A Symbolic proof of Euler's Addition Theorem for Elliptic Functions.

By W. Saddler.

(Received 5th October 1925. Read 5th June 1925).
§ 1. Let $a_{0} x^{4}+4 a_{1} x^{3}+6 a_{2} x^{2}+4 a_{3} x+a_{4} \equiv a_{x}{ }^{4} \equiv b_{x}^{4}$ be a binary quartic; then I propose to show symbolically that the solution of Euler's differential equation

$$
\frac{d y}{\sqrt{a_{y}^{4}}}=\frac{d z}{\sqrt{a_{z}^{*}}}
$$

can be written in the form

$$
k a_{y}^{2} a_{z}^{2}+\lambda h_{y}^{2} h_{z}^{2}-\frac{\mu}{2}(\dot{y} \dot{z})^{2}=0
$$

where

$$
\begin{gathered}
k^{2}-\lambda \mu-\frac{1}{6} \lambda^{2} i=0, \\
i=(a b)^{4}=2\left(a_{0} a_{4}-4 a_{1} a_{3}+3 a_{2}^{2}\right) \text { and } k, \lambda, \mu
\end{gathered}
$$

are otherwise arbitrary.
Let $h_{x}{ }^{4}=(a b)^{2} a_{x}{ }^{2} b_{x}{ }^{2}$ be the Hessian of the quartic, and first let y and z satisfy $a_{y}^{2} a_{z}^{2}=0$, namely the second polar of the quartic in y, with respect to z.

Since

$$
(y z)(a b)=a_{y} b_{z}-a_{z} b_{y},
$$

therefore

$$
\begin{align*}
(y z)^{2}(a b)^{2} a_{y}{ }^{2} b_{y}{ }^{2} & =\left(a_{y} b_{z}-a_{z} b_{y}\right)^{2} a_{y}{ }^{2} b_{y}{ }^{2}, \\
& =a_{y}{ }^{4} b_{y}{ }^{2} b_{z}{ }^{2}-2 a_{y}{ }^{3} a_{z} b_{y}{ }^{3} b_{z}+a_{y}{ }^{2} a_{z}{ }^{2} b_{y}{ }^{4}, \\
& =-2\left(a_{y}{ }^{3} a_{z}\right)^{2}, \\
\text { since } & a_{y}{ }^{2} a_{z}{ }^{2}=0 \ldots \tag{i}
\end{align*}
$$

Thus

$$
(y z)^{2}(a b)^{2} a_{y}{ }^{2} b_{y}{ }^{2}=-2\left(a_{y}{ }^{3} a_{z}\right)^{2}
$$

and similarly $\quad(y z)^{2}(a b)^{2} a_{z}^{2} b_{z}{ }^{2}=-2\left(a_{z}^{3} a_{y}\right)^{2}$,
whence

$$
\begin{equation*}
\frac{\sqrt{h_{y}^{4}}}{\sqrt{h_{z}^{4}}}= \pm \frac{a_{y}{ }^{3} a_{z}}{a_{z}^{3} a_{y}} \tag{ii}
\end{equation*}
$$

From (i), by differentiation, $a_{1} a_{y} a_{z}^{2}+\frac{d z_{1}}{d y_{1}} a_{1} a_{v}{ }^{2} a_{z}=0$
or

$$
\left(a_{y} a_{z}^{3}-a_{2} a_{y} a_{z}^{2} z_{z}\right)+\frac{d{\tilde{\tau_{1}}}_{1}}{d y_{1}}\left(a_{y}^{2} a_{z}^{2}-a_{z} z_{2} a_{z} a_{y}^{2}\right)=0
$$

or

$$
\left(a_{y} a_{z}^{3}-a_{2} a_{y} a_{z}^{2} z_{2}\right)-\frac{d z_{1}}{d y_{1}} a_{2} z_{2} a_{z} a_{y}^{2}=0
$$

Similarly

$$
-a_{2} a_{y} a_{z}^{2} y_{z}+\frac{d z_{2}}{d y_{1}}\left(a_{y}{ }^{3} a_{z}-a_{2} y_{2} a_{y}^{2} a_{z}\right)=0
$$

Since y_{2} and z_{2} are introduced to make the functions homogeneous we may replace them by unity. By subtraction we obtain

$$
a_{y} a_{z}^{3}-\frac{d z_{1}}{d y_{1}} a_{y}^{3} a_{z}=0
$$

Thus $\quad \frac{d y_{1}}{a_{y}{ }^{3} a_{2}}=\frac{d z_{1}}{a_{z}^{3} a_{y}} \quad$ or $\frac{d y_{1}}{\sqrt{h_{y}{ }^{4}}}= \pm \frac{d z_{1}}{\sqrt{h_{2}^{4}}}$.
Let $f_{k \lambda} \equiv k f+\lambda h \equiv k a_{x}{ }^{4}+\lambda h_{x}{ }^{4}$, and next let y and z satisfy $k a_{z}{ }^{2} a_{y}{ }^{2}+\lambda h_{z}{ }^{2} h_{y}{ }^{2}=0$. Since the Hessian of $k f+\lambda h^{*}$ is

$$
k^{2} h+\frac{1}{3} i k \lambda f+\lambda^{2}\left(\frac{1}{3} j f^{\prime}-\frac{1}{6} i h\right),
$$

where $i=(a b)^{4}, j=(a b)^{2}(b c)^{2}(c a)^{2}$, choose $k^{2}-\frac{1}{6} \lambda^{2} i=0$.
Then $\frac{d z_{1}}{\sqrt{a_{z}^{4}}}= \pm \frac{d y_{1}}{\sqrt{a_{y}^{4}}}$ where y and z are connected by $k a_{z}{ }^{2} a_{\nu}{ }^{2}+\lambda h_{z}{ }^{2} h_{y}{ }^{2}=0, k^{2}=\frac{1}{\delta} \lambda i$.
§ 2. Again, if y and z satisfy,

$$
a_{y}^{2} a_{z}^{2}-\frac{\mu}{2}(y z)^{2}=0,
$$

where μ is a constant and

$$
(y z)^{2}=\left(y_{1} z_{2}-y_{2} z_{1}\right)^{2}
$$

then by proceeding as before,

$$
(y z)^{2}(a b)^{2} a_{y}{ }^{2} b_{y}{ }^{2}=-2\left(a_{y}^{3} a_{z}\right)^{3}+\mu(y z)^{2} a_{y}^{4},
$$

thus

$$
(y z)^{2}\left\{(a b)^{2} a_{y}{ }^{2} b_{y}{ }^{2}-\mu a_{y}{ }^{4}\right\}=-2\left(a_{y}{ }^{3} a_{z}\right)^{2} ;
$$

similarly

$$
(y z)^{2}\left\{(a b)^{2} a_{z}^{2} b_{z}^{2}-\mu a_{z}^{4}\right\}=-2\left(a_{z}^{3} a_{y}\right)^{2}
$$

[^0]Hence $\quad \frac{a_{y}{ }^{3} a_{z}}{\sqrt{ } h_{y}^{4}-\mu a_{y}{ }^{4}}= \pm \frac{a_{i}^{3} a_{y}}{\sqrt{h_{z}^{4}-\mu a_{z}^{4}}}$
Differentiating

$$
a_{y}^{2} a_{z}^{2}=\frac{\mu}{2}(y z)^{2},
$$

we obtain

$$
2 a_{1} a_{y} a_{z}^{2}+2 a_{y}^{2} a_{1} a_{z} \frac{d z_{1}}{d y_{1}}=\mu(y z)\left\{z_{2}-y_{2} \frac{d z_{1}}{d y_{1}}\right\} .
$$

Multiplying by y_{1}, we have

$$
\begin{aligned}
& 2 a_{y}^{2} a_{2}^{2}-2 a_{2} y_{2} a_{y} a_{z}^{2}+2 a_{y}^{3} a_{z} \frac{d z_{1}}{d y_{1}}-2 a_{2} y_{2} a_{y}^{2} a_{2} \frac{d z_{1}}{d y_{1}} \\
&=\mu(y z)\left\{(y z)+y_{2} z_{1}-y_{1} y_{2} \frac{d z_{1}}{d y_{1}}\right\}
\end{aligned}
$$

Using $\quad a_{\nu}{ }^{2} a_{z}{ }^{2}=\frac{\mu}{2}(y z)^{2}$,

$$
\begin{aligned}
-2 a_{2} y_{2} a_{y} a_{x}^{2}+2 a_{y}{ }^{3} a_{z} \frac{d z_{1}}{d y_{1}} & -2 a_{2} y_{2} a_{3}{ }^{2} a_{z} \frac{d z_{1}}{d y_{1}} \\
& =\mu\left(y_{2} z_{1}-y_{1} y_{2} \frac{d z_{1}}{d y_{1}}\right)(y z) .
\end{aligned}
$$

Similarly on multiplying by z_{1}, $2 a_{y} a_{z}^{3}-2 a_{2} z_{2} a_{y} a_{z}^{2}-2 a_{y}^{2} a_{8} z_{2} a_{2} \frac{d z_{1}}{d y_{1}}=\mu\left(z_{1} z_{2}-y_{1} z_{2} \frac{d z_{1}}{d y_{1}}\right)(y z)$.

Then, subtracting and replacing y_{2} and z_{2} by unity,

$$
\begin{array}{r}
\frac{d z_{1}}{a_{y} a_{z}{ }^{3}}=\frac{d y_{1}}{a_{y}{ }^{3} a_{z}}, \\
\text { or } \quad \frac{d z_{1}}{\sqrt{h_{z}^{4}-\mu a_{z}{ }^{4}}}= \pm \frac{d y_{1}}{\sqrt{h_{y}^{4}-\mu a_{y}{ }^{4}}} \tag{iii}
\end{array}
$$

In particular, if $\mu a_{0}=a_{0} a_{2}-a_{1}^{2}$, the quartic is depressed to a cubic, while if μ is one of the roots of

$$
k^{3}-\frac{1}{2} i k \lambda^{2}-\frac{1}{3} j \lambda^{3}=0^{*}
$$

the equation (iii) reduces to the rational form

$$
\frac{d z_{1}}{\text { quadratic }}=\frac{d y_{1}}{\text { quadratic }} .
$$

[^1]§3. Now let $f_{k \lambda}=k f+\lambda h$, and let k, λ, μ satisfy
$$
k a_{z}{ }^{2} a_{y}{ }^{2}+\lambda k_{z}^{2} h_{y}{ }^{2}-\frac{\mu}{2}(y z)^{2}=0 .
$$

By substituting in equation (iii), with the notation

$$
F(x) \equiv h\left(k^{2}-\lambda \mu-\frac{1}{\gamma} \lambda^{2} i\right)+f\left(\frac{1}{3} i k \lambda+\frac{1}{\gamma} j \lambda^{n}-k \mu\right),
$$

we have proved

$$
\frac{d z_{1}}{\sqrt{\overline{F(z)}}}= \pm \frac{d y_{1}}{\sqrt{\bar{F}(y)}}
$$

whence if

$$
k^{2}-\lambda \mu-\frac{1}{6} \lambda^{2} i=0,
$$

then

$$
\frac{d z_{1}}{\sqrt{a_{z}^{4}}}= \pm \frac{d y_{1}}{\sqrt{a_{y}^{4}}}
$$

has an integral of the form
where

$$
\begin{gathered}
k a_{z}^{2} a_{y}{ }_{y}^{2}+\lambda h_{z}^{2} h_{y}{ }^{2}-\frac{\mu}{2}(y z)^{2}=0 \\
k^{2}-\lambda \mu-\frac{1}{6} \lambda^{2} i=0 .
\end{gathered}
$$

§4. Canonical Form of the binary cubic.
Consider the binary cubic

$$
a_{0} x^{3}+3 a_{1} x^{2}+3 a_{2} x+a_{3} \equiv a_{x}^{3} \equiv b_{x}^{3}=\ldots
$$

The Hessian is $h_{x}{ }^{2}=(a b)^{2} a_{x} b_{x}$, and the first polar with respect to x^{\prime} is $a_{x}{ }^{2} a_{z x}$.

Then if y and z are connected by the relation

$$
a_{y}{ }^{2} a_{z}=0,
$$

by methods exactly similar to $\S 1$ we obtain

$$
\frac{d y_{1}}{a_{y}{ }^{3}}=\frac{d z_{1}}{2 a_{y} a_{z}{ }^{2}} \text { or } \frac{d y_{1}}{h_{y}{ }^{2}}=-\frac{d z_{1}}{2 h_{z}{ }^{2}} .
$$

In particular, if $h_{x}{ }^{2} \equiv(x-\alpha)(x-\beta)$,

$$
\text { then } \frac{d y}{(y-\alpha)(y-\beta)}+\frac{d z}{2(z-a)(z-\beta)}=0
$$

has an integral of the form

$$
\left(\frac{y-\alpha}{y-\beta}\right)^{2}\left(\frac{z-\alpha}{z-\beta}\right)=\text { constant } .
$$

But $a_{v}{ }^{2} a_{z}=0$ was the relation between y and z.

Hence $a_{y}{ }^{2} a_{z}$ can be written in the form

$$
A(y-\alpha)^{2}(z-\alpha)+B(y-\beta)^{2}(z-\beta)
$$

which reduces to a sum of two cubes, the well known canonical form of the cubic when $y=z$.

Not only so, for if we take the form as,

$$
k a_{x}^{3}+\lambda t_{x}^{3}
$$

where $t_{x}{ }^{3}$ is the cubicovariant of $a_{x}{ }^{3}$,
then if

$$
k a_{y} a_{x}^{2}+\lambda t_{y} t_{x}^{2}=0
$$

it follows that since the Hessian of $k a_{x}{ }^{3}+\lambda t_{x}{ }^{3}$
is

$$
\left(k^{2}+\frac{1}{2} \Delta \lambda^{2}\right) h_{x}^{2}
$$

where Δ is the discriminant of the cubic, the cubic covariant has an exactly similar canonical form.

§5. Application to Double Integrals.

Consider a double binary (2, 2) form,

$$
\begin{aligned}
& \qquad f=a_{x}^{2} \alpha_{\xi}^{2}= \\
& =a_{00} x^{2} \xi^{2}+2 a_{01} x^{2} \xi+2 a_{10} x \xi^{2}+4 a_{11} x \xi \\
& \\
& +a_{02} x^{2}+a_{20} \xi^{2}+2 a_{12} x+2 a_{21} \xi+a_{22} \\
& \text { which takes the form } \quad k x^{2} \xi^{2}+l\left(x^{2}+\xi^{2}\right)+4 m x \xi+k
\end{aligned}
$$ for the canonical case.

The (1, 1) transvectant $\frac{1}{2} J=\frac{1}{2}(a b)(\alpha \beta) a_{x} b_{x} \alpha_{\xi} \beta_{\xi}$

$$
=\frac{1}{2} \theta_{x}^{2} \phi_{\xi}^{2}
$$

$$
=\frac{1}{4}\left|\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1} \partial \xi_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial \xi_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial \xi_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial \xi_{2}}
\end{array}\right|
$$

$$
=\left|\begin{array}{ll}
a_{00} x \xi+a_{01} x+a_{10} \xi+a_{11} & a_{01} x \xi+a_{02} x+a_{11} \xi+a_{12} \\
a_{10} x \xi+a_{11} x+a_{20} \xi+a_{21} & a_{11} x \xi+a_{12} x+a_{21} \xi+a_{23}
\end{array}\right|
$$

or in canonical form,

$$
k m\left(x^{2} \xi^{2}+1\right)+\left(k^{2}-l^{2}\right) x \xi-l m\left(x^{2}+\xi^{2}\right)
$$

[^2]Let y and z be cogredient variables, likewise η and ξ. Then the first polar of $a_{g}{ }^{2} \alpha_{\eta}{ }^{2}$ with respect to z, ζ is,

$$
a_{y} a_{z} \alpha_{\eta} \alpha_{\zeta} \text { or non-symbolically, }
$$

$$
\begin{aligned}
& a_{00} y z \zeta \eta+a_{01} y z(\zeta+\eta)+a_{10} \zeta \eta(y+z)+a_{11}(y+z)(\zeta+\eta) \\
&+a_{20} \zeta \eta+a_{0 g} y z+a_{21}(\eta+\zeta)+a_{12}(y+z)+a_{22}
\end{aligned}
$$

or in the canonical form,

$$
k y z \zeta \eta+m(y+z)(\zeta+\eta)+l(\zeta \eta+y z)+k
$$

Let $a_{y} a_{z} \alpha_{\eta} \alpha_{\zeta}=\frac{\rho}{2}(y z)(\eta \zeta)$, where ρ is a constant, since

$$
\begin{gathered}
(y z)(\zeta \eta) \cdot(a b)(\alpha \beta) a_{y} b_{y} \alpha_{n} \beta_{\eta}=2 a_{\eta}^{2} \alpha_{\eta} \cdot b_{y} b_{z} \beta_{\eta} \beta_{\zeta} \\
-2 a_{y}{ }^{2} \alpha_{\eta} \alpha_{\zeta} \cdot b_{y} b_{z} \beta_{\eta}^{2}
\end{gathered}
$$

then

$$
(y z)(\eta \zeta)\left\{(a b)(\alpha \beta) a_{y} b_{y} \alpha_{\eta} \beta_{\eta}-\rho a_{y}^{2} \alpha_{\eta}^{2}\right\}=-2 a_{y}^{2} \alpha_{\eta} \alpha_{\zeta} \cdot b_{y} b_{2} \beta_{\eta}^{2} .
$$

Similarly,

$$
\begin{align*}
& \quad(y z)(\eta \zeta)\left\{J_{z, \zeta}-\rho f_{z, \zeta}\right\}=-2 a_{z}{ }^{2} \alpha_{\eta} \alpha_{\zeta} \cdot b_{y} b_{x} \beta_{\zeta}^{2} . \\
& \text { Hence } \quad \frac{J_{y_{1} \eta}-\rho f_{y_{1} \eta}}{J_{z, \zeta}-\rho f_{z_{1} \zeta} \zeta}=\frac{a_{y}{ }^{2} \alpha_{\eta} \alpha_{\zeta} \cdot b_{y} b_{z} \beta_{\eta}{ }^{2}}{a_{z}^{2} \alpha_{\eta} \alpha_{\zeta} \cdot b_{y} b_{z} \beta_{\zeta}^{2}} . \tag{i}
\end{align*}
$$

By the differentiation of $a_{y} a_{z} \alpha_{\eta} \alpha_{\gamma}=\frac{\rho}{2}(y z)(\eta \zeta)$,
with respect to y_{1} considering z_{1} as a function of y, and ζ, η as independent of y, we obtain,

$$
a_{1} a_{2} \alpha_{\eta} \alpha_{\zeta}+a_{1} a_{y} \alpha_{\eta} \alpha_{\zeta} \frac{d z_{1}}{d y_{1}}=\frac{\rho}{2} z_{2}(\eta \zeta)-\frac{\rho}{2} y_{2}(\eta \zeta) \frac{d z_{1}}{d y_{1}}
$$

Multiplying both sides by y_{1} and using (i), we obtain,
$-a_{2} y_{2} a_{z} \alpha_{\eta} \alpha_{S}+a_{y}^{2} \alpha_{\eta} \alpha_{r} \frac{d z_{1}}{d y_{1}}-a_{2} y_{2} a_{\eta} a_{r} \frac{d z_{1}}{d y_{1}}$

$$
=\frac{\rho}{2} y_{2} z_{1}(\eta \zeta)-\frac{\rho}{2} y_{1} y_{2}(\eta \zeta) \frac{d z_{1}}{d y_{1}}
$$

Similarly,

$$
\begin{aligned}
a_{n}^{2} \alpha_{\eta} \alpha_{\zeta}-a_{2} z_{2} a_{z} \alpha_{\eta} \alpha_{\zeta}-a_{2} z_{2} a_{y} \alpha_{\eta} \alpha_{\zeta} & \frac{d z_{1}}{d y_{1}} \\
& =\frac{\rho}{2} z_{1} z_{2}(\eta \zeta)-\frac{\rho}{2} y_{1} z_{2}(\eta \zeta) \frac{d z_{1}}{d y_{1}}
\end{aligned}
$$

On subtraction and replacing y_{2}, z_{2} by unity, we obtain

$$
a_{y}{ }^{2} \alpha_{n} \alpha_{\zeta} \frac{d z_{1}}{d y_{1}}-a_{z}^{2} \alpha_{n} \alpha_{\zeta}=0 .
$$

Similarly

$$
a_{y} a_{z} \alpha_{\xi}^{2} \frac{d \eta_{1}}{d \zeta_{1}}-a_{y} a_{z} \alpha_{\eta}^{3}=0 .
$$

Hence

$$
\frac{d y_{1} d \eta_{1}}{a_{\nu}^{2} \alpha_{n} \alpha_{\zeta} \cdot a_{v} a_{z} \alpha_{\zeta}{ }^{2}}=\frac{d z_{1} d \zeta_{1}}{a_{z}^{2} \alpha_{\eta} \alpha_{\zeta} \cdot a_{y} a_{z} \alpha_{\eta}{ }^{2}} .
$$

Thus

$$
\frac{d z_{1} d \zeta_{1}}{P_{z, \zeta}}=\frac{d y_{1} d \eta_{1}}{P_{y, \eta}}
$$

$$
\text { where } \begin{aligned}
P_{y, \eta} & \equiv(a b)(\alpha \beta) a_{y} b_{y} \alpha_{\eta} \beta_{\eta}-\rho a_{y}{ }^{2} \alpha_{\eta} \\
& \equiv \theta_{\mu}{ }^{2} \phi_{\eta}{ }^{2}-\rho a_{y}{ }^{2} \alpha_{\eta}{ }^{2} .
\end{aligned}
$$

I. Let $\rho=0$.

Then if $a_{y} \alpha_{z} \alpha_{\eta} \alpha_{\zeta}=0$,

$$
\frac{d y_{1} d \eta_{1}}{\theta_{y}{ }^{2} \phi^{2}}=\frac{d z_{1} d \zeta_{1}}{\theta_{z}^{2} \phi_{\eta}{ }^{2}}
$$

which reduces to the result in $\S 1$ when $y=\eta, z=\zeta ; \alpha=a$: or, in the canonical form, if,

$$
y \eta(k z \zeta+m)+y(l z+m \zeta)+\eta(l \zeta+m z)+m z \zeta+k \equiv 0
$$

then,

$$
\begin{gathered}
\frac{d y d \eta}{k m\left(y^{2} \eta^{2}+1\right)+\left(k^{2}-l^{2}\right) y \eta-\operatorname{lm}\left(y^{2}+\eta^{2}\right.} \\
=\frac{d z d \zeta}{\text { corresponding expression in } z, \zeta}
\end{gathered}
$$

II. Since $(J J)_{1,1}=\frac{1}{3} B \cdot f^{*}$
where

$$
B=\frac{1}{6}(a b)(b c)(c a)(\alpha \beta)(\beta \gamma)(\gamma a)
$$

shewing that the relation between f and J is reciprocal, then, if

$$
\begin{aligned}
& \theta_{y} \theta_{2} \phi_{\eta} \phi_{\zeta}=0, \\
& \frac{d y_{1} d \eta_{1}}{a_{y}{ }^{2} \alpha_{n}{ }^{2}}=\frac{d z_{1} d \zeta_{1}}{a_{2}^{2} a_{\zeta}^{2}}
\end{aligned}
$$

[^3]III. Consider now instead of $a_{x}^{2} \alpha_{\xi}^{2}=f$ the form
$$
F=k f+\lambda \theta+\mu p^{*}
$$
where k, λ, μ are constants, and $p \equiv p_{x}^{2} \pi_{\xi}^{2} \equiv(f, \theta)_{1},_{1}$.
Then $(F, F)_{1},{ }_{1}=f\left(\frac{1}{1} \frac{1}{2} A B \mu^{2}+\frac{1}{6} k \mu B+\frac{1}{3} \lambda^{2} B+\frac{1}{2} \lambda \mu C\right)$
\[

$$
\begin{aligned}
& +\theta\left(k^{2}+\frac{1}{4} \mu^{2} C+\frac{1}{2} k \mu A+\frac{1}{8} \lambda \mu B\right) \\
& +p\left(2 k \lambda-\frac{1}{6} B \mu^{2}\right) \quad=L_{x,}
\end{aligned}
$$
\]

This results from the use of the following transvectants,

$$
\begin{aligned}
& (f, p)_{1},{ }_{1}=\frac{1}{4} A \theta+\frac{1}{12} B f \\
& (p, \theta)_{1},{ }_{1}=\frac{1}{4} C f+\frac{1}{12} B \theta \\
& (p, p)_{1},_{1}=\frac{1}{12} A B f+\frac{1}{4} C \theta-\frac{1}{\theta} B p \\
& (\theta, \theta)_{1}, 1=\frac{1}{3} B f \\
& A=(f, f)_{2,2} ; B=(f, \theta)_{2,2} ; \quad C=(\theta, \theta)_{2,2} .
\end{aligned}
$$

If now

$$
\begin{gathered}
k a_{y} a_{z} \alpha_{\zeta} \alpha_{\eta}^{\prime}+\lambda \theta_{y} \theta_{z} \phi_{\eta} \phi_{\zeta}+\mu p_{y} p_{z} \pi_{\eta} \pi_{\zeta}=\frac{\rho}{2}(y z)(\zeta \eta) \\
\frac{d y_{1} d \eta_{1}}{L_{y, \eta}-\rho F_{y, \eta}}=\frac{d z_{1} d \zeta_{1}}{L_{z, \zeta}-\rho \bar{F}_{z, \zeta}} .
\end{gathered}
$$

then

Making the coefficients of θ, and p, vanish, then the integral of

$$
\frac{d y_{1} d \eta_{1}}{a_{y}^{2} \alpha_{\eta}^{2}}=\frac{d z_{1} d \zeta_{1}}{a_{z}^{2} \alpha_{\zeta}^{2}}
$$

is

$$
k a_{y} a_{z} a_{\zeta} \alpha_{\eta}+\lambda \theta_{y} \theta_{z} \phi_{\eta} \phi_{\zeta}+\mu p_{y} p_{z} \pi_{\eta} \pi_{\zeta}=\frac{\rho}{2}(y z)(\zeta \eta),
$$

where

$$
\begin{gathered}
k^{2}+\frac{1}{4} C \mu^{2}+\frac{1}{2} k \mu A+\frac{1}{6} \lambda \mu B-\rho \lambda=0 \\
2 k \lambda-\frac{1}{6} B \mu^{2}-\rho \mu=0
\end{gathered}
$$

and
Non-Symbolically :
If $f(y, \eta)$ is a general double quadratic,

$$
a_{00} y^{2} \eta^{2}+2 a_{02} y^{2} \eta+\ldots+a_{22}
$$

in two independent variables (y, η), and if $\theta(y, \eta), p(y, \eta)$ are its

[^4]two (2, 2) covariants, then an algebraic solution, involving one arbitrary constant, of the differential equation
$$
\frac{d y d \eta}{f(y, \eta)}=\frac{d z d \zeta}{f(z, \zeta)}
$$
exists and is expressible as a quadrilinear relation between the variables $y, \eta ; z$,$\} :$
namely $\quad 2 k f^{\prime}+2 \lambda \theta^{\prime}+2 \mu p^{\prime}=\rho(y-z)(\eta-\zeta)$,
k, λ, μ, ρ being constants, connected by two relations involving the invariants of f.

Here $f,^{\prime} \theta^{\prime}, p^{\prime}$ are the quadrilinear polar forms of f, θ, p, respectively.

[^0]: "Grace and Young, Algebra of Invariants, p. 198.

[^1]: *Grace and Young, loco. cit., p. 198.

[^2]: * Prof. H. W. Tunnbull, Proc. Roy. Soc., EPdinb., 44 (1924), 23-50.

[^3]: *Proc. R.S.E., loco. cit.

[^4]: *The notation used is that of Prano, quoted in Proc. R. S. E., loco. cit.

