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Drag for wall-bounded flows is directly related to the spatial flux of spanwise vorticity
outward from the wall. In turbulent flows a key contribution to this wall-normal flux
arises from nonlinear advection and stretching of vorticity, interpretable as a cascade.
We study this process using numerical simulation data of turbulent channel flow at
friction Reynolds number Reτ = 1000. The net transfer from the wall of spanwise vorticity
created by downstream pressure drop is due to two large opposing fluxes, one which is
‘down-gradient’ or outward from the wall, where most vorticity concentrates, and the other
which is ‘up-gradient’ or toward the wall and acting against strong viscous diffusion in the
near-wall region. We present evidence that the up-gradient/down-gradient transport occurs
by a mechanism of correlated inflow/outflow and spanwise vortex stretching/contraction
that was proposed by Lighthill. This mechanism is essentially Lagrangian, but we
explicate its relation to the Eulerian anti-symmetric vorticity flux tensor. As evidence
for the mechanism, we study (i) statistical correlations of the wall-normal velocity
and of wall-normal flux of spanwise vorticity, (ii) vorticity flux cospectra identifying
eddies involved in nonlinear vorticity transport in the two opposing directions and (iii)
visualizations of coherent vortex structures which contribute to the transport. The ‘D-type’
vortices contributing to down-gradient transport in the log layer are found to be attached,
hairpin-type vortices. However, the ‘U-type’ vortices contributing to up-gradient transport
are detached, wall-parallel, pancake-shaped vortices with strong spanwise vorticity, as
expected by Lighthill’s mechanism. We discuss modifications to the attached eddy model
and implications for turbulent drag reduction.
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1. Introduction

Most current approaches to wall-bounded turbulence are based on momentum
conservation and the concept of ‘momentum cascade’ to the wall (Tennekes &
Lumley 1972; Jiménez 2012; Yang, Marusic & Meneveau 2016). However, vorticity
conservation may arguably be of equal or even greater importance. One of the earliest
advocates of this point of view was Taylor (1932), although his ‘vorticity transfer
hypothesis’ was justly criticized for neglect of vortex stretching. Nevertheless, Taylor
arrived at an important exact result that pressure drop in turbulent flow down a pipe
is directly related to flux of spanwise vorticity across the flow. Lighthill (1963) was an
even more forceful champion for vorticity-based approaches, positing that ‘to explain
convincingly the existence of boundary layers . . . arguments concerning vorticity are
needed’ and further that ‘vorticity considerations . . . illuminate the detailed development
of the boundary layers just as clearly as do momentum considerations’. In particular,
Lighthill (1963) argued that vorticity is uniquely suited to a causal description of
fluid flows, as it is the only variable whose effects propagate at finite speeds in the
incompressible limit.

Lighthill made in fact substantial concrete contributions to the program of explaining
turbulent boundary layers by means of vorticity dynamics. One key idea introduced by
Lighthill (1963), which is now widely recognized, is that vorticity generation at solid walls
is due to tangential pressure gradients, with wall-normal vorticity flux given by

σ = n × (ν∇ × ω) = −n × (∇p + ∂tu), (1.1)

where u is the fluid velocity, ν is kinematic viscosity, ω is the vorticity, and n is the
unit normal vector at the boundary pointing inward to the fluid. The term ∂tu which
accounts for tangential acceleration of the wall was introduced by Morton (1984), who
emphasized further the inviscid character of such vorticity production. Although generally
well accepted, the relations (1.1) have been the subject of some minor controversy, since
they were first derived by Lighthill (1963) only for flat walls and were generalized
subsequently to curved walls in the form (1.1) by Lyman (1990) and in an alternative form
σ ′ = −ν(n · ∇)ω by Panton (1984). The subsequent debate over which of these two forms
is ‘correct’ is reviewed by Terrington, Hourigan & Thompson (2021), who conclude that
the two expressions measure slightly different things and have each their own (overlapping)
domains of applicability. See also Wang, Eyink & Zaki (2022). Lyman’s version (1.1)
uniquely describes the creation of circulation at the boundary (Eyink 2008) and we use
that form in our theoretical discussion here (but note the two coincide in our concrete
application to channel flow). In either guise, the Lighthill source reveals that the solid
walls are the ultimate origin of all vorticity in the flow, whereas for momentum the walls
act instead as the sink. In consequence, the profound sensitivity of fluid flows to the nature
of the solid boundary is better revealed by vorticity considerations.

Lighthill (1963) made another essential contribution to wall-bounded turbulence which
seems, however, to have been less appreciated. To introduce Lighthill’s basic insight, we
can do no better than to quote at length from his own paper:

‘The main effect of a solid surface on turbulent vorticity close to it is to correlate inflow towards
the surface with lateral stretching. Note that only the stretching of vortex lines can explain
how during transition the mean wall vorticity increases as illustrated in figure II.21; and only
a tendency, for vortex lines to stretch as they approach the surface and relax as they move away
from it, can explain how the gradient of mean vorticity illustrated in figure II.21 is maintained in
spite of viscous diffusion down it – to say nothing of any possible ‘turbulent diffusion’ down it,
which the old ‘vorticity transfer’ theory supposed should occur. It is relevant to both these points
that figure II.21 relates to uniform external flow, which implies zero mean rate of production of
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vorticity at the surface; but, even in an accelerating flow, the rate of production UU′ is too small
to explain either.

A simplified illustration of how inflow towards a wall tends to go with lateral stretching, and
how outflow with lateral compression, is given in figure II.22. Doubtless some longitudinal
deformation is usually also present, which reduces the need for lateral deformation (perhaps, on
average, by half). However, there is evidence (from attempts to relate different types of theoretical
model of a turbulent boundary layer to observations by hotwire techniques; see, for e.g. Townsend
1956) that the larger-scale motions (which push out ‘tongues’ of rotational fluid discussed above)
are elongated in the stream direction, as if their vortex lines had been stretched longitudinally by
the mean shear; in such motions, the correlation between inflow and lateral stretching illustrated
in figure II.22 would be particularly strong. We may think of them as constantly bringing the
major part of the vorticity in the layer close to the wall, while intensifying it by stretching and,
doubtless, generating new vorticity at the surface; meanwhile, they relax the vortex lines which
they permit to wander into the outer layer. Smaller-scale movements take over from these to bring
vorticity still closer to the wall, and so on. Thus, the ‘cascade process’, which in free turbulence
(see, for e.g. Batchelor 1953) continually passes the energy of fluctuations down to modes of
shorter and shorter length-scale – because at high Reynolds numbers motions in a whole range
of scales may be unstable, which implies that motions of smaller scale can extract energy from
them – this cascade process has the additional effect in a turbulent boundary layer of bringing
the fluctuations into closer and closer contact with the wall, while their vortex lines are more and
more stretched’. – From Lighthill (1963), pp. 98–99.

We find in this remarkable passage four key ideas: (i) first, the correlation between
turbulent inflow and lateral vortex stretching illustrated by Lighthill (1963) with his figure
II.22 acts to magnify principally spanwise vorticity and to drive it nearer the wall, as
shown in his figure II.21 (both reproduced here as our figure 1). Conversely, turbulent
outflow is correlated with lateral vortex compression, weakening the mainly spanwise
vorticity as it is carried away from the wall. Quoting again from Lighthill (1963, p. 96),
‘it concentrates most of the vorticity much closer to the wall than before, although
at the same time allowing some straggling vorticity to wander away from it farther’.
The validity of this mechanism for a transitional boundary-layer flow has been verified
recently by Wang et al. (2022). One would expect on the basis of this argument to
find spanwise-extended vortex structures as principal elements of wall-bounded turbulent
flows. (ii) The mechanism of correlated inflow/outflow and vortex stretching/contraction
strongly sharpens vorticity gradients, acting against both viscosity and ‘eddy-viscosity’
effects which attempt to smooth the very sharp gradients created near the wall. As
remarked by Lighthill (1963, p. 96), ‘turbulence redistributes the vorticity in such a
way that viscous diffusion becomes more effective in countering the amplitude of the
disturbances’. (iii) This intense competition between up-gradient flux on the one hand,
and diffusion away from the wall by molecular and turbulence effects on the other, is
narrowly won by the latter, since the net vorticity produced at the wall by the Lighthill
source (1.1) must be transferred away under statistically steady conditions. Note that
Lighthill’s argument presumes that the total pressure p + (1/2)|u|2 is continuous across
accelerating turbulent boundary layers, so that the mean vortex production at the wall
with steady, external mean velocity U = 〈u〉 is given by U∂xU. (iv) Finally, Lighthill saw
this up-gradient transport of vorticity toward the wall as a scale-by-scale cascade process,
proceeding by the successive stretching, straightening and strengthening of spanwise
vorticity through a hierarchy of eddy scales. Among the chief results of the present work
will be extensive evidence in support of these insights of Lighthill.

Closely related ideas were developed somewhat after Lighthill’s work in the
adjacent field of quantum superfluids, where Josephson (1965) for superconductors
and Anderson (1966) for neutral superfluids recognized the relation between drops of
voltage/pressure in flow through wires/channels and the cross-stream flux of quantized
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(iii)

z
104ν/U

Fig. II. 21. Distribution of mean vorticity in a boundary layer with uniform

external flow; (i) at beginning, (ii) at end, of transition. Curve (iii) gives rough

values of the root-mean-square fluctuation σ(ω) at the end of transition.

Fig. II. 22. Correlation of inflow with lateral stretching, and outflow with

lateral compression, of vortex lines (the mean flow is normal to the plane of

the paper).

10–3U 2/v

ω

(i)

(ii)

(b)

(a)

Figure 1. From M. J. Lighthill, ‘Introduction: Boundary layer theory’, in: Laminar Boundary Theory, Ed. L.
Rosenhead, pp. 46–113. Copyright © 1963 by Oxford University Press. Reproduced with permission of the
Licensor through PLSclear.

magnetic-flux/vortex lines. Their ideas closely mirror those of Taylor (1932) and Lighthill
(1963) for classical fluids, but Josephson (1965) and Anderson (1966) were seemingly
unaware of those earlier works and the two literatures have subsequently developed
in parallel. In quantum superfluids the Josephson–Anderson relation has become the
paradigm to explain drag and dissipation in otherwise ideal superflow (Packard 1998;
Varoquaux 2015). This understanding is based in particular on the work of Huggins
(1970), who derived a ‘detailed Josephson–Anderson relation’ that exactly relates
energy dissipation to vortex motions. Interestingly, although the target application of
Huggins (1970) was quantum superfluids, his mathematical model was the incompressible
Navier–Stokes equation for a classical viscous fluid. In fact, somewhat later, Huggins
(1994) applied his ideas to classical turbulent channel flow.

More precisely, Huggins (1970, 1994) considered a classical incompressible fluid at
constant density ρ and with kinematic viscosity ν flowing in a channel with accelerations
due both to a conservative force −∇Q and to a non-conservative force −g (with ∇ ×
974 A27-4
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g /= 0), described by

∂tu = u × ω − ν∇ × ω − ∇( p/ρ + |u|2/2 + Q) − g. (1.2)

For example, Q might be the gravitational potential energy density ρgy for vertical height y
(with acceleration due to gravity g), and g might be −∇ · τ p with τ p the stress of a polymer
additive. Huggins (1970, 1994) noted that this equation for the momentum balance may be
rewritten as

∂tui = (1/2)εijkΣjk − ∂ih, (1.3)

with anti-symmetric vorticity flux tensor

Σij = uiωj − ujωi + ν

(
∂ωi

∂xj
− ∂ωj

∂xi

)
− εijkgk, (1.4)

and total pressure or enthalpy

h = p/ρ + |u|2/2 + Q. (1.5)

Here, the total pressure h includes both the hydrostatic and the dynamic pressures, and the
tensor Σij represents the flux of the jth vorticity component in the ith coordinate direction.
The latter interpretation is made clear by taking the curl of the momentum equation (1.2),
which yields a local conservation law for vector vorticity

∂tωj + ∂iΣij = 0. (1.6)

The first term in (1.4) for Σij represents the advective transport of vorticity, the second
represents transport by nonlinear stretching and tilting, the third represents viscous
transport and the fourth represents transport of vorticity perpendicular to an applied,
non-conservative body force g akin to the Magnus effect. The stretching/tilting term
(ω · ∇)u in the Helmholtz equation violates material conservation, so that Dtω /= 0, but it
can nevertheless be written as a total divergence ∇ · (ωu) and thus interpreted as a space
transport of vorticity (see § 2). Equation (1.3) thus shows the deep connection between
momentum balance and vorticity transport, and this equation is the most elementary
version of the classical Josephson–Anderson relation; see also the insightful study of
Brown & Roshko (2012) in the context of flow past a cylinder and the more recent work
of Terrington et al. (2021), who discuss at length the meaning and applications of the
anti-symmetric vorticity flux tensor (1.4), which they call the ‘Lyman–Huggins tensor’.

A first attempt was made by Eyink (2008) to unify these parallel theories in the context
of two canonical turbulent flows, plane-parallel channels and straight pipes. He discussed
the physical significance of the observation by Taylor (1932) and by Huggins (1994) that
there is a mean cross-stream vorticity flux driven by the downstream pressure gradient. In
the context of channel flow, with x the streamwise direction, y the wall-normal direction
and z the spanwise direction, this average relation takes the form

〈Σyz〉 = 〈vωz − wωy − ν(∂yωz − ∂zωy)〉 = ∂x〈p〉 = −u2
τ /h, (1.7)

where Σyz is the wall-normal flux of spanwise vorticity, h is the channel half-height and
uτ is the friction velocity. The standard result that ∂y∂x〈p〉 = 0 (Tennekes & Lumley
1972, § 5.2) is seen to be a consequence of vorticity conservation ∂y〈Σyz〉 = 0. Eyink
(2008) noted that Huggins’ vorticity flux tensor (1.4) and Lighthill’s vorticity source (1.1)
in the form of Lyman (1990) are simply related by σ = n · Σ, so that the origin of the
constant mean flux is the vorticity created at the wall, which flows toward the channel
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centre to be annihilated by opposite-sign vorticity from the facing wall. Eyink (2008)
referred to this phenomenon as an ‘inverse vorticity cascade’, but note that the vorticity
transport involved here is down-gradient, opposed by the up-gradient cascade mechanism
proposed by Lighthill (1963). The term ‘inverse cascade’ was used by Eyink (2008)
because the mean vorticity flux is in the opposite direction as the mean flux of momentum,
that is, out from the wall and via eddies of increasing size at further distances from the wall.
Just as spatial momentum flux in wall-bounded turbulence can be interpreted as a stepwise
cascade (Tennekes & Lumley 1972; Jiménez 2012), so also spatial vorticity transport can
be understood as a cascade through a hierarchy of eddies whose sizes scale with distance
to the wall.

A possible mechanism for this cascade is lifting and growing hairpin-like vortex
structures in the inertial sublayer of the channel flow. It was shown by Eyink (2008) that
constant mean down-gradient flux of vorticity via the nonlinear dynamics can in fact be
explained by the attached-eddy model (AEM) of Townsend (1976) (see Marusic & Monty
(2019) for a recent comprehensive review). Since the AEM is not designed to describe the
statistics and dynamics of the fine-grained vorticity (Marusic & Monty 2019, § 4.1), it is
not entirely trivial that the model should account for the mean vorticity flux. However,
this flux can be deduced from the Reynolds stress by the standard relation (Taylor 1915;
Tennekes & Lumley 1972; Klewicki 1989)

〈vωz − wωy〉 = −∂y〈u′v′〉, (1.8)

from which it can be shown that the AEM implies 〈vωz − wωy〉 ∼ −u2
τ /h for y � yp,

where yp is the wall distance of the peak Reynolds stress (Eyink 2008). On the contrary, for
y < yp it follows directly from (1.8) that 〈vωz − wωy〉 > 0, whose positive sign indicates
up-gradient nonlinear transport of (negative) spanwise vorticity. It was noted by Eyink
(2008) that this up-gradient transport is not obviously explained by attached eddies and
we shall present here strong evidence that the underlying mechanism is in fact that of
Lighthill (1963). A further impetus to our investigation comes from recent work of Eyink
(2021), who showed that the ‘detailed relation’ of Huggins (1970) for energy dissipation
in channel flows holds also for flow around a uniformly moving solid body. In fact, this
result holds much more generally for bodies that are moving non-uniformly and even
changing shape and volume (Eyink, unpublished) and also for channel flows with periodic
boundary conditions (Kumar & Eyink, unpublished). In all of these situations, there is flux
of vorticity away from the solid surface and net drag is given instantaneously by the spatial
integral of spanwise vorticity flux across the streamlines of a background potential Euler
flow.

To gain further insight into the underlying fluid-dynamical mechanisms of turbulent
vorticity cascade, we here carry out a detailed investigation of the turbulent vorticity
dynamics in the simplest case of turbulent channel flow. Although viscous diffusion plays
a dominant role in the mean vorticity transport out to the wall distance yp (Klewicki
et al. 2007; Eyink 2008; Brown, Lee & Moser 2015), its properties follow directly from
the mean velocity profile and are thus relatively easy to understand. We shall therefore
be more concerned with the nonlinear vorticity dynamics and the resulting statistics of
the velocity–vorticity correlations 〈vωz〉, 〈wωy〉 at various wall distances. We employ
data for our study from the Johns Hopkins Turbulence database (JHTDB) which stores
the output of a direct numerical simulation (DNS) of turbulent channel flow at friction
Reynolds number Reτ = 1000 (Li et al. 2008; Graham et al. 2016). This simulation
was performed using the petascale DNS channel-flow code PoongBack (Lee, Malaya
& Moser 2013) with driving force provided by a constant applied pressure gradient.
The resulting online database archives full space–time fields of velocity and pressure
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throughout the channel domain and for about one flow-through time. The archived data
permit us to calculate not only the velocity–vorticity correlations but also their Fourier
cospectra in streamwise wavenumber kx, spanwise wavenumber kz and two-dimensional
(2-D) wavenumber (kx, kz), which prove particularly illuminating of the physics.

It is important to emphasize once again the dual role of the quantity (u × ω)x =
vωz − wωy that is studied in this work. On the one hand, it is the streamwise component
of the ‘vortex force’ which appears in the momentum balance (1.2), while on the other
hand it is the inertial contribution to the component Σyz of the conserved vorticity current.
Much prior work has focused on the role of the mean vortex force 〈vωz − wωy〉 = 〈v′ω′

z −
w′ω′

y〉, interpreted as a ‘turbulent inertia’ (TI) term through (1.8). Separate contributions
〈v′ω′

z〉 and 〈w′ω′
y〉 were measured experimentally by Klewicki (1989) and weighted joint

probability density functions (p.d.f.s) of v′, ω′
z and of u′, ω′

z were obtained by Klewicki,
Murray & Falco (1994). A four-layer structure for wall-bounded flows was proposed by
Wei et al. (2005), based on the relative magnitude of the viscous and TI term in the
mean momentum equation (see also Klewicki et al. 2007). The wall-normal derivatives
of streamwise spectra of the Reynolds shear stress, equal to the nonlinear flux cospectra
for periodic flows, were studied as ‘net force spectra’ for pipe flows (Guala, Hommema
& Adrian 2006) and for channel flows and zero-pressure-gradient boundary layers
(Balakumar & Adrian 2007). An in-depth study of the statistics and streamwise spectral
behaviour of the velocity–vorticity products for turbulent boundary layers, at several
Re values, was carried out by Priyadarshana et al. (2007). They compared streamwise
spectra for velocity and vorticity with the corresponding cospectra and plotted profiles
of the velocity–vorticity products and correlation coefficients. The correlations between
velocity and vorticity were seen to arise from a ‘scale selection’ associated with peaks
in the velocity and vorticity streamwise spectra. Monty, Klewicki & Ganapathisubramani
(2011) interpret the TI term as a momentum source/sink (depending upon the sign) and
carried out detailed calculations of the streamwise and spanwise two-point correlations of
v with ωz and w with ωy in a DNS of channel flow. They drew an important conclusion,
which anticipates our own, that ‘the mean Reynolds stress gradient at any wall-normal
location is a direct result of a slight asymmetry in the characteristic vortical motions
of the flow’. The work of Wu, Baltzer & Adrian (2012), primarily studied streamwise
very large-scale motions and their relations to shear stress in DNS of pipe flows, but they
computed as well 2-D ‘net force spectra’ jointly in streamwise and spanwise wavenumbers
at four wall-normal locations, scaled with outer units. Morrill-Winter & Klewicki (2013)
carried out experimental investigations for flat plate boundary layers, studying streamwise
cospectra, scale selection, two-point correlations and Reynolds number effects. Chin et al.
(2014) made a detailed analysis of the TI term for DNS of pipe flows, decomposing it into
advective transport and vorticity stretching/tilting and studying wall-normal variation of
the respective streamwise cospectra and the combined ‘net force spectrum’, as well as joint
p.d.f.s of v′, ω′

z.

A smaller body of work has studied velocity–vorticity correlations instead as the
nonlinear contribution to mean vorticity flux, following the early work of Taylor (1915,
1932), including the DNS studies of Bernard (1990), Crawford & Karniadakis (1997)
and Vidal, Nagib & Vinuesa (2018). In DNS of channel flows over a range of Reynolds
numbers, Brown et al. (2015) studied vorticity flux, highlighting the fact that its mean
is constant across every wall-parallel plane for a turbulent pressure-driven channel flow
and evaluating the two nonlinear contributions. Of particular interest is their calculation
of the p.d.f.s of wωy close to the wall and their visualization of the vortex lines passing
through such a region. Experimental measurements for an open channel flow by Chen
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et al. (2014) focused on the contributions of spanwise vortex filaments to Reynolds shear
stress and to vωz. Apart from measuring separate contributions to the advection term from
prograde and retrograde vortices, they observed that the movement away from the wall
yields the significant contribution of spanwise vortex filaments (identified by a swirling
strength-based criterion) to the ‘net force’. These ideas were further explored in Chen
et al. (2018b), where flow structures were classified into four groups based on vorticity
and swirling strength, and contributions made by these structures to the nonlinear vorticity
fluxes were measured.

A key contribution of our work, which distinguishes it from all of the previous studies
cited above, is to make a clear connection of our numerical results with the ideas of
Lighthill (1963) which focus on vorticity dynamics. Based on new theoretical insights
and novel analysis of data using conditional averaging, we shall argue that Lighthill’s
theory provides a compelling explanation of many prior observations. Furthermore,
by a targeted filtering based upon joint velocity–vorticity cospectra, we show that
Lighthill’s ‘up-gradient’ vorticity cascade involves a previously unidentified hierarchy of
non-attached, near-wall eddies, with important implications for theory and modelling.

The detailed contents of this paper are outlined as follows. In § 2 we discuss how
Lighthill’s Lagrangian mechanism is represented by the Eulerian vorticity flux tensor, a
necessary theoretical prelude so that our subsequent numerical results can be appropriately
interpreted. The main § 3 of the paper presents our numerical study. In § 3.1 we study the
mean vorticity flux and its component velocity–vorticity correlations, validating our own
numerical results against previously published results and illustrating the mean flow of
vorticity along isolines of total pressure. The next § 3.2 presents results on conditional
averages of fluxes given the direction of the wall-normal velocity as inward or outward,
in order to investigate the proposed strong correlation. Section 3.3 presents results on
cospectra of the nonlinear vorticity flux and velocity–vorticity correlations, both 1-D
spectra in the streamwise and spanwise wavenumbers and joint 2-D spectra. Then in § 3.4
we use the 2-D cospectra to divide the velocity and vorticity fields into ‘down-gradient’
and ‘up-gradient’ eddy contributions and we visualize the coherent vortices which
dominate transport in both of these components. Finally, in the conclusion § 4 we review
our main results, draw relevant lessons and discuss important future directions. Incidental
numerical results of various sorts are presented in supplementary materials (available at
https://doi.org/10.1017/jfm.2023.609).

2. The Lighthill mechanism and Huggins’ vorticity flux tensor

In order to properly interpret the results of our numerical study, we must first discuss
carefully the physical and mathematical meaning of Lighthill’s arguments. This is
necessary especially because Lighthill’s dynamical picture is essentially Lagrangian
whereas Huggin’s vorticity flux tensor (1.4) is Eulerian. Thus, the relation between
Lighthill’s mechanism and the predicted behaviour of Huggins’ flux can be somewhat
subtle and even counter-intuitive.

The basic picture behind Lighthill’s argument is sketched as a cartoon in figure 2. Shown
there is a representative vortex line carrying spanwise vorticity and also wall-normal
vorticity associated with a lifted arch. If the flow is inward toward the wall (v < 0) at this
location, then, by incompressibility, there must be diverging flow in the spanwise and/or
streamwise directions. See figure 2(a). This divergent flow should generate corresponding
velocity gradients in those directions which Lighthill argued should be strongest spanwise
because the well-known longitudinal organization of the near-wall structures would
tend to reduce streamwise gradients. According to the Helmholtz laws of ideal vortex
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Vorticity cascade and turbulent drag in wall-bounded flows
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Figure 2. Cartoon of Lighthill’s Lagrangian mechanism (‘vortex lines . . . stretch as they approach the surface
and relax as they move away from it’) for typical vortex lines in the buffer and log layers. (a) Inflow and vortex
stretching, |ωz| > |ωz,0|; (b) outflow and vortex compression, |ωz| < |ωz,0|. In both cases, initial vorticity is
given by ωz,0 and final vorticity by ωz.

dynamics, one would therefore expect the vortex line to be, first, carried down by the flow
closer to the wall and, second, flattened and stretched out, principally in the spanwise
direction. This action of the Lagrangian flow is indicated by the blue dashed arrows
in figure 2(a) which depict typical particle trajectories. Since the stretched vortex line
should intensify, Lighthill suggested that the plausible result would be increased spanwise
vorticity concentrated closer to the wall. The opposite effect should occur in regions of
flow outward from the wall (v > 0), which corresponds to the same cartoon but reversing
all velocity vectors given by red arrows and all Lagrangian trajectories given by blue
dashed lines. See figure 2(b). In this case the vortex line according to ideal laws would
be lifted away from the wall, compressed in the spanwise direction and correspondingly
weakened. Such motions, according to Lighthill, would reduce the spanwise vorticity at
further distances from the wall, so that the net effect of both types of motion would be
an increase in the intensity of vorticity at the wall and a steepening of its wall-normal
gradient. However, note that, according to the Kolmogorov theory of local isotropy
(Tennekes & Lumley 1972), streamwise and spanwise velocity gradients may be of a
similar magnitude at small enough scales. Therefore, the association of inflow/outflow
with stretching/relaxing of spanwise aligned vortex lines is expected to be primarily valid
at scales that are large enough to possess the streamwise organization associated with
stronger spanwise gradients.

An obvious concern with this picture is its neglect of viscous diffusion effects, which
certainly must be substantial in the near-wall buffer layer and viscous sublayer. In fact,
as noted above, viscous diffusion dominates the average wall-normal flux of spanwise
vorticity out to the location yp of peak Reynolds stress (Klewicki et al. 2007; Eyink
2008; Brown et al. 2015). The viscous modifications of ideal vortex dynamics can
be incorporated by means of a stochastic Lagrangian formulation of incompressible
Navier–Stokes in vorticity–velocity representation (Constantin & Iyer 2011; Eyink, Gupta
& Zaki 2020a), which represents viscous diffusion of vorticity by an average over
stochastic Brownian perturbations of Lagrangian particle motions. This approach was
exploited by Wang et al. (2022) to investigate the origin of the enhanced wall vorticity
and skin friction in a transitional zero-pressure-gradient boundary layer, as discussed in
the passage from Lighthill (1963) quoted in the Introduction. This study used the Lighthill
vorticity source σ in (1.1) as Neumann boundary conditions, so that the wall vorticity at
points of local maximum amplitude could be expressed in terms of two contributions:
(i) the Lighthill source integrated over earlier times and (ii) the initial conditions for the
vorticity as modified by subsequent advection, stretching and viscous diffusion. It was
found that the dominant source of the high wall vorticity is the spanwise stretching of
pre-existing spanwise vorticity, exactly as argued by Lighthill (1963). In particular, as
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also suggested by Lighthill, the rate of production by the vorticity source σ was ‘too
small to explain’ the maxima. This contribution was found in general to be about an
order of magnitude smaller than that from spanwise stretching and also found to give
vorticity contributions of both signs with about equal probability, thus often reducing the
magnitude. The conclusion of Wang et al. (2022) from their analysis of the numerical
data was that, despite strong viscous effects in the near-wall region, the theory of Lighthill
(1963) explained well the origin of high wall-stress events observed in transitional flow.

The same stochastic Lagrangian methods can be applied also to fully developed
turbulent channel flow, but here, motivated by recent work of Eyink (2021) and Kumar &
Eyink (unpublished) on the Josephson–Anderson relation, we instead aim to understand
the vorticity dynamics in terms of Huggins’ vorticity current tensor (1.4). Because the
vorticity conservation law (1.6) is expressed in Eulerian form, its relationship to Lighthill’s
Lagrangian picture is not entirely self-evident. The physical meaning of Huggins’ tensor
Σij has previously been discussed by Terrington et al. (2021) and Terrington, Hourigan &
Thompson (2022) using control volumes and control surfaces. To adapt their arguments,
we integrate (1.6) over a volume V to obtain

d
dt

∫
V

ωj d3x = −
∮

∂V
niΣij dA, (2.1)

where n is the outward-pointing normal at the boundary ∂V and each individual term
in niΣij should represent a rate of change of ωj integrated over V. The meaning of the
nonlinear term uiωj is transparent, as (n · u)ωj just represents the advection of ωj across
the boundary ∂V. The other nonlinear contribution −ujωi to the flux upon taking its
divergence yields the term −(ω · ∇)u in the Helmholtz equation associated with vortex
stretching and tilting, so that it must somehow express that physics. It is worth remarking
that Huggins (1994, p. 326), concluded that this term ‘does not appear to have a particularly
simple interpretation’ but suspected that it is ‘a vortex stretching term’. The relation with
stretching/tilting is clarified by figure 3(a), which plots schematically the first ‘up-gradient’
configuration considered by Lighthill (1963) with flow inward to the wall advecting and
stretching/tilting a hairpin-like vortex. We have drawn as control volume a rectangular box
selected so that only the term −wωy in the flux Σyz contributes to growth of spanwise
vorticity ωz in the volume, whereas the advection term vωz does not contribute. Because
of the diverging flow, two contributions with signs ωy > 0, w > 0 and ωy < 0, w < 0
occur at the bottom face of the box and these correspond indeed to an increase of
(negative) spanwise vorticity in the pictured control volume, due to the lengthening of
the spanwise vortex line segment and the tilting of the wall-normal vortex line segments.
It is notable that the contribution −wωy < 0 at the bottom face in figure 3(a) corresponds
to an outward flux of spanwise vorticity into the control volume, with a sign which is
formally ‘down-gradient’ or away from the wall. By contrast, the advection term has sign
vωz > 0 which is ‘up-gradient’ and from Lighthill’s Lagrangian argument we may expect
that the net nonlinear transfer is ‘up-gradient’ for this flow configuration with v < 0. If
we consider instead the outward flow configuration with v > 0 illustrated in figure 3(b),
which compresses and weakens the spanwise vorticity, then the signs would both reverse
to vωz < 0 and −wωy > 0 (because of converging flow), but would remain opposite. The
advective term is now making a ‘down-gradient’ contribution and the stretching/tilting
term is making an ‘up-gradient’ contribution, with the net nonlinear flux expected to be
‘up-gradient’.

To determine whether the net vorticity flux from nonlinearity is ‘up-gradient’ or
‘down gradient’, it is important consider the combined term uiωj − ujωi, which is
anti-symmetric. As stressed by Terrington et al. (2021), the anti-symmetry Σji = −Σij
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Figure 3. Eulerian control-volume analysis of the same vorticity dynamics illustrated in figure 2. (a) Inward
flow (v < 0) and (b) outward flow (v > 0). The control volumes are chosen to highlight the contribution of the
stretching/tilting term to the change of integrated ωz in the volume by flux across the bottom face.

expresses the fundamental property that vortex lines cannot end in the fluid so that flux
of ωj in the ith direction is necessarily associated with an equal and opposite flux of ωi
in the jth direction. This relation of flux anti-symmetry and non-termination of vortex
lines is clearly illustrated in figure 3(a), for example. In the flow sketched there, the
depicted spanwise flux Σzy of ωy-vorticity implies that the ωz-line must lengthen, because
the vortex line which enters at one z-location in the bottom face must exit at the other.
The resulting growth of ωz-vorticity in the interior by stretching and tilting corresponds
to a wall-normal flux Σyz = −Σzy outward into the control volume. To determine from
our numerical data whether nonlinear flux of spanwise vorticity is ‘down-gradient’ or
‘up-gradient’ it will therefore be crucial to consider the combined quantity vωz − wωy that
contains both advection and stretching/tilting, since these two effects cannot be separated
physically without violating the kinematic condition of non-terminating vortex lines.

The anti-correlated sign of the two separate flux contributions from advection and
stretching/tilting will be crucial, on the other hand, in interpreting our numerical results
below, since this anti-correlation is a key Eulerian signature of Lighthill’s mechanism.
Figure 3(a) shows that the strengthening of spanwise vorticity during an inflow is
represented in the Eulerian flux by a ‘down-gradient’ stretching/tilting term, even though
the net flux is ‘up-gradient’. Similarly, figure 3(b) shows that the weakening of spanwise
vorticity during an outflow is represented in the Eulerian flux by an ‘up-gradient’
stretching/tilting term, even though the net flux is ‘down-gradient’. This anti-correlation
of the stretching/tilting term with the net flux is thus a direct manifestation of Lighthill’s
mechanism. It should be clear that this anti-correlation of signs depends upon the geometry
of the vortex line. For example, if the vortex line in figure 3(a) were instead bent inward
into a U-shape and entered the control volume from the top face, then the sign of the
stretching/tilting term would have become −wωy > 0. This inward flux into the control
volume would again correspond to vortex strengthening, but it would now represent
formally ‘up-gradient’ transport positively correlated with the advection term vωz > 0.

Because of the assumption of a specific vortex line geometry in figure 3, the suggested
anti-correlation between the signs of the advection and stretching/tilting terms can be
claimed only to be consistent with Lighthill’s ideas, which should be further investigated.
More positively, the relative sign of the advection term and of the stretching/tilting term
potentially contains some information about the typical geometry of vortex lines.

3. Numerical study of vorticity flux in pressure-driven channel flow

We now report on our empirical study of the flux of spanwise vorticity, hereafter referred
to simply as ‘vorticity flux’. This component of the vorticity is crucial to drag and energy
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dissipation, since its flux is directly related to streamwise pressure drop. As already
mentioned in the Introduction (§ 1), we employ DNS data of channel flow at Reτ = 1000
from the JHTDB (see Li et al. 2008; Graham et al. 2016). The right-handed Cartesian
coordinate system for these data is the same as shown in figures 2 and 3(a), with x
streamwise, y wall-normal and z spanwise. Although the database provides built-in tools
to calculate velocity and vorticity gradients from Lagrange interpolants, our study of
vorticity dynamics required greater accuracy for these crucial quantities. We have thus
used the database cut-out service to download time snapshots of data for the entire channel.
Gradients in the spanwise and streamwise directions are then calculated spectrally by Fast
Fourier Transform, and wall-normal gradients are calculated using seventh-order basis
splines based on the collocation points of the original simulation (Graham et al. 2016).
All statistics are thereafter calculated by averaging over wall-parallel planes in the x- and
z-directions of homogeneity, as well as over multiple snaphots. The steady-state statistics
presented here were calculated with 38 time snaphots. We shall generally plot our results
only for the bottom half of the channel, with reflected results from the top half included to
double the sample size of our averages.

3.1. Mean vorticity flux and flow lines
To provide an intuitive understanding of Huggins’ vorticity flux tensor (1.4) and of the
mean vorticity dynamics in turbulent channel flow, we first present numerical results on
the average flux 〈Σij〉. An important theoretical result which follows directly by averaging
the momentum balance equation (1.3) is the steady-state relation between vorticity flux
and the gradients of the total pressure

〈Σij〉 = εijk∂k〈h〉. (3.1)

This general result implies immediately for channel flow that

〈Σyz〉 = ∂x〈h〉, 〈Σxz〉 = −∂y〈h〉, 〈Σxy〉 = 0, (3.2a–c)

with all other components given by anti-symmetry. Since it is the flux of spanwise vorticity
only which enters into the Josephson–Anderson relation for plane-parallel channel flow
(Kumar & Eyink, unpublished) we shall focus on its dynamics in the (x, y)-plane (since
Σzz = 0). It can be very instructive about the physics to trace the integral flow lines
of mean fluxes for transported quantities such as energy and momentum (Meyers &
Meneveau 2013) and we carry out this construction for the conserved spanwise vorticity.
Here, there is a substantial simplification because, as a simple consequence of (3.2a–c),
the integral lines of the mean flux vector (〈Σxz〉, 〈Σyz〉) coincide with the isolines
of mean total pressure 〈h〉 = P + 1

2 U2 + 1
2 〈|u′|2 + |v′|2 + |w′|2〉. We follow the usual

notations, U = 〈u〉, u′ = u − U, P = 〈p〉, etc. In figure 4 we plot these isolines resulting
from numerical computation of 〈h〉. Consistent with the remark of Lighthill (1963)
that ‘tangential vorticity created is in the direction of the surface isobars’, the mean
vorticity generated at the wall is spanwise and flows outward from points of constant
〈h〉 = P at y = 0. The vorticity flux is approximately three orders of magnitude larger
streamwise than wall normal, mainly because of the large term UΩz contributing to
〈Σxz〉, with Ωz = −∂yU. Thus, the mean vorticity flow lines extend approximately 250
channel half-widths downstream as they cross from the wall to the channel centre,
reflecting the strong streamwise advection of vorticity. It is, however, the much smaller
wall-normal vorticity flux which is directly related to drag and energy dissipation, since
〈Σyz〉 = ∂xP by (3.2a–c). As earlier remarked by Eyink (2008), the latter takes on the
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Figure 4. Flow lines of mean spanwise vorticity flux (〈Σxz〉, 〈Σyz〉) obtained as the isolines of mean total
pressure 〈h〉.
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Figure 5. Vorticity flux in a pressure-driven periodic channel, averaged in time as well as in the streamwise
and spanwise directions. A good agreement is found with expected constant behaviour across the height
of the channel. For y+ < y+

p (= 53), the nonlinear term gives a strong up-gradient contribution to the flux
which is balanced by a larger down-gradient viscous contribution. As y increases above yp, the nonlinear term
contributes an increasing share of the down-gradient flux while the viscous contribution decreases as y grows
so that, for y+ � 250, the nonlinear contribution carries nearly the entire vorticity flux.

y-independent value 〈Σyz〉 = −u2
τ /H because of the conservation relation ∂y〈Σyz〉 =

∂y〈Σyz〉 + ∂x〈Σxz〉 = 0 and the Lighthill (1963) relation for wall generation of vorticity
by tangential pressure gradients. This argument assumes as well the x-independence of
steady-state averages such as 〈Σxz〉, which is evident in the parallel vorticity flux lines
of figure 4.

Exact results of Klewicki et al. (2007), Eyink (2008) and Brown et al. (2015) for the
nonlinear 〈vωz − wωy〉 and viscous −ν〈∂yωz − ∂zωy〉 contributions to the mean vorticity
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〈–wωy〉+ (Brown et al. 2015)
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〈–wωy〉+ (JHTDB)

〈vωz〉+ (del Alamo et al. 2004)
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Figure 6. Contributions to nonlinear vorticity flux averaged over time and wall-parallel planes, computed from
channel-flow data at Reτ = 1000 from JHTDB (Graham et al. 2016) and from the earlier numerical simulation
of channel flow at Reτ = 1000 by Brown et al. (2015), Reτ = 934 by Del Alamo et al. (2004), as reported in
Monty et al. (2011), and from experimental measurements for an open channel flume at Reτ = 740 by Chen
et al. (2014).

flux 〈Σyz〉 provide a further check of the reliability of our numerics. Our numerical data
are plotted in figure 5 and show good agreement with the theoretically required behaviour.
First, we observe that the magnitude of the mean vorticity flux is constant in y to a
very good approximation, except for small numerical oscillations very close to the wall
(y+ < 10), and it matches quite well the average streamwise pressure gradient. This means
that, on average, negative spanwise vorticity (the same sign as the mean vorticity) is being
transported away from the wall and that overall, the flux is down-gradient. As in the
Introduction, we shall refer to flux of vorticity away from the wall as ‘down-gradient’,
since the vorticity is already highly concentrated at the wall (Lighthill 1963), and flux in
the opposite direction will be referred to as ‘up-gradient’. It was also shown by Klewicki
et al. (2007), Eyink (2008) and Brown et al. (2015) that, while viscous flux should be
expected to be always down-gradient, the net nonlinear flux will be down-gradient above
the height of the peak Reynolds stress (y+ = y+

p = 53 for the data at Reτ = 1000) but
up-gradient below that height and opposing the large viscous flux there. These theoretical
results are well confirmed by our empirical data in figure 5. In addition, we have calculated
the separate contributions of the advective (vωz) and stretching/tilting (−wωy) terms to
the nonlinear flux, for which no exact predictions exist. However, our results for these two
quantities plotted also in figure 6 agree well with those earlier reported by Monty et al.
(2011), Brown et al. (2015) and Chen et al. (2018b) from the channel-flow simulation of
Del Alamo et al. (2004) at Reτ = 934 and also with the experimental results of Chen et al.
(2014) for an open channel flume at somewhat lower Reτ = 740. Similar observations
have been made both at lower and at higher Reynolds numbers, but we postpone until our
conclusions section the discussion of the important issue of Re-dependences. Confirming
those earlier studies, we find that both contributions are down-gradient in the outer range
(y+ � 300) and both up-gradient in the near wall (y+ � 10), but have opposite signs in
the intermediate range corresponding roughly to the logarithmic mean velocity profile
(30 � y+ � 300). Note that we use the term ‘log layer’ for this range rather than the
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Figure 7. Contributions from regions where turbulent flow is outward (v′ > 0) and inward (v′ < 0), to the
(a) nonlinear flux, (b) convection/advection and (c) stretching/tilting, averaged over time and wall-parallel
planes, plotted as a function of wall distance.

frequent term ‘inertial sublayer’ because, as pointed out by Klewicki et al. (2007), Eyink
(2008) and Brown et al. (2015), viscous diffusion dominates mean vorticity transport at
least up to yp. In this logarithmic layer the nonlinear advection term is also down-gradient
but the stretching/tilting term up-gradient, with advection dominating for y � yp and
stretching/tilting dominating for y � yp. The importance of the stretching/tilting term in
the range y � yp is suggestive of Lighthill’s mechanism and the anti-correlation there
is reminiscent of the opposite signs found in the control-volume analysis of figure 3.
However, to identify precisely whether the vorticity up-gradient transport occurs by
Lighthill’s mechanism, we must study the crucial question of correlation with motion
inward (v < 0) or outward (v > 0) from the wall.

3.2. Evidence for Lighthill’s mechanism from flux–velocity correlations
A crucial feature of the theory of Lighthill (1963) is the proposed correlation between
vorticity strengthening and inward motion toward the wall, and likewise vorticity
weakening and outward motion away from the wall. To test for this key correlation we
consider partial averages depending upon the two conditions v′ > 0 and v′ < 0, where
the wall-normal velocity fluctuation is v′ = v since V = 0. Note that by ‘partial average
subject to X’ we mean the average conditioned upon the event X but further multiplied
by the probability of X. Defined in this manner, the sum of the partial averages for
the two exclusive events v′ > 0 and v′ < 0 yields the total average. In figure 7(a) we
plot these partial averages for the total nonlinear flux vωz − wωy. Although Lighthill’s
proposed mechanism is essentially Lagrangian, we see a clear correlation in the Eulerian
vorticity flux, with outflow (v > 0) associated at all wall distances with down-gradient
mean vorticity flux and inflow (v < 0) associated with up-gradient mean flux, except
possibly very near the centre of the channel. The inflow contribution appears to prevail
for y < yp, where the net nonlinear flux is up-gradient. To gain further insight into the
vorticity dynamics, we consider next the partial averages of the separate flux contributions
from advection and stretching/tilting.

The partial averages of advective vorticity flux vωz are plotted in figure 7(b), which
exhibit the same correlation as the total: down-gradient flux is associated with outflow
and up-gradient flux with inflow (except at the channel centre). This correlation is
essentially obvious in the near-wall region since instantaneous vorticity has the sign
ωz < 0 nearly always there, the same sign as the mean vorticity Ωz < 0. Note that the
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partial average from outflow prevails above the buffer layer, where the combined average
is down-gradient. The dominance of outflow over inflow can be easily understood if the
wall-normal velocity magnitudes |v| are roughly comparable for the two events, but if
spanwise vorticity magnitudes |ωz| are generally greater for flows originating near the wall.
We can thus have net advection of vorticity away from the wall, even though there is no net
advection of mass. In contrast to this down-gradient behaviour in the log layer, we note that
net mean advection is up-gradient for y+ < 10. This result is plausibly explained if inflow
events are correlated with locally higher spanwise vorticity due to stretching of spanwise
aligned vortex lines in the near-wall region and outflow events with locally weaker vorticity
due to relaxation and attenuation of vortex lines. These conclusions and interpretations
agree with earlier work of Klewicki et al. (1994), who measured experimentally the joint
p.d.f. P(v′, ω′

z) of the fluctuations of wall-normal velocity v′ and spanwise vorticity ω′
z

in a turbulent zero-pressure-gradient boundary layer. Their results showed for y+ = 5.3
that the mean 〈v′ω′

z〉 gets most of its contribution from quadrants Q1 and Q3 where v′
and ω′

z are positively correlated, consistent with Lighthill’s mechanism. Klewicki et al.
(1994) interpreted this result apparently somewhat differently in terms of low-speed streaks
with u′ < 0, ω′

z > 0 moving upward with v′ > 0, and high-speed streaks with u′ > 0,

ω′
z < 0 moving downward with v′ < 0. However, these observations are not inconsistent

with Lighthill’s argument (see especially the remarks at the end of this subsection and
figures A.1–A.2 in the supplementary material. Klewicki et al. (1994) observed also that
〈v′ω′

z〉 < 0 for y+ > 10 with the main contributions from quadrants Q4 and especially Q2
of the p.d.f. P(v′, ω′

z), and they explained this down-gradient transport in essentially the
same manner as we have.

The partial averages of the stretching contribution −wωy to vorticity flux plotted in
figure 7(c) show diametrically opposite correlations with wall-normal velocity as those
for the advection term in the buffer layer, the log layer and some of the outer layer. The
plot shows that in and above the buffer-layer inflow is associated with down-gradient
flux, while outflow is associated with up-gradient flux (except very near the channel
centre). This opposite correlation may be explained by the control-volume analysis in
§ 2, which associates down-gradient flux with the line-stretching mechanism for v′ < 0
(figure 3a) and up-gradient flux with the corresponding line-compressing mechanism
for v′ > 0 (figure 3b). The observed anti-correlation between the advection term in
figure 7(b) and the stretching term in figure 7(c) is thus one of our key pieces of
evidence in favour of Lighthill’s mechanism, since ‘down-gradient’ stretching flux during
downflow is consistent with strengthening spanwise vorticity and ‘up-gradient’ stretching
flux during upflow is consistent with weakening spanwise vorticity. We see that the outflow
contribution (v′ > 0) prevails in the combined average, implying that the stretching/tilting
term contributes a net up-gradient flux across the buffer and log layers. We may explain
this again as a consequence of the near equality of spanwise velocity magnitudes |w| for
the two conditions but with wall-normal vorticity magnitude |ωy| larger nearer the wall
and smaller further away.

For y+ < 15, by contrast, inflow and outflow in figure 7(c) are both associated with
up-gradient vorticity flux from the stretching/tilting term. The outflow term makes the
larger contribution, which is now augmented by a smaller contribution from the inflow. A
different mechanism than Lighthill’s seems to be at play here. It may be relevant that
all nonlinear vorticity flux terms vanish identically at the channel wall. Thus, growth
on average of spanwise vorticity in this very near-wall region must be due to nonlinear
flux of vorticity inward, because the nonlinear flux outward must be small. The vortex
lines in this region tend also to be strongly aligned in the spanwise direction, so that the
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Vorticity cascade and turbulent drag in wall-bounded flows

geometry assumed in the control-volume argument is not typical here. Brown et al. (2015)
investigated the buffer-layer statistics of wωy by a DNS nearly identical to ours and their
figure 4 plots vortex lines originating at y+ = 10 in the vicinity of a quasi-streamwise
vortex. They argued that such coherent streamwise vortices are responsible for creating
the ‘up-gradient’ correlation 〈wωy〉 < 0 in the buffer layer, because vortex lines on the
side where v > 0 are lifted into Λ-shape with converging legs, while lines on the v < 0
side are depressed into U-shape with diverging legs. Note that this explanation agrees with
our observation in figure 7(c) that partial averages of wωy are negative both for v > 0 and
for v < 0 in the buffer layer. Brown et al. (2015) anticipated also our result that the partial
average for v > 0 should exceed that for v < 0, arguing that ωy magnitudes for v < 0 will
be weakened by creation of image vorticity at the wall. It is worth emphasizing a further
numerical finding of Brown et al. (2015) that the pointwise values of wωy at y+ = 5 have a
strongly non-Gaussian p.d.f. giving high probability to events with magnitudes ∼25 larger
than the mean, so that the overall negative value 〈wωy〉 < 0 in the buffer layer results from
near cancellation between much larger contributions of opposite signs.

An important conclusion of all three of our figures 7(a)–7(c) is that the net effects seen
in the partial averages of the total nonlinear flux in figure 7(a) are due to the dominance
of the advection term. Thus, of the two effects considered in the control-volume analysis
in § 2, the advective contribution generally outweighs the stretching/tilting contribution. It
might appear paradoxical at first glance that inflow dominates in the total nonlinear flux
for the region y < yp, while outflow dominates in the two separate flux contributions from
advection and stretching/tilting in and above the buffer layer, including a region where y <

yp. However, the advection and stretching/tilting contributions oppose each other in this
region and the outflow contributions suffer more cancellation in the combined flux than do
the inflow contributions. In particular, the ‘down-gradient’ flux from the stretching term
during inflow is comparatively weak. In the viscous sublayer, where the control-volume
analysis of § 2 does not apply, the inflow contribution to the stretching/tilting term is
again weaker than the outflow contribution but both are now ‘up-gradient’, together with
the net advective flux. The opposing nature of the partial averages for the advection
and stretching/tilting terms in the buffer and log layers, in addition to the correlations
with inflow and outflow, strongly support Lighthill’s idea of inflow being correlated with
stretching/strengthening and outflow with compression/weakening of vortex lines, thereby
providing a posteriori validation of his theory.

In order to make an objective assessment of the evidence we have investigated other
possible correlations as well. However, none of these alternative correlations presented
such a clear picture as the correlations with outflow/inflow. Thus, we present these
alternative correlations in the supplementary materials for completeness. For example, we
considered partial averages of the three flux terms vωz − wωy, vωz, and −wωy conditioned
on ‘low-speed’ (u′ < 0) and ‘high-speed’ (u′ > 0) events (Meinhart & Adrian 1995; Kim
& Adrian 1999; Hwang et al. 2016; Hwang & Sung 2018), as shown in figure A.1 of
the supplementary materials. While there is a clear correlation of the advective term
(down-gradient for low speed and up-gradient for high speed, consistent with Klewicki
et al. 1994), the stretching term is found to be insensitive to the conditions u′ > 0 and
u′ < 0. Perhaps the most interesting of these additional correlation studies involved the
standard quadrant analysis of the Reynolds stress (Willmarth & Lu 1972; Lu & Willmarth
1973; Bogard & Tiederman 1986; Pope 2000; Lozano-Durán, Flores & Jiménez 2012).
As shown in figure A.2 of the supplementary materials, the partial averages of the
flux terms conditioned on Q2-events (u′ < 0, v′ > 0) or ‘ejections’ are very similar to
those conditioned on v′ > 0 alone, and those conditioned on Q4 events (u′ >, v′ < 0) or
‘sweeps’ are very similar to those for v′ < 0 alone. By contrast, the partial averages for Q1
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and Q3 events are distinctly smaller in magnitude. The relevant conclusion is that much of
the vorticity flux correlations observed in this section with outflow and inflow events arise
from the corresponding ‘active’ regions of the flow, Q2 and Q4, which contribute also to
the Reynolds shear stress. See Vidal et al. (2018) for related results discussed more in the
supplemental materials, § A.

3.3. Velocity–vorticity cospectra
The main prediction of the Lighthill (1963) theory is up-gradient vorticity transport
toward a solid wall, with eddy contributions naturally depending upon the size of eddies
relative to the wall distance y. Since the theory posits strong spanwise stretching, the
vorticity transport effects should be particularly sensitive to the spanwise extent of eddies.
This motivates us to consider the 1-D spanwise vorticity flux cospectrum φvωz−wωy(kz)
which gives the net contribution of eddies with spanwise wavenumber magnitude kz or
corresponding wavelength λz = 2π/kz. Such a cospectrum may defined for any direction
of homogeneity (x, z, or a linear combination thereof) by taking FFTs of velocity and
vorticity, followed by an inner product, and averaging in time over snapshots and along
the orthogonal homogeneous direction. The cospectrum so defined yields a spectral
decomposition of the nonlinear vorticity flux

∫ ∞

0
φvωz−wωy(ki, y) dki = 〈vωz − wωy〉( y), ki = kx or kz. (3.3)

These velocity–vorticity cospectra are identical to the ‘net force spectra’, defined as the
wall-normal derivative of the Reynolds shear stress cospectra, discussed in prior works of
Guala et al. (2006), Balakumar & Adrian (2007) and Wu et al. (2012). Similar cospectra
φvωz(ki, y), φwωy(ki, y) can be defined for the individual velocity–vorticity correlations
〈vωz〉( y) and 〈wωy〉( y), with prior empirical studies of Priyadarshana et al. (2007) and
Morrill-Winter & Klewicki (2013) having calculated individual streamwise cospectra. We
are aware of no prior studies which computed spanwise cospectra for channel flows,
although analogous cospectra were calculated by Wu et al. (2012) for pipe flows as a
function of azimuthal angle. Therefore, we have validated our calculations of spanwise
cospectra by comparing with the corresponding spatial two-point velocity–vorticity
correlations in the spanwise direction obtained from channel-flow DNS at Reτ = 934 by
Del Alamo et al. (2004), as reported in Monty et al. (2011). This comparison, shown in
figure B.3 in the supplementary materials, confirms our own data presented here.

We plot in figure 8 the spanwise flux cospectra for several y values each in the buffer
layer, log layer and outer layer. To make the results more physically intuitive, we have
plotted the cospectra vs λz/y in log scale and then compensated by the factor kz = 2π/λz
necessary to yield the correct total integrals. We have further normalized by the asymptotic
value −u2

τ /H achieved by the mean nonlinear flux 〈vωz − wωy〉( y) for y � yp. With
the latter normalization, positive values of the cospectra count as ‘down-gradient’ and
negative as ‘up-gradient’. The most striking feature of the results plotted in figure 8 is the
existence of a precise spanwise length scale λ∗z such that the cospectrum is ‘down-gradient’
for λz < λ∗z and ‘up-gradient’ for λz > λ∗z . Furthermore, λ∗z is proportional to y, λ∗z

.= γ y
with a prefactor γ = 3 ∼ 4 over the entire range of y-values; see also the plot of λ∗z vs
y in figure 9. Physically, it is the eddies with spanwise wavelengths λz greater than γ y
that are subjected to the correlated inflow and spanwise stretching proposed by Lighthill
(1963), whereas the eddies with λz less than γ y instead transport vorticity down-gradient
away from the wall. To compare λ∗z with other relevant length scales in wall-bounded
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Figure 8. Normalized spanwise cospectra of the nonlinear term, in the (a) viscous and buffer layers, (b) log
layer and (c) outer layer. Here, the abscissa shows wavelength divided by y.
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Figure 9. Characteristic spanwise wavelengths relevant to nonlinear vorticity transport, defined based on
(3.4), for (a) y < yp and (b) y > yp.

flow, note that the integral length given nominally by 
 = κy for von Kármán constant
κ

.= 0.4 is approximately 10 times smaller. Nickels et al. (2005) have estimated that the
‘production range’ of attached eddies with k−1

x energy spectrum occurs for 15.7y < λx <

0.3H. If we adopt the relation λz ∼ λx/7 suggested by results for 2-D energy spectra in
(kx, kz) (Chandran et al. 2017), then this production range corresponds to λz > 2.24y and
includes the ‘up-gradient’ scales λz > (3 ∼ 4)y identified by our results. However, we
shall present concrete evidence later that the up-gradient vorticity flux is not associated
with wall-attached eddies.

Although the normalized flux cospectra plotted in figure 8 all pass through zero at
λz/y .= 3 ∼ 4, their integrals over log(λz/y) must shift from negative values for y in the
buffer layer, pass through zero at y = yp, and then approach 1 for y � yp, consistent with
the results for 〈vωz − wωy〉( y) plotted in figure 5. This change in the integrated values
occurs via a shift between the two halves of the cospectrum with increasing y, whereby the
negative ‘up-gradient’ branch at λz > λ∗z dominates in the buffer layer but diminishes with
increasing y as the positive ‘down-gradient’ branch at λz < λ∗z increases. This increase
of the down-gradient branch relative to the up-gradient branch continues in the log-layer,
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with the two coming into exact balance at y = yp
.= 53. However, unlike the buffer layer,

increasing distance from the wall in the log layer sees a decrease in the magnitude of
both down-gradient and up-gradient branches. For y further increasing into the outer layer,
the up-gradient branch at λz > λ∗z continues to diminish and the down-gradient branch at
λz < λ∗z stabilizes to a positive cospectrum independent of y. At the extremes, for y+ � 10
there is essentially no down-gradient branch and for y+ � 500 no up-gradient branch.
Physically, the eddies for y+ � 500 (or y � 0.5H) no longer feel the effect of the wall.
These results for the flux cospectrum highlight the delicate balance between competing
fluxes proposed by Lighthill (1963) and restated in § 1. The remarkable persistence of
λ∗z /y = 3 ∼ 4 lends credence to Lighthill’s idea that the up-gradient transport of vorticity
towards the wall is a scale-by-scale cascade process (see § 1), since λ∗z can be viewed as
the ‘smallest’ up-gradient spanwise scale which gets smaller ∝ y as vorticity is transported
nearer to the wall.

The intense competition between nonlinear vorticity transport in opposite directions
arising from different scales of motion, vividly illustrated in figure 8, implies that the
net ‘down-gradient’ transport for y > yp must arise from scales much smaller than y and
likewise the net ‘up-gradient transport’ for y < yp must arise from scales much larger than
y. In order to quantify the extent of cancellation between cospectral regions with opposing
fluxes, we define the fractional cumulative flux

f ( y, Λ) =

⎧⎪⎪⎨
⎪⎪⎩

1
〈vωz − wωy〉( y)

∫ ∞

2π/Λ

φvωz−wωy(kz, y) dkz, if y < yp

1
〈vωz − wωy〉( y)

∫ 2π/Λ

0
φvωz−wωy(kz, y) dkz, if y > yp

(3.4)

which, for y < yp measures the fraction of nonlinear vorticity flux arising from
wavelengths λz < Λ and for y > yp measures the fraction arising from λz > Λ. One
important spanwise scale which may be defined in the range 10 � y+ � 500 where two
opposite-signed branches of the cospectrum co-exist is the ‘break-even’ wavelength λ0

z
satisfying f ( y, λ0

z ) = 0. For y < yp spanwise scales as large as λ0
z > λ∗z must be included

to get exactly cancelling flux, and for y > yp spanwise scales as small as λ0
z < λ∗z must

be included to get cancelling flux. Perhaps even more relevant is the ‘99 %’ wavelength
λ99

z satisfying f ( y, λ99
z ) = 0.99. According to this definition, spanwise scales as large as

λ99
z > λ0

z must be included to get 99 % of the net up-gradient flux for y < yp, and spanwise
scales as small as λ99

z < λ0
z must be included to get 99 % of the net down-gradient flux

for y > yp. Note that at y = yp the cospectrum integrates to zero, and hence λ0
z → ∞ and

λ99
z → ∞ as y ↑ yp, while λ0

z → 0 and λ99
z → 0 as y ↓ yp. Therefore, these length scales

provide useful information about the sizes of eddies yielding the net nonlinear flux, but
they are exaggerated to absurdity for y too close to yp. All of the length scales λ∗z , λ0

z
and λ99

z are plotted together vs y+ for 10 < y+ < 40 in figure 9(a) and for 75 < y+ < 500
in figure 9(b), corresponding to y � yp and y � yp respectively. For y � yp in figure 9(a)
the plotted results show that λ99

z begins as 40y in the buffer layer and increases to more
that 100y approaching y+ = 40, making manifest the very large spanwise scales involved
in Lighthill’s ‘up-gradient’ mechanism. We have also added for reference to figure 9 two
characteristic turbulent small scales, the Kolmogorov scale η and the Taylor scale λT .

Here, we have followed standard definitions η = ν3/4ε−1/4 and λT = [5ν(u2
rms + v2

rms +
w2

rms)/ε]1/2, where, rms implies root mean square, estimating energy dissipation as ε =
PK/α in terms of turbulence production PK = −〈u′v′〉∂yU and the factor α from figure 7
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of Lee & Moser (2015). Note, that the scales associated with up-gradient flux (� λ∗z )
are at least one order of magnitude larger than the Kolmogorov scale, where streamwise
organization associated with stronger spanwise scales can be expected. Remarkably, for
wall distances y � yp in figure 9(b) in the log layer we see that λ99

z
.= λT to a very good

approximation and in the outer layer λ99
z is only a factor of a few times larger than λT .

Thus, we conclude that fine-scale eddies with spanwise wavelength λz down to nearly the
Taylor microscale contribute significantly to the down-gradient transport of vorticity at
y > yp. Similar observations were made previously by Priyadarshana et al. (2007) based
on streamwise cospectra φvωz(kx, y), φwωy(kx, y) (see further below). The sensitivity of
the nonlinear vorticity transport to such small scales for y > yp has important implications
for physical phenomena such as polymer drag reduction since modifications of the flux
cospectrum at very small scales can alter the delicate balance between down-gradient and
up-gradient transport and lead to a drastic reduction of drag (cf. Crawford & Karniadakis
1997; Monty et al. 2011).

We have calculated as well the separate spanwise cospectra for the advective flux
φvωz(kz, y), and the stretching flux −φwωy(kz, y). These contain little new information
beyond the cospectrum of the total nonlinear flux, so that we just briefly summarize
here the key observations and relegate the plots of those cospectra to figures C.4
and C.5 in the supplementary materials. Most significantly, the stretching cospectrum is
predominantly ‘up-gradient’ for all y+ values and the advective cospectrum predominantly
‘down-gradient’ for y+ > 5. Intriguingly, φvωz(kz, y), switches sign for y+ � 10, where
it becomes almost entirely ‘up-gradient’. These signs are all consistent with those
of the mean values 〈vωz〉( y) and −〈wωy〉( y) plotted in figure 5 and the underlying
physical mechanisms are presumably the same as discussed in that connection. A relevant
conclusion is that in figure 8 the ‘down-gradient’ branch in the nonlinear flux cospectrum
φvωz−wωy(kz, y) arises mainly from advection, whereas the ‘up-gradient’ branch arises
mainly from stretching.

We have studied in addition the streamwise cospectra φvωz(kx, y), −φwωy(kx, y), and
φvωz−wωy(kx, y), but we have found that these present a much less clear physical picture
and are not as easily interpretable as the spanwise cospectra. We thus present here in
figure 10 only the streamwise cospectra for the total nonlinear flux, which we compare
briefly with the spanwise cospectra in figure 8. More detailed discussion is given in
§ C of the supplementary materials, along with comparison with prior results of Guala
et al. (2006), Balakumar & Adrian (2007) and Wu et al. (2012) for ‘total force spectra’
in channel flow, pipe flow and boundary layers. We also relegate to the supplementary
materials in figures C.6, C.7 our results for the cospectra for advective and stretching
fluxes. The latter are shown to agree qualitatively with prior experimental results of
Priyadarshana et al. (2007) and Morrill-Winter & Klewicki (2013) at somewhat different
Reynolds numbers and for boundary layers. Referring briefly to the results plotted in
figure 10, we remark that the streamwise cospectra at y+ = 5 and y+ = 15 shown in
figure 10(a) are qualitatively similar to the corresponding spanwise cospectra. However,
as y+ increases to 30, the streamwise cospectrum develops a region of down-gradient
behaviour (at λx ∼ 10y) sandwiched between regions of up-gradient behaviour (at λx ∼ 4y
and λx ∼ 200y). Such behaviour persists into the log layer until reaching y+ = 53 (shown
in figure 10b) whereupon the behaviour changes again to qualitatively resemble spanwise
spectra with down-gradient contributions from λx < λ∗x and up-gradient contributions
from λx > λ∗x (as seen at y+ = 75 − 250). Here, λ∗x is the streamwise wavelength at which
the cospectrum crosses the x-axis. However, streamwise cospectra do not possess the
persistent and sharp boundary between competing fluxes across the log layer seen in
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Figure 10. Normalized streamwise cospectra of the nonlinear term (φvωz − φwωy ), in (a) the viscous and buffer
layers, (b) log layer and (c) outer layer. Different curve colours represent different distances from the wall within
each of the three layers, as in corresponding plots in figure 8.

the spanwise case and λ∗x/y varies significantly with y. At y+ = 250 and into the outer
layer (figure 10c),the streamwise cospectra are purely down-gradient. The streamwise and
spanwise cospectra are naturally similar near the centre line due to the larger degree of
component isotropy there.

The somewhat complicated picture arising from the streamwise cospectra is clarified
by studying the 2-D cospectra in (kx, kz), which provide more detailed information about
the different scales of motion in streamwise and spanwise directions simultaneously. The
paper of Wu et al. (2012) previously studied analogous 2-D cospectra for pipe flows. Our
cospectra are calculated by computing 2-D FFTs of velocity and vorticity, followed by
taking appropriate inner products and averaging in time. We also added contributions
reflected in the x- and z-axes so that the spectra depend only on wavelength magnitudes
kx ≥ 0, kz ≥ 0, yielding the following spectral decomposition of the nonlinear vorticity
flux: ∫ ∞

0

∫ ∞

0
ϕvωz−wωy(kx, kz, y) dkx dkz = 〈vωz − wωy〉( y). (3.5)

Because the 2-D cospectra were obtained by averaging over only 38 snapshots, rather
sizable fluctuations remained in the results. Thus, to obtained more converged results, we
smoothed these cospectra using 2-D running averages in Fourier space. The smoothing
based on the principle of minimal sensitivity (Stevenson 1981) is discussed fully in the
supplementary materials, § D, but we note here that the smoothing employed preserves the
total integral in (3.5) and that the cospectra plotted in figure 11 are relatively insensitive
to the exact choice of filter width �k in the range considered. Whereas Wu et al. (2012)
normalized the wavelengths in their 2-D cospectra by the pipe radius R, we have found
it more illuminating to plot our 2-D cospectra vs normalized wavelengths λx/y and
λz/y, both in log scale and compensated by the factor kxkz to yield the correct double
integral over (log(λx/y), log(λz/y)). We have again normalized by the factor −u2

τ /H, so
that positive values represent down-gradient transport and negative values up-gradient.
We plot 2-D cospectra for three y-values each in the viscous sublayer and buffer layer
(figure 11a–c), the log layer (figure 11d– f ) and outer layer (figure 11g–i). The most
important feature of the 2-D spectra is that, like the 1-D spanwise spectrum but unlike
the streamwise spectrum, there is a clear bipartite structure, with two distinct branches or
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Figure 11. Normalized compensated 2-D cospectra of the nonlinear flux ϕvωz−wωy (kx, kz, y), in the viscous
and buffer layers (a–c), log layer (d– f ) and outer layer (g,h). The solid curves mark the iso-contour of the
filter D(kx, kz, y) = 0.5, described in supplementary materials F. The dotted, dashed and dashed-dot lines
represent λ∗z , λ0

z and λ99
z , respectively, as in figure 9. Note that the range of a colour bar does not reflect the

actual range of values of the spectrum since only one colour achieves saturation while the other does not. For
example, spectrum (c) ranges from −6.4 to 2.5 while (g) ranges from −0.11 to 0.36. Panels show: (a) y+ = 5;
(b) y+ = 15; (c) y+ = 20; (d) y+ = 40; (e) y+ = 53; ( f ) y+ = 100; (g) y+ = 300; (h) y+ = 400; (i) y+ = 700.

‘lobes’, with clear spectral boundaries, corresponding to the competing down-gradient and
up-gradient transport. In fact, these boundaries are mainly along the line λz/y .= 3 ∼ 4 but
with also another boundary depending upon λx for λz/y � 3 ∼ 4. These results illuminate
why the 1-D streamwise cospectra do not yield a clear bipartite structure after integration
over kz, while integration over kx preserves such structure. A main new implication of
the 2-D cospectra is that up-gradient transport requires not only λz/y � 3 ∼ 4 but also
λx/y � 3 ∼ 4, or even larger. Most importantly, the boundaries clearly seem to scale with
wall distance y.

In their prior work on pipe flow, Wu et al. (2012) observed a similar bipartite structure in
their plots of 2-D net force spectra, shown in their figure 18. They obtained spectra similar
to ours at each considered y value, with an ellipse of negative net force (decelerating or
with a down-gradient flux contribution) at shorter azimuthal wavelengths and an ellipse
of positive net force (accelerating or with an up-gradient flux contribution) at longer
azimuthal wavelengths. We can thus determine from their data the azimuthal wavenumber
λ∗θ at which their net force spectrum changes sign and the corresponding wavelength
defined based on the azimuthal arclength, λ∗s = rλ∗θ = (R − y)λ∗θ . The resulting values of
λ∗s /y are compared in table 1 with our previously determined λ∗z /y . It is interesting to note
that both quantities have only small variations across the different y values considered,
especially within the log layer (y+ = 50, 101, 200). The values of λ∗s /y are at most 22 %
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y+ λ∗θ λ∗s /y λ∗z /y

20 0.109 3.624 3.866
50 0.234 2.972 3.852
101 0.526 3.040 3.596
200 1.156 2.803 3.621

Table 1. Wavenumber λ∗θ (based on azimuthal angle) and wavelength λ∗s (based on azimuthal arclength) at
which the net force spectra in figure 18 of Wu et al. (2012) change sign, compared with the λ∗z from our
figure 9.

smaller than λ∗z /y. This is a high degree of agreement, considering that they are for
different flow configurations and two different Reynolds numbers. This reanalysis of
the results of Wu et al. (2012) confirms our finding that the spectral boundary between
up-gradient and down-gradient vorticity transport scales with wall distance y, as expected
from the Lighthill (1963) theory.

We now comment briefly on significant features and consequences of our 2-D cospectra
in figure 11 for the various wall distances.

In the viscous sublayer and buffer layer, the dominant up-gradient contribution to the
nonlinear flux corresponds to the blue region in figures 11(a)–11(c), which is characterized
roughly by λz/y � 3 and λx � λz. The competing down-gradient contribution indicated by
red colour is weaker and in the viscous sublayer at y+ = 5 it is almost entirely negligible.
The peak negative value of the cospectra associated with up-gradient transport occurs
around wavelengths (λx, λz) ∼ (30y, 8y), whose ratio is indicative of sublayer streaks.
These are the type of flow structures ‘elongated in the stream direction’ mentioned by
Lighthill (1963) and whose relevance to near-wall vorticity transport has been discussed
in several previous studies (Klewicki et al. 1994; Brown et al. 2015; Arosemena & Solsvik
2022).

In the log layer, the contributions to down-gradient and up-gradient transport from
the 2-D cospectra plotted in figures 11(d)–11( f ) are more nearly in balance, with an
exchange of dominance at y = yp. The blue portion associated with up-gradient transport
occupies very crudely the region specified by the two constraints λz/y � 4 and λx/y � 4,

requiring large wavelengths in both spanwise and streamwise directions. (The black curves
in figures 11(d)–11( f ) plot more precise boundaries of this region. The aim to separate
the flow into contributions on either side of these lines motivates us to define a filter,
termed the ‘dragonfly filter’ due to its shape once the black line is mirrored to all four
quadrants. The dragonfly filter is discussed in more detail in § 3.4 and in the supplementary
materials F.) The red portion of the cospectrum associated with down-gradient transport
obtains most of its contribution, on the other hand, from the region with λz/y � 4 but
with λx/y ranging over values both much smaller and larger than unity. As y increases,
this down-gradient spectral region extends to smaller λx/y and λz/y, and simultaneously
the position of peak positive cospectrum shifts to smaller wavelengths. The negative,
up-gradient portion of the cospectrum instead peaks around (λx/y, λz/y) ∼ (10, 10) for
all y. These observations imply not only that the down-gradient transport becomes
more dominant with increasing y but also that it originates from an increasing range
of spanwise and streamwise scales, down to the Taylor microscale (Priyadarshana et al.
2007). Meanwhile, the up-gradient contributions arise only from spanwise and streamwise
scales larger than the integral scale and with diminishing magnitudes at greater wall
distances.
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Vorticity cascade and turbulent drag in wall-bounded flows

These trends with increasing y continue for the 2-D cospectra in the outer layer plotted
in figure 11(g)–11(i). The up-gradient spectral region continues to be specified roughly
by λz/y � 4 and λx/y � 4, but the cospectrum magnitudes in this sector drop rapidly
with y. For y+ � 500 the up-gradient contribution is essentially negligible and only the
down-gradient contribution from the small scales remains. The cospectra for the latter
have furthermore shifted to even smaller values of λz/y and λx/y.

Additionally, we have marked on the cospectra in figure 11 the lengths λ∗z , λ0
z and λ99

z
previously plotted in figure 9. For y < yp (figure 11b–d), the part of the cospectrum
below the dashed line (λ0

z ) integrates to zero, and 99 % of the up-gradient flux comes
from the region between the dashed and the dot-dashed line (λ99

z ). Similarly, for y > yp

(figure 11 f –h), the part of the cospectrum above the dashed line (λ0
z ) integrates to zero,

and 99 % of the down-gradient flux comes from the region between the dashed and
the dot-dashed line (λ99

z ). Strikingly, these regions between dashed and dot-dashed lines
which contribute most of the net flux may not correspond to the regions with the largest
magnitude of the cospectrum, at least for y near yp. In fact, the contributions of the large
positive and large negative values of the cospectra nearly cancel each other in much of
the log layer and the net contribution arises from much lower-magnitude regions of the
cospectrum. This observation highlights the delicate balance between up-gradient and
down-gradient transport and the sensitivity of the net flux to contributions from very large
scales for y < yp and from very small scales for y > yp.

We have calculated also the separate 2-D cospectra for the advective flux ϕvωz(kx, kz, y)
and stretching flux −ϕwωy(kx, kz, y). These are plotted in figures E.10 and E.11,
respectively, in the supplementary materials and here we just summarize their main
features. These cospectra have the same bipartite structure as the cospectra for the total
nonlinear flux plotted in figure 11. The most important difference is that the down-gradient
contribution is greatly reduced for the stretching cospectrum in figure E.11 and likewise
the up-gradient contribution is greatly reduced for the advective cospectrum in figure E.10.
Thus, the stretching cospectrum contributes primarily up-gradient transport and the
advective cospectrum primarily down-gradient transport. The only exceptions to the latter
statements are for y+ � 10 where the advective cospectrum plotted in figure E.10(a) is
almost entirely up-gradient and for y+ � 500 where the stretching cospectrum plotted in
figure E.11(i) is almost entirely down-gradient. The other general change in the separate
2-D cospectra is that the boundaries between up-gradient and down-gradient transport
are slightly shifted, upward to λz/y � 6 ∼ 8 for the advective cospectra in figure E.10
and downward to λz/y � 1 ∼ 2 for the stretching cospectra in figure E.11. The relevant
conclusion for the competing contributions to the nonlinear flux cospectra plotted in
figure 11 is that the down-gradient contribution arises mainly from advection and the
up-gradient contribution mainly from stretching/tilting.

It is informative to compare our results for the 2-D flux cospectra in the log layer with
those for 2-D energy spectra obtained from channel-flow DNS (Del Alamo et al. 2004)
in the range of Reynolds numbers Reτ = 547 ∼ 1901, comparable to ours, and also from
boundary-layer experiments (Chandran et al. 2017; Chandran, Monty & Marusic 2020) at
much higher Reynolds numbers Reτ = 2430 ∼ 26 090. It was found by Del Alamo et al.
(2004) that the λz at the maximum of the 2-D energy spectrum for each λx corresponded
to a ridge given by a power-law scaling

λz/y ∼ (λx/y)p, (3.6)

with an exponent p .= 1/2 that differed from the value p = 1 corresponding to the
self-similar structures assumed in the AEM. Chandran et al. (2017, 2020) verified this
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Figure 12. Ridges of spanwise wavelengths λu
z /y at minimum cospectrum (blue-filled cyan circles), λd

z /y at
maximum cospectrum (red-filled yellow squares) and λ∗z /y at zero cospectrum (green triangles), plotted log–log
vs streamwise wavelength λx/y, together with the normalized 2-D cospectra ϕvωz−wωy (kx, kz; y) for y in the log
layer. Power-law fits for the minimum, maximum and zero cospectral ridges at λx � 30y, are given by cyan,
yellow and green lines, respectively. Panels show: (a) y+ = 40; (b) y+ = 53; (c) y+ = 100.

y+ pu pd p∗

40 0.2025 0.0936 0.0491
53 0.2176 0.0078 0.0629
100 0.2291 0.0894 0.0236

Table 2. Linear fits for (λx/y) � 30, λu
z /y = au(λx/y)pu , λd

z /y = ad(λx/y)pd , λ∗z /y = a∗(λx/y)p∗ . Here, au,
ad and a∗ are constants.

result at their lowest Reynolds numbers but found that for higher Reτ the spectral ridge
is better fit by a power law with p > 1/2, especially in the large-scale range λx � 20y.
In the limit of very large Reynolds numbers, they found that p → 1 and that λz ∼ λx/7,

consistent with the spectra arising from streamwise elongated but self-similar structures,
such as hairpin packets, as assumed in the AEM. Our results for the 2-D flux cospectra
are strikingly different, becoming almost independent of λx for λx/y � 10. We have
quantified this independence by calculating three spanwise wavenumbers ku

z , kd
z , and k∗

z for
each streamwise wavelength kx, corresponding respectively to the wavenumber where the
pre-multiplied cospectrum normalized by −u2

τ /H has its minimum (most negative) value,
its maximum value and its zero crossing, respectively, for that kx-slice. The corresponding
‘ridges’ are plotted in figures 12(a)–12(c) for y = 40, 53, 100 in the log layer and we find
that these are fit reasonably well for λx/y > 30 by power laws of the form (3.6), with linear
best-fit values given in table 2. The small values of p quantify how the cospectra become
nearly independent of λx for wavelengths λx/y � 10. This finding seems to indicate
that the eddies contributing to nonlinear vorticity transport in the log layer are strongly
non-self-similar, with λz nearly independent of λx. This is one piece of evidence that the
up-gradient transport proposed by Lighthill (1963) does not arise from attached eddies
that are usually assumed to be self-similar. In addition, despite the arguments of Eyink
(2008) to the contrary, the results in figure 12(c) suggest that for y > yp the down-gradient
vorticity transport is as well not provided by the self-similar attached eddies assumed in
the AEM, at least for Reτ = 1000. In the next section we shall try to clarify this issue
by identifying the vortex structures in the flow which are most relevant to the nonlinear
vorticity transport.
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3.4. Coherent vortices and their vorticity flux contributions
There has long been interest in the role of coherent vortex structures in turbulent flows
(Cantwell 1981; Hussain 1986; Robinson 1991; Adrian 2007), with new insights related
to exact Navier–Stokes solutions that represent such organized states (McKeon 2017;
Graham & Floryan 2021). One of the drivers of this sustained attention is the empirical
fact that coherent vortices contribute a disproportionate amount to turbulent transport,
outsize relative to their small volume fraction in the flow. These considerations have
motivated extensive efforts over many years to develop vortex identification methods,
with classical methods discussed in prominent reviews (Chakraborty, Balachandar &
Adrian 2005; Kolář 2007) and with improved methods continuing to be developed
(Haller et al. 2016) The bipartite character of the 2-D flux cospectrum discussed in
the previous subsection provides the basis to investigate the coherent vortex structures
which contribute separately to up-gradient and down-gradient vorticity transport. The
straightforward idea is to decompose the flow at each y-level into the contributions of
two sets of eddies characterized by their support in the 2-D Fourier space (kx, kz), with
one field coming from eddies with negative (up-gradient) sign of the normalized flux
cospectrum and the other from eddies with positive (down-gradient) sign. Methods of
vortex visualization that have been applied to the full fields can then be applied to the two
(nearly) orthogonal fields in order to identify the coherent vortices that contribute most
significantly to up-gradient and down-gradient transport.

In supplementary materials, § F, we devise a convenient low-pass filter function
D(kx, kz, y) that selects the spectral region of up-gradient flux, while its complement
high-pass function Dc(kx, kz, y) = 1 − D(kx, kz, y) selects the region of down-gradient
flux. The filter functions were chosen to be graded to avoid Gibbs-type oscillations in
physical space due to sharp spectral cutoffs. The particular filter function D(kx, kz, y)
that we employ is a Gaussian function with elliptical level sets and with rotation angle
relative to the Cartesian axes that depend upon the wall distance y. When extended to the
space of signed wavenumbers by reflections in the Cartesian coordinate axes, the levels
of this function (see figure F.13a) resemble the crossed wings of a dragonfly and hence
we have dubbed this function the ‘dragonfly filter’. In the other panels of figure F.13
in the supplementary materials we illustrate how this filter selects regions of negative
normalized flux cospectrum. All spatial fields q(x, y, z) such as velocity and vorticity are
then filtered by taking 2-D FFTs, multiplying by D(kx, kz, y) or Dc(kx, kz, y) and then
taking a 2-D inverse FFT to obtain two fields, the contributions qU(x, y, z) of ‘U-type
eddies’ and qD(x, y, z) of ‘D-type eddies’. We can then calculate separate nonlinear fluxes
ΣF

yz := vFωF
z − wFωF

y for both F = U, D. Since off-diagonal terms such as vUωD
z are

small after averaging over both x and z, this yields a nearly additive decomposition for
averages 〈Σnlin

yz 〉 .= 〈ΣU
yz〉 + 〈ΣD

yz〉.
When can then visualize vortices for the two velocity fields uU and uD. We present

results here for the λ2-criterion of Jeong & Hussain (1995) which is based on the
intermediate eigenvalue λ2(∇u) of the symmetric matrix S2 + Ω2 where S and Ω are,
respectively, the symmetric and anti-symmetric parts of ∇u. We can then define λU

2 :=
λ2(∇uU) and λD

2 := λ2(∇uD) and visualize vortices by negative levels of these scalar
fields. We have also considered other vortex visualization schemes such as the Q-criterion
of Hunt, Wray & Moin (1988) but, consistent with other works (Chakraborty et al. 2005),
we obtain very similar results from the different visualization criteria when applied to
turbulent fields and we thus present here our results only for the λ2-criterion. We follow
the suggestion of Wu & Christensen (2006) to visualize structures in inhomogeneous
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Figure 13. Vortices identified using the λ2-criterion for the velocity field uD filtered using Dc. Isosurfaces are
plotted for λD

2 = −λD,rms
2 and coloured by the nonlinear flux ΣD

yz. The 3-D figure is available at https://www.
cambridge.org/S0022112023006092/JFM-Notebooks/files/Figure-13/D-vortices.html. The data and code to
generate such 3-D vortices are available at https://www.cambridge.org/S0022112023006092/JFM-Notebooks/
files/Figure-13/D-vortices-plot.ipynb.

wall-bounded turbulence based on levels of the vortex discriminant function normalized by
its variance, here λ2/λ

rms
2 = −β. Since the vorticity magnitudes decrease rapidly with y,

this normalization permits uniform visualization of coherent vortices at all wall distances.
The imposed level is somewhat arbitrary but we choose here β = 1 which is in the range
of earlier related studies (Wu & Christensen 2006; Chen et al. 2014, 2018a,b), which we
discuss at length below.

We begin with a discussion of the coherent vortices for the high-pass field uD, identified
based on the discriminant function λD. These structures are plotted in figure 13 and shall
be referred to here as ‘D-type vortices’ since they arise from the field uD which accounts
for the down-gradient nonlinear vorticity flux away from the wall. We visualize here
only the vortices in the log layer of the simulation, corresponding to 30 < y+ < 300.

The vortex surfaces in the figure are coloured based on the pointwise values of the
down-gradient flux ΣD

yz The most immediate observation about the D-type vortices is
that they have a very similar morphology to the well-known ‘hairpin vortices’ that have
been frequently visualized in the full velocity field u of turbulent wall-bounded flows,
not only by the λ2-criterion (Jeong et al. 1997) but also by alternative methods such
as swirling strength (Adrian & Liu 2002; Alfonsi et al. 2011) and the Q-criterion (Wu
& Moin 2009). We note that most of these vortices are ‘prograde’ with ωz < 0 and
‘retrograde’ vortices with ωz > 0 are greatly outnumbered. Many of the hairpins also
appear to be strongly asymmetric, with one much weaker leg, in agreement with some
previous observations (Adrian 2007). Hairpin vortices or packets of hairpins are often
considered to be plausible candidates for the ‘attached eddies’ in the AEM (Adrian 2007;
Marusic & Monty 2019). Although we attempt here no detailed statistical analysis, the
D-type vortices pictured in figure 13 appear indeed to be wall-attached structures, with
feet of one or both legs planted in the near-wall region. These observations agree with the
suggestion of Eyink (2008) and others (Chen et al. 2014, 2018b) that the down-gradient
transport of vorticity should be supplied by attached hairpin-type structures, although we
recall the evidence from the previous subsection that D-type vortices are not self-similar
at Reτ = 1000. An interesting fact that may be inferred from the colour plot in figure 13
is that ΣD

yz is not down-gradient (red colour) at every point on the D-vortices. In fact,
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Figure 14. (a) Mean down-gradient vorticity flux and its contributions from D-type coherent vortices, 〈ΣD
yz〉.

(b) Fractional contributions from D-type vortices, 〈ΣD
yz〉. (c) Area fraction occupied by D-type vortices.

there are points also of very large up-gradient transport (blue colour), which is permitted
because the filter function Dc selects positive flux only in Fourier space not in physical
space. We can see furthermore that the regions of the two different signs of transport are
organized, with red (down-gradient) generally on the upstream side of the vortex and blue
(up-gradient) generally on the downstream side. This tendency is even more obvious in
an interactive 3-D version of figure 13 that can be found at https://www.cambridge.org/
S0022112023006092/JFM-Notebooks/files/Figure-13/D-vortices.html made available in
the JFM Notebook. This observation can be easily understood in terms of the direction of
the Lamb vector calculated from the vorticity vector and the local vortex-induced velocity
in the vicinity of a hairpin-type vortex.

The net vorticity flux of all D-type eddies is indeed down-gradient, however, as
illustrated by figure 14(a) which plots 〈ΣD

yz〉 normalized by −u2
τ /H vs y. Not only is

the normalized flux positive but in fact 〈ΣD
yz〉 < −u2

τ /H for all y and it approaches
almost −7u2

τ /H in the buffer layer. These large values are possible because they (plus
the viscous flux) are nearly cancelled by the opposing up-gradient flux supplied by the
complementary field uU. In addition to the total 〈ΣD

yz〉, we can also calculate the partial
average 〈ΣD

yz〉β from the region of the vortex cores characterized by λD
2 < −βλD,rms

2 .

For β = 1 this may be considered the direct contribution of the D-type vortices to the
mean down-gradient flux. However, it is likely that this partial average on the cores
underestimates the true contribution of the coherent vortices, which will also make an
indirect contribution from a spatial neighbourhood influenced by induced motions from
Biot–Savart (Wu & Christensen 2006; Chen et al. 2018b). As a crude estimate of this
larger contribution from the region influenced by the coherent vortices, we consider the
partial average 〈ΣD

yz〉0 over the region with λD
2 < 0. Both of these partial averages are

plotted also vs y in figure 14(a). The fractional contributions of the vortex cores and the
vortex neighbourhoods are furthermore plotted in figure 14(b). We can also calculate the
area fractions of these two regions in the wall-parallel planes at each distance y and these
are plotted in figure 14(c). These plots show that the vortex cores contribute an increasing
fraction of the down-gradient flux for increasing y, starting from ∼5 % at y+ = 30,

reaching ∼45 % at y+ = 150, and remaining roughly constant then in the log layer, but
vortex cores occupy only approximately ∼7 % of the area at every wall distance. The flux
fraction from the vortex-dominated region behaves similarly but is even larger, with ∼30 %
contribution at y+ = 30, ∼65 % at y+ = 150 and remaining roughly constant thereafter,
while occupying only approximately 40 % of the area. Thus, by either of the measures, the
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D-type vortices make a contribution to the down-gradient flux out of proportion to their
volume in the flow.

Our results closely mirror previous works which have studied the effects of coherent
vortices on the transport of spanwise vorticity. Following the pioneering work of Wu
& Christensen (2006) on spanwise vortex contributions to Reynolds stress, Chen et al.
(2014) experimentally studied open channel flume flows at Reτ = 382 ∼ 740 using particle
image velocimetry in 2-D vertical planes, which gave access to the velocities u(x, y) and
v(x, y). Identifying coherent vortices by the swirling strength with β = 1.5, they could
then analyse their contribution to the advective flux vωz. They found many such coherent
vortices with almost 97 % prograde at y+ � 50 and this percentage declining with y
but still 65 % at y+ = 600, and it was conjectured that the prograde vortices were the
heads of hairpin vortices. Chen et al. (2014) observed as well a bipolar distribution of
flux near the vortex cores, with v′ω′

z > 0 upstream and v′ω′
z < 0 downstream, which they

explained also by local induced velocities. Finally, Chen et al. (2014) found for the region
100 < y+ < 0.9Reτ that coherent vortex cores contribute approximately 45 % to 〈vωz〉
while occupying only 9 % of the area. All of these results for the total velocity field in
2-D planes are quite similar to ours for the high-pass filtered field component uD in three
dimensions.

The following paper of Chen et al. (2018b) (see also Chen et al. 2018a) verified the
results of Chen et al. (2014), but in the channel-flow simulation of Del Alamo et al. (2004)
at Reτ = 934. Because of the availability of full 3-D velocity fields, Chen et al. (2018b)
could apply the swirling strength criterion for various choices of β in both 2-D planes
and in three dimensions and they found that comparable results were obtained for both,
although the 3-D criterion identified more coherent vortices than did the 2-D criterion.
Chen et al. (2018b) could also study the stretching flux −wωy and the full nonlinear
flux vωz − wωy and then investigate the coherent vortex contribution to each of these.
In fact, Chen et al. (2018b) decomposed the entire space domain into four exclusive
point sets consisting of ‘filamentary vortices’ (FV), ‘non-filamentary vortices’ (NFV),
‘non-swirling vortex structures’ (NSVS) and ‘irrotational structures’, and all of these
except the latter can contribute to vorticity flux. The FV structures correspond roughly
to our vortex cores, but identified by swirling strength and a region growing algorithm,
and the other structure types are precisely defined by Chen et al. (2018a,b). Thus, Chen
et al. (2018b) determined the fractional contributions of each of the first three types of
structures (FV, NFV, NSVS) to the three fluxes (advective, stretching, total nonlinear)
and they emphasized the dominant role of the FV structures. For the region y+ > 300
of their simulation where 〈wωy〉 > 0 (down-gradient), FV structures contribute more
than 80 % while occupying only 15 % of the volume. Likewise, for the region y+ > 50
where 〈vωz − wωy〉 < 0 (down-gradient), FV structures contribute more than 60 % while
occupying area less than 15 %. They concluded that: ‘Compared with the other three
structures, FV play a very important role in velocity–vorticity correlations and the net
force’.

From our perspective, however, a very important result of Chen et al. (2018b) that was
never explicitly mentioned by them is the fact that the FV contributions to all three of
the fluxes are negative (down-gradient) everywhere, that is, 〈vωz〉FV < 0, −〈wωz〉FV <

0 and 〈vωz − wωz〉FV < 0 for all y. These signs can be inferred from the data plotted
in figures 2(b) and 9 of Chen et al. (2018b). Since, however, −〈wωy〉 > 0 for y+ < 300
and 〈vωz − wωy〉 > 0 for y+ < 50 in the simulation studied by Chen et al. (2018b), this
means that the FV structures are not only not dominant in these regions but in fact give a
contribution of the wrong sign! See figure 9(c–d) in Chen et al. (2018b). Put another way,
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Figure 15. Vortices identified using the λ2-criterion for the velocity field uU filtered using D. Isosurfaces
are plotted for λU

2 = −λU,rms
2 and coloured by the nonlinear flux ΣU

yz . The 3-D figure is available at https://
www.cambridge.org/S0022112023006092/JFM-Notebooks/files/Figure-15/U-vortices.html. The data and code
to generate 3-D vortices are available at https://www.cambridge.org/S0022112023006092/JFM-Notebooks/
files/Figure-15/U-vortices-plot.ipynb.

the FV structures do not account for the up-gradient vorticity transport in these regions.
This is understandable if one can essentially identify the FV structures of Chen et al.
(2018b) with our D-type vortices, which contribute always a net down-gradient flux. This
identification is plausible based on the evidence of visualizations, since the D-type vortices
shown in our figure 13 resemble quite closely the vortex structures detected by the swirling
strength criterion in the full velocity field (Adrian & Liu 2002; Alfonsi et al. 2011). In any
case, the important result of Chen et al. (2018b) not emphasized by them is that it is the
NFV and NSVS structures which account for the up-gradient vorticity transport observed
closer to the wall. Unfortunately, the works of Chen et al. (2018a,b) did not attempt to
visualize the NFV and NSVS structures or to clarify their morphology and dynamics.

We can now illuminate the nature of such structures by vortex visualizations for
the low-pass field uU , using the discriminant function λU

2 and β = 1. These structures
are plotted in figure 15 and shall be referred to here as ‘U-type vortices’ since they
arise from the field uU which accounts for the up-gradient nonlinear vorticity flux
toward the wall. As before, we visualize only the vortices in the log layer of our
simulation and the vortex surfaces are coloured based on the values of the up-gradient
flux ΣU

yz . The U-type vortices visualized in figure 15 have a pancake structure, vertically
flattened and elongated along the streamwise direction but especially along the spanwise
direction. Their characteristic shape becomes even clearer in the interactive 3-D version of
figure 15 available at https://www.cambridge.org/S0022112023006092/JFM-Notebooks/
files/Figure-15/U-vortices.html. These are exactly the type of vortex structures one would
imagine to arise from the Lighthill (1963) mechanism of correlated downflow and lateral
stretching. In fact, the roughly twice longer extents spanwise than streamwise correspond
well to Lighthill’s remark that ‘some longitudinal deformation is usually also present,
which reduces the need for lateral deformation (perhaps, on average, by half)’. Note,
that these structures, ultimately based on the 2-D cospectra plotted in figure 11, can be
interpreted as evidence for a cascade process similar to that for momentum, since the
vorticity transfer in space is observed to be carried by a hierarchy of eddies whose size
depends upon wall distance. However, there is no obvious self-similarity of these structures
in scale and, according to the results presented in our figure 8 and table 2, one might
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Figure 16. (a) Mean down-gradient vorticity flux and its contributions from U-type coherent vortices, 〈ΣU
yz〉.

(b) Fractional contributions from U-type vortices, 〈ΣU
yz〉. (c) Area fraction occupied by U-type vortices.

expect the ratio λx/λz to increase with scale. The U-type vortices show also no obvious
attachment to the wall, being mainly horizontal to it. Indeed, an extension of the AEM
by Perry & Marusic (1995) and Marusic & Perry (1995) introduced in addition to the
‘type-A’ attached eddies also ‘type-B’ eddies to represent the wake flow in the outer layer
and small-scale ‘type-C’ eddies to represent the Kolmogorov range. The type-B eddies
were viewed as detached vortex tubes which undulate in the spanwise direction, thus
somewhat resembling our U-type eddies (see figure 3 of Perry & Marusic 1995). More
recently, Hu, Yang & Zheng (2020) have attempted to decompose turbulent channel-flow
fields at Reτ = 5200 into small-scale eddies, attached eddies, and detached eddies, and
their |u|-isosurfaces for the detached eddies (see their figure 19d) have a similar pancake
structure as our U-type vortices. We have also checked that the vorticity in the U-type
vortices is predominantly spanwise and prograde consistent with lateral stretching of
pre-existing vorticity. This is demonstrated by figure G.14 in the supplementary materials,
where we colour these vortices by the cosine of the angle made by the vorticity vector ωU

with the z-axis and find the prevalence of values close to −1, denoting prograde spanwise
aligned vortices. Finally, we observe flux bipolarity of the U-type vortices just as for the
D-type, with red (down-gradient) generally on the upstream side of the vortex and blue
(up-gradient) generally on the downstream side. This tendency is again more obvious in a
3-D version of the figure available in the JFM Notebook.

Despite large contributions to the vorticity flux of both signs, however, the net flux
supplied by all U-type eddies is up-gradient. This is verified by the data in figure 16(a),
which plots 〈ΣU

yz〉 normalized by −u2
τ /H vs y. Similar to the result for the D-type vortices,

〈ΣU
yz〉 � u2

τ /H across most of the log layer and approaches 10u2
τ /H at the lower y range

where it must cancel most of the down-gradient flux from the D-type eddies and viscous
diffusion. For the largest y+ ∼ 300 in the log layer, 〈ΣU

yz〉 � 0.1u2
τ /H and still cancels

part of the contribution from the D-type eddies. In addition to the total 〈ΣU
yz〉, we can

also calculate the partial averages 〈ΣU
yz〉β for the condition λU

2 < −βλU,rms
2 with β = 1

(vortex cores) and β = 0 (vortex neighbourhoods). Both of these partial averages are
plotted also vs y in figure 16(a), the fractional contributions of the vortex cores and the
vortex neighbourhoods are plotted in figure 16(b), and the corresponding area fractions
plotted in figure 16(c). We observe that the cores of the U-type vortices account for
∼20 %–30 % of the up-gradient flux but occupy only approximately 10 % of the area, while
regions dominated by the U-type vortices provide ∼60 %–70 % of the flux but occupy only
approximately 45 % of the area. The coherent U-type vortices thus contribute a percentage
of the up-gradient flux roughly twice their area in the flow. This is not as outsize as the
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contribution of the D-type vortices to the down-gradient flux and the lower performance
may be due to our rote application of the λ2-criterion for vortex identification in uU. This
criterion was designed by Jeong & Hussain (1995) to detect rapidly swirling vortex tubes
with low-pressure cores, whereas the U-type vortices clearly have a distinct structure. It is
also possible that our filter function D does not have spectral support optimally chosen.
More appropriate filter kernels and discriminant functions can probably be devised to
characterize better the coherent U-type vortices that contribute most to the up-gradient
vorticity transport.

4. Discussion and conclusions

The main objective of this work has been to elucidate the dynamics involved in turbulent
transport of spanwise vorticity normal to a solid wall, motivated by the direct connection
of this ‘vorticity cascade’ to turbulent drag. We have carried out a numerical study
for a canonical case of pressure-driven Poiseuille flow in a channel with plane-parallel
walls. We find that the mean vorticity transfer is the result of two intensely competing
processes: an up-gradient transfer that concentrates spanwise vorticity strongly near the
wall and a slightly greater down-gradient transfer that disposes of the fresh spanwise
vorticity generated at the wall by the mean pressure gradient. This is exactly the picture
suggested by Lighthill (1963), who proposed also a concrete mechanism for up-gradient
transport by inflow to the wall correlated with lateral stretching of vortex lines and outflow
correlated with lateral relaxation. We have presented here detailed evidence for the validity
of Lighthill’s mechanism in the case of turbulent channel flow based upon: (i) correlations
of wall-normal velocity with flux of spanwise vorticity, (ii) velocity–vorticity cospectra
that identify the eddies involved in nonlinear vorticity transport in the two directions
and (iii) visualization of the coherent vortex structures which contribute dominantly to
the transport. All of the observations that we have accumulated are consistent with the
proposed mechanism. In addition, we have provided evidence to support the interpretation
of this vorticity flux as a cascade similar to momentum cascade, in that the spatial transport
of vorticity is associated also with a stepwise transfer in scale. This verification has
consequences that extend far beyond channel flow, because Lighthill (1963) suggested
that the up-gradient transfer mechanism has very general validity for all turbulent flows
interacting with solid walls, e.g. high Reynolds number flows around bluff bodies or
airplane wings. In fact, Lighthill (1963) proposed this mechanism to explain why turbulent
boundary layers with concentrated vorticity form generally near solid walls. This is the
necessary prelude to another fundamental vortex interaction with solid walls, the violent
eruption of vorticity away from the wall (Smith et al. 1991; Doligalski, Smith & Walker
1994; Lenaers et al. 2012), which apparently underlies phenomena such as boundary-layer
separation behind bluff bodies and frequent ejections from the walls in turbulent flows
over flat plates and in straight pipes.

Our work exposes also a limitation of the ‘attached eddy model’ of Townsend (1976)
because we find considerable evidence that down-gradient vorticity flux out from solid
walls is provided indeed by attached eddies but that the competing up-gradient flux into
the walls is carried by detached eddies. Of course, many extensions of the AEM have
been proposed previously. We have already mentioned the early work of Perry & Marusic
(1995), Marusic & Perry (1995) and see also more recent papers of Chandran et al. (2020)
and Hu et al. (2020). The spectral aspects of the extension by Perry & Marusic (1995)
and Marusic & Perry (1995) focus on the streamwise spectrum φuu(kx), as summarized in
figure 16 of Marusic & Perry (1995), reproduced in figure 11 of Marusic & Monty (2019).
Our present cospectral results echo features of this model upon suitable interpretation.
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The model of Perry & Marusic (1995) and Marusic & Perry (1995) has an overlap in the
streamwise scales of type-A and type-B eddies, with the latter contribution dominating at
larger streamwise scales. This type of behaviour is seen also in our 2-D flux cospectra in
the log layer, plotted in figures 11(d)–11( f ), where the U-type eddies dominate at large
streamwise scales but overlap with the support of the D-type eddies at smaller streamwise
scales. Note, however, that the effect of Type-B eddies in the AEM extension of Perry
& Marusic are supposed to diminish upon approaching the wall, whereas the vorticity
transport effects of the U-type eddies in our work increase and dominate close to the wall.
Unlike previous proposals to extend the AEM, our work has revealed that detached eddies
play a fundamental dynamical role in the near-wall region, with direct importance to drag
generation and reduction. The closest connection of our results are with those of Chen
et al. (2018b), who found that NFV and NSVS rather than FV are responsible for the
dominant up-gradient nonlinear vorticity transport near the wall.

In this paper we have exploited a database of a turbulent channel flow at Reτ = 1000
and we have compared with related experiments and simulations at comparable Reynolds
numbers. However, empirical data are available at a broader range of Reynolds numbers,
both lower Reynolds number simulation data (Bernard 1990; Crawford & Karniadakis
1997) and field experiments at much higher Reynolds numbers (Priyadarshana et al. 2007;
Morrill-Winter & Klewicki 2013). We do not expect the main conclusions of our work
to be Re-dependent and we are aware of no data available at other Reynolds numbers
which contradicts them. However, some details of the story we have presented may change
with Re. For example, it is well known that many predictions of the AEM are observable
only for Re � 1 and, in particular, Chandran et al. (2017) estimate that the similarity
relation λz ∼ λx for attached eddies and clear k−1 energy spectra for both kx and kz
should be observable only for Reτ > 60 000. Thus, our conclusion in § 3.3 that D-type
and U-type eddies are non-self-similar might be Reynolds-number dependent, especially
since self-similarity for 2-D energy cospectra that is expected from attached eddies is not
observed either at comparable Reτ (Del Alamo et al. 2004; Chandran et al. 2017). Thus,
extending our analysis to higher Reynolds numbers is an important direction for future
research.

Another important direction is the investigation of turbulent vorticity dynamics by
means of stochastic Lagrangian methods (Constantin & Iyer 2011; Eyink et al. 2020a).
The heuristic arguments of Lighthill (1963) are essentially Lagrangian and invoke the
remarkable ‘frozen-in’ properties enjoyed by vortex lines in smooth ideal Euler flows.
In a physical turbulent flow, however, these familiar properties of ideal vortex-lines
suffer fundamental modifications by viscous diffusion, which can be exactly captured
by the stochastic Lagrangian representation of the vortex dynamics. These methods have
already proved powerful to verify the validity of Lighthill’s argument for origin of large
magnitudes of wall vorticity in a transitional zero-pressure-gradient boundary layer (Wang
et al. 2022). The advantage of these methods compared with the Eulerian analysis in the
present work is that they provide a complete and unambiguous account of the origin of
the vorticity at any point in the flow, with precise and quantitative information about the
physical mechanisms involved. Such stochastic Lagrangian methods have already been
applied to ‘ejections’ and ‘sweeps’ in the buffer layer of the same Reτ = 1000 turbulent
channel flow studied in this paper, where it was demonstrated that the spanwise vorticity
in those events is not assembled abruptly from wall vorticity but instead over many
hundreds of viscous times (Eyink, Gupta & Zaki 2020b). It would be very illuminating
to apply these methods in the log layer of the channel flow, reconstructing the spanwise
vorticity under conditions of inflow and outflow and determining its origin unambiguously.
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The existing numerical schemes for the stochastic Lagrangian approach are quite
inefficient in the log layer, however, because the Monte Carlo sampling errors grow
exponentially in time. New algorithmic approaches are probably therefore required.

Finally, the insights that we have obtained in this work about the Eulerian vorticity
dynamics described by the Huggins vorticity flux tensor (1.4) can be exploited to
understand drag generation and reduction via the detailed Josephson–Anderson (JA)
relation (Huggins 1970, 1994; Eyink 2008, 2021). Such work is already in progress
(Kumar & Eyink, unpublished). We have thus intentionally omitted in the present paper
any discussion of the work of Yoon et al. (2016) which directly relates velocity–vorticity
correlations to mean drag by a version of the identity of Fukagata, Iwamoto & Kasagi
(2002). This discussion requires a careful comparison with the JA-relation, which will be
done in future work by Kumar & Eyink. The connections between these two approaches
is indeed not straightforward, e.g. down-gradient nonlinear vorticity flux produces drag in
the JA-relation but reduces drag in the identity of Yoon et al. (2016)! Here, we just mention
the principal difference that, whereas the identity of Yoon et al. (2016) represents the mean
drag in a Reynolds averaging approach, the JA-relation connects the drag instantaneously
in time to the vorticity flux throughout the flow volume. The shift away from ensemble flow
statistics to recognize the dynamical heterogeneity and intermittency of drag has proved
important, for example, in the problem of polymer drag reduction (Xi 2019). Our results
here shed new light on the latter problem, because they imply that drag can be reduced
instantaneously either by decreasing the down-gradient flux of spanwise vorticity or by
increasing the up-gradient flux, or both. This will also be the subject of future work.

Supplementary material. Supplementary material and Computational Notebook files are available at
https://doi.org/10.1017/jfm.2023.609. Computational Notebooks can also be found online at https://www.
cambridge.org/S0022112023006092/JFM-Notebooks.
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