quotient

O+(LEPW )/Õ+(LEPW ) is S2 generated by the switch of the two copies of A1, say
ι ∈ O+(LEPW ). Construction of cusp forms becomes more delicate than the previous

cases, as �12|LEPW is anti -invariant under ι.

Lemma 8.3. Let � = O+(LEPW ). Then S68(�, det) �= {0} and S80(�, det) has dimension

≥ 2.

Proof. We abbreviate L = LEPW . We first verify that �12|L is ι-anti-invariant. Let ι′ be
the involution of the D6 lattice induced by the involution of its Dynkin diagram. Then

ι⊕ ι′ extends to an involution ι̃ of II2,26. The modular form �12 is ι̃-invariant. If we run δ

over the positive roots of D6, the product
∏

δ(δ,·) is also ι̃-invariant, because ι′ permutes
the positive roots of D6. Therefore �12/

∏
δ(δ,·) as a section of L⊗42 ⊗det over DII2,26 is

ι̃-invariant. Since det(ι̃) = 1 while det(ι) = −1, �12|L as a section of L⊗42 ⊗det over DL

is anti-invariant under ι.
In order to construct ι-invariant cusp forms of character det, we take the product of

�12|L with the Gritsenko lift of the ι-anti-invariant part of Mk (ρL). By the formulae in

[6] and [20], we see that dimMk (ρL) = [k/3] and dimMk (ρL)ι = [(k +2)/4] for k > 2 odd.
We also require the congruence condition 42+ k + 9 ≡ 20 mod 3, namely k ≡ 2 mod 3.
Now, when k = 17 (resp., k = 29), the ι-anti-invariant part has dimension 1 (resp., 2).
This proves our claim.

We can do the double-cover construction over a Zariski open set of the moduli space.
Let LG◦ ⊂ LG be the open set of generic [A] which is PGL6-stable and has no nontrivial

stabiliser. Let D2 = ∪ADA
2 ⊂ LG◦ × G(3,6) be the universal family of DA

2 s. We have

the geometric quotients M = LG◦/PGL6, Z = D2/PGL6 with projection Z → M. The

relative O(2) descends. Let Z̃ → Z be the blowup at Sing(Z), B ⊂ Z̃ be the exceptional
divisor and π : Z̃ → M be the projection. As in the proof of Lemma 8.2, we may shrink

M to a Zariski open set M′ ⊂ M so that B|M′ ∼ 2Kπ . Then we can take the double

cover of Z̃|M′ branched over B|M′ . Contracting the ramification divisor relatively by
using pullback of a multiple of the relative O(2), we obtain a universal family F → M′
of double EPW cubes over M′. Then let Fn = F ×M′ · · ·×M′ F (n times).

The period map M → �\D is generically finite and dominant [13, Proposition 5.1]. By
Lemma 8.3, with 68 = 20+3 ·16 and 80 = 20+3 ·20, we see that F16 has positive geometric

genus and κ(F20) > 0. This proves Theorem 1.1 in the case of double EPW cubes.
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EPW sextics.
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