SOME REMARKS ON LIMITS IN CATEGORIES
J. M. Maranda

(received February 8, 1962)

1. Introduction. The object of this paper is to give
simple criteria for the existence of direct limits in categories
and for the permuting of a functor with direct limits.

The notion of direct limit of a diagram that we shall use
here is essentially that of Kan (4), which is more general than
the usual notion of direct limit of a directed diagram.

QOur treatment is based on the fact (Lemma 2) that the
usual process for constructing the direct limit of a diagram of
modules, which consists in taking a direct sum of the modules
in the diagram and then considering a certain homomorphic
image of this direct sum (3, p. 220), is essentially, once
certain notions have been properly generalized, the only
process for constructing the direct limit of any diagram in
any category.

It follows quite naturally from this that in a category
every diagram has a direct limit if and only if every family
of objects has a direct sum and every pair of maps has a
cokernel (Theorem 1), and that a functor permutes with direct
limits if and only if it is right exact and permutes with direct
sums (Theorem 2).

The duals of these results concerning direct limits,
being just the same results for the dual categories, are not

mentioned.

The paper ends with a theorem on direct limits in
categories of modules that is not dualizable.
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Except for trivial alterations, this material was presented
by the author in the course of a series of lectures given at the
Seminar of the Canadian Mathematical Congress in August 1361.

2. The existence of direct limits in categories. The

categories considered all have the property that the class of
maps from one object to another is a set. In a category X
the objects and maps will be denoted by the letters X and x,
with or without subscripts or superscripts, respectively.
A category ¥ will be called proper if the class of its maps
is a set. The functors from such a proper category V toa
category X will be called the ¥ -diagrams of X. The 7'-
diagrams of X and their natural transformations obviously
form a category DC?/. The embedding functor

: - X
E?/..’)(' o

assigns to each object X of X the constant ¥-diagram that
maps each object of 7 onto X and assigns to every map
x:X = X' in I the natural transformation
. — 1 -
Ev(x).EV(X) E,(X'), where (E?’(X))V x for each Ve 7.
Definition 1 (Kan). If Ke xv, if Xe € and if

k:K — EZ/(X) is a natural transformation, then k is a direct
limit of K if for any natural transformation k':K — EZ/(X' },

X' € X, there exists one and only one map @ :X = X' such
that k' =E_ (@)k

k E (e)
k‘
—_——

K Ez/(X' )
We notice that a natural transformation k:K = EV(X) is just
a family of maps {k_:K(V) - X} such that for every map

v Ve
v:V =Vt of 77, 1\] = kV' K(v), and that k is a direct limit

s e . '

of K by Definition 1, if given any other such family {%}Ve o

there exists one and only one map @:X ~ X' such that
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=gk forall Ve 7.

We now make a list of different interesting special cases
corresponding to different types of proper categories

1) The cokernel of a family of pairs of maps. There is a
particular object ¥V of ¥ such that the set of non- identity
maps of U consists of one pair of distinct maps from V to

V for each V# V. Thena ¥V -diagram K: ¥ = X is completely
determined by the family of pairs of maps

{(fV’gVQg’—,X'\’;)}Ve V. v4T where £ and g  are the

images by K of the two maps from V to V. A natural
transformation k:K — Ez/(X) is completely determined by the

map 1\7 : }g; - X which has the property %fv = k,\»/:gv for

all Ve 7 . 1Itisa direct limit of K if and only if for any
map h: X,r\}v - X' with the same property, there exists a
unique ¢ :X -~ X' such that h= <Pk§. We will then say that
~ 1 fami f pai . ~.
kg is a cokernel of the family of pairs {(fV gV)} VeV, V4T
One can easily show that such a cokernel is an epimorphism.

2) Quasi-ordered diagrams. For any two objects of 7/,
there is at most one map from one to the other. In this case,
V is essentially a quasi-ordered set; V < V! meaning that
there is a map from Vto V!'. A ?/-dlagram Ki V=X is

completely determined by the family {fV,V' } VeVl e 7 where

fv vt = K(v), v being the only map from V to "V'. All the

following cases considered are special cases of quasi-ordered
diagrams.

3) Direct sums. All the maps of 7 are identity maps so
that ¥ is essentially a set. Then a 7 -diagram K: 7~ X is

just a family {XV} vey: I this case a direct limit of K is

called a direct sum of the family {}g]} Ve

4) Direct sums with amalgamated maps. If 7 is a quasi-
ordered set with the property that there exists an element V0

of % suchthat V< V' implies that V =V ., thena
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V-diagram K: 7 = X is completely determined by the family
h f_ is the image by K of the onl
{fV}Ve?/,V#Vowere y 1 the image by o only
map from V  to V. A natural transformation k:K - ?/(X)
o

is completely determined by the family {1\1} Vew, V4V "
o

. . o .
If k is a direct limit of K, then {kV}VeV‘,V:fVO will be

called the direct sum of {K(V)} where the maps

Ve? , V4V
o

fV are amalgamated.

5) Directed diagrams. This is the case where 77 is a
directed set.
LEMMA 1. In a category X, let {(fi' gi:Xi - X)} el
1
be a family of pairs of maps where I is a set, let {ki:X_l - X'} 1
1

be a direct sum of { X } e and let f,g:X' = X be the only
i'i

I
maps for which f, =fk, and g; = gk for allie I. Then
i i i

¢:X - X" is a cokernel of {(fi’gi)}ie I if and only if it is a
cokernel of the pair ({,g).

Proof. Let us assume that ¢ is a cokernel of ({f, g).
Then for each ie I, @f =e@fk =@gk =¢@g andif Y:X - X"

i i i i
is such that ¢ f = Yg. for allie I, then Ytk = Ygk, for all
i i i i

ie I sothat Uf =Yg and therefore there exists a unique
KXt > X" such that 4 = X ¢.

The converse argument is just as easy.

COROLLARY. If every family of objects of a category X
has a direct sum, then every family of pairs of maps has a
cokernel if and only if every single pair of maps has a cokernel.

LEMMA 2. Let K: ¥ = X bea U -diagram and let
{kV:K(V) - X} Ver be a direct sum of {K(V)} Ver If

@:X = X' is a cokernel of the family of pairs
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(g KON} v Ly yerr (1)

then {g@ kV} vey Isadirectlimit of K.

If h:K —» EW(X‘ ) is a direct limit of K and if ¢ is the
only map from X to X' such that hV =@ kV for all Ve 7,
then @ is a cokernel of the family of pairs (1).

Proof. Assume first of all that ¢ is a cokernel of the
family of pairs (1) and let k':K - EZ/(X”) be a natural

transformation. Then there exists a unique y:X - X" such
that k‘v = ¢kv for each Ve 7. Then, for each v:V - V!

in 7,

Yk =k =k K(v) =4 (ko K(v)

so that there exists a unique X X' - X' such that { = /Y @.
! = = ‘n .
Then, for each Ve 7, kV L]ka /'Z(?kv), i.e {?kV}Ve %

is a direct limit of K.

Now assume that h:K = EV(X' ) is a direct limit of K

and that @ is the only map from X to X' such that
h, =@k, forall VeZ. Then, forall viV —>V' in v,

@ lﬁf = hV = hV‘ K(v) = gv(kv' K(v)) .

If §:X ~ X" is such that $kg = $(ky, K(v)) = (4k,,) K(v)

for all v:V = V' in 77, then there exists a unique X:X' - X"

such that ¢1\f=%hv=%791\, for all Ve?, sothat ¢ = X &

and therefore ¢ is a cokernel of the family (1).
THEOREM 1. In a category &£, every diagram has a
direct limit if and only if every family of objects has a direct

sum and every pair of maps from one object to another has a
cokernel.
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Proof. Assume that every family of objects of &' has a
direct sum and that every pair of maps from one object to
another in X has a cokernel. Let K: = X be a diagram

in xy, let {kV:K(V) - X} Ve 2/.be a direct sum of

{K(V)} Ve and let @ be a cokernel of

{(kV’ l%/" K(V))} v:V =V, ve 7 .

Then by Lemma 2, {Q’kv} Ve is@direct limit of K.

This Theorem may be applied for example to prove that
the category of topological spaces and continuous functions has
direct limits. For any family of topological spaces (which is a
set) has a direct sum which is known as the topological union
of the given spaces and also, any pair of continuous maps
f, g:X = X' has a cokernel. To establish this last statement
one considers the intersection R of all those equivalence
relations on X' for which f(a) = g(a) for every ae X. Then,
the projection h of X' onto the quotient space X'/R is a
cokernel of (f, g).

Similar arguments apply to the category of all groups
and homomorphisms and in general to the category of all sets
with a certain type of structure and all functions that preserve
this type of structure (see 1).

If & is an additive category, then we notice that a
cokernel h of a pair (f,g:X — X') 1is just a direct sum of X
and X' with 0 and f-g amalgamated (or also a cokernel of
f-g in the ordinary sense) so that in particular, it is a direct
limit of a quasi-ordered diagram. Therefore, we conclude
that in an additive category every diagram has a direct limit
if and only if every quasi-ordered diagram has a direct limit.

3. Functors permuting with direct limits. If S, T: X~ ¥
and U: - are functors and if «:S -+ T is a natural trans-

formation, then Ul is a natural transformation
{o( X)} XeX

from US to UT which we denote by Ufa).
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Definition 2. If ¥ is a class of proper categories and
if T: - y is a functor, then we say that T is & -admissible
if given any diagram Ke .'I.'V where 7 ¢ &, if kK~ E?/(X)

is a direct limit of K, then T(k):T(K) — TEW(X) = E?/(T(X))

is a direct limit of TK.
A & -admissible functor T will be said to

1) commute with direct limits, if & 1is the class of all proper
categories

2) commute with cokernels, if & consists of those proper
categories that are described in 1) of section 1.

3) be right exact, if it commutes with cokernels of single
pairs of maps

4) be of type LT or commute with direct sums, if & is the
class of all trivial proper categories in which all maps are
identity maps

5) be of type LI*, if & is the class of all directed sets

6) be of type LZ*x*, if & is the class of all quasi-ordered
sets. '

LEMMA 3. If a functor T: X' % is right exact and of
type LZ and if in the category 2’ every family of objects has
a direct sum, then T permutes with cokernels.

Proof. Let @:X — X' be a cokernel of { (fi’ gi:Xi* X)) T
1
is a direct sum of {X.} 1 and if f and
1 1

g are the only maps from X' to X for which f =fk and
i

If {k:X - X'}
1 1

ie

1
g = gki for all ie I, then by Lemma 1, ¢ is a cokernel of
the pair (f,g). Since T is right exact, T(¢@) is a cokernel
of (T(f), T(g)). But since T is of type LZI, {T(ki)}ie I is a
direct sum of {T(Xi)}‘ T Then, since for each iel,
1

T(fi) = T(fki) = T(f) T(ki) and T(gi) = T(g) T(ki), again by
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Lemma 1, T(g@) is a cokernel of {(T(fi)'T(gi))} T

THEOREM 2. Given a functor T: 2 —- &, where in 2
every family of objects has a direct sum, T commutes with
direct limits if and only if it is right exact and of type LZXZ.

Proof. Assume that T is right exact and of type LZ,
let kK = E (X) be a direct limit of KeZ,, and let
. - X! i f v
{%K(V) x}vdf be a direct sum of {K( )}Ve?/ By
Lemma 2, if v:X' = X is the only map for which kV =y k‘v
for each VeZ', then y is a cokernel of

{ (k. Kk K(v))}

ATANRR A vV V', ve

Since T 1is right exact, T(vy) is a cokernel of

{TOLLTR, VRO o oo

Since T is of type LT, {T(kl\,)} Ve is a direct sum of
{T(Xv)} Ve Therefore, again by Lemma 2,

{T(vy) T(k{/,) = T(yk{v) = T(kV)} VeZ

is a direct limit of TK.

Definition 2 may be extended readily to functors of more
than one variable. For example, if T(Z ,%) is a functor of
two variables taking its values mj , and if & is a class of
proper categories, then we say that T is #-admissible if
given two direct limits k:K — EW(X) and h:H - Ew(Y),
where KelZ, He %, and U, 7« & then {T(kV,hW)}VeV,WEw,
which is a natural transformation from T(K,H)e ;Vx AL
EWX Z}T(X’Y))’ is a direct limit of T(K,H). It should be

noticed that this does not m=an that T, considered as a functor
from ‘Z'x; to / is & -admissible or even &x &-admissible.
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However, with this definition one can show that T(x,?)
is & -admissible if and only if for each Xe¢ 2 and each
Y e &, the partial functors T(X, Z/) and T(Z,Y) are
¥ admissible. That this condition is necessary is obvious.
So let us assume that T(X,?) and T(Z,Y) are &-admissible
for all XeZ and all Ye y let k:K — E7/(X) and h:H > E_(Y)

be direct limits of KE.Z'y’and He}/z/, where 27 and Ze~are

in & and consider a family

{

(T(K(V), H(W)) - 2}

Tv,w Ve, We ze~

where for each v:V = V! in Z and each w:W - W' in Z&/7

I =0 vt W T(K(v), H{w)) {1)

For each We Z¢f o T WT(K(V),H(W)) for every

v, W v

viV = V! in 77, and since T(Z,6 H(W)) is &-admissible,
there exists a unique pW:T(X, H(W)) - Z such that

ch, —_— pWT(kV,H(W)) for each ve &. Then, for each
w:W - W' in @~

p Tk H(W) = T(K(V), H(w))

=0
VvV, W v, w!

T(ky H(W")) T(K(V), H{w)) = p

=y , T(X, Hw)) T(k_, H(W))

w

so that p T(X,H(w)). Then, since T(X,?) is

w - Pw
f.»a-admissible, there exists a unique 7:T(X,Y) - Z such that
Py = rT(X,hW) for each We %’ so that for each Ve 27 and
each WeZe/,

“v.ow> Py Tk H(W)) = 7 T(X, h )Tk, H(W)) = 7Tk, h )

With these remarks it is clear that Theorem 2 extends

to any functor of two or more variables. For categories of
modules, because the functor ®A. is right exact and of type

LY, Theorem 2 permits one to conclude immsdiately that it
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permuates with all direct limits. Similarly, by duality, since
HOM , is left exact and of type R7/, one concludes that it
permutes with all inverse limits.

THEOREM 3. Given three functors S,T,U: X - %/,
if @,B:S—= T and Vv:T = U are natural transformations and

if for each XeXZ, YX is a cokernel of (QX-’ BX), then if S

and T are (;w-admissible, so is U.

Proof. Let kiK = E?f(X) be a direct limit of Ke ;Z'V,
where 7 ¢ &. We must show that U(k):UK — Ey(U(X)) is a

direct limit.

E (ay) E(vy)
E (S(xX)) > E (T(X)) »E (U(X))
E (By)
S(k) T(k) U(k)
SK = 3 TK A > UK
g

Let h:UK - EZ/(Y) be a natural transformation. Then,
hy:TK - EW‘(Y) is a natural transformation and since T(k)

is a direct limit, there exists a unique @:T(X) - Y such that
hy = Ey((p)T(k). Then

E?(gﬁaX)S(k) = EW(S(D)E (ozX)S(k) = EZ/( ®)T(k)a = hye =hyp =

E (p)T(k)p = EZ’( PIE,(BIS(k) = E (p)S(k)

and since S(k) is a direct limit, Ey(go aX) = Ey(gpﬁx) so that

gpax =@ [SX. Then, since YX is a cokernel of (aX, BX), there

exists a unique Y:U(X) - Y such that @ = prX so that

hy = E, (@) T(K) = E_ {4y, ) T(K) = E_ (), {y ) T(K) = E,($)U(k)y
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and since Yxi is an epimorphism for each X' eXZ,

h=E_ (H)U(K.

LEMMA 4. If K: 7~ 'ZR is a directed diagram of
R-modules and if k:K = E?/(X) is a natural transformation,

then k is a direct limit if and only if
1) X is the set-theoretical union of all the im IS,, Ve7

2) If ae K(V) is such that lw(a) =0, then there exists

V' >V such that £ is the image by

v,V!
K of the only map from V to V!.

(2)=0, where fV, -

Proof. Assume first of all that k is a direct limit.
That X is the module-theoretical sum of the im kV is

obvious by Lemma 2. That it is the set-theoretical sum of
the im kv follows from the fact that if V,V'e 7, there exists
V'"e?" such that V< V" and V' < V" so that kg =kV“fV,V”
and kV' = Hf"fV' g and therefore, im kV Cim k_, and

v
im kg, Cim kg,

Now assume that ae K(—’\-’) is such that Is—,(a) =0 and

let {k{r:K(V) - X'} be a direct sum of {K(V)}

VeZ Ve?7

Then, by Lemma 2,

]ﬁ'—/'(a) =(k{’ -IS',' fV ,V')(ai) + ...t (IS'/' -k;/,'fv ,V')(an) (2)
1 1 1 1 n n n n

where for each i, aie K(V.) and V_< V! . But there exists
1 1- 1

Vo such that VE_VO and Viivo for each i. Then, if

?/'0 denotes the quasi-ordered subset of 7 consisting of all

v<v, {f is a direct limit of the restriction
)

v,V }V<V
o - o

of K to 7 and itis clear from (2) that f- (a)=0.
o V,Vo _
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Conversely, assume that conditions 1) and 2) are
satisfied and let h:K = EW(X' ) be a direct limit of K. Then

there exists ‘y:X‘V - X such that k= Ez/(V)h' If ae X, by 1)
there exists Ve 27 such that a = l-\/_(av), where ave K(V).
If a- 1\!' (aV' ), where V'e 7/ and 2y, ¢ K(V'), there

exists V'"e¢ 7 suchthat V <V" and V' < V", and we have

kyulfy, yulay) = fgn yulag ) =kylag) = kg, (ag, ) =0

so that by 2), there exists V'"' >V such that

o = fvll,vlll (fv’vll(av) - fvl ’Vll(avl )) = fv, Vlll (av) = fvl ,VIH (avl )
and therefore,
hv(av) = hvu! fV,V'" (aV) = hVIl’ fVI , Vll' (avl ) = hvl (a'Vl )

It is then easy to verify that the correspondence a - hv(aV)
is an inverse R~homomorphism of v.
THEOREM 4. Given three functors S,T,U: X — s

whe re % is a category of R-modules, if a:S—> T and p:T - U
are natural transformations and if for each Xe X QX is a

kernel of ﬁX’ then if T and U are e-admissible, where

the proper categories in &g are directed sets, so is S.

Proof. Let Kexv, where 7 ¢ &, and let
k:K - E?/(X) be a direct limit of K. Using Lemma 4, we will

show that S(k) is a direct limit of SK.
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“x Px
S(X) > T(X) »U(X)

Slky, ) Slk,) Tlky,) T(k,) Ulk,) Ulk,,)
“K(V) Pr(v)
SK(V) TK(V) s UK(V)
Sy ) Afv, vt! UlEy )
K(V1) / Prive)
SK(V} ) ————>TK(V' ) ————— UK(‘{/" )

Let ae S(X). There exists Ve 2 such that aX(a) = T(kv)(bv),
where bVe TK(V)." Since

Uy )By vy (byy) =By Tl )(by) = Bya (a) =0

i > =0. ,
there exists V' >V such that U(fV,V' )BK(V)(bV) 0. Then
ﬁK(V' )T(fV,‘V’ )(bv) = 0 so that there exists av'e SK(V') such
that T(fV, v ) (bv) = aK(V’ )(av' ) and therefore

aXS(kV' )(aV' ) = T(kV' )QK(V‘ )(aV' ) = T(l\ﬂ )T(fV, - )(bv)
= T(kv)(bv) = aX(a)..
Since 2y is a monomorphism, a = s(lﬁn )(av' ).
Now assums that S(kv)(av) =0, where Ve 7 and
a € K(V). Then, T(%)QK(V)(aV) = aXS(lgl)(aV) =0 so that
there exists V' >V such that 0 = T(f

v, v %)@y
S(f )(av) and therefore, since « is a

K(V')
Na) =0.

)a

TRV, v

monomorphism, S(fV V1
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From this theorem one may immediately deduce that the
functor Z of (2) is of type LZ*. The dual of this theorem
is then certainly not valid since it would imply that the functor
Z' of (2) is of type R T* which is not true as is noticed in
(2). This means that Theorem 4 cannot be generalized to
abstract categories.
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