HAMILTONIAN CYCLES IN STRONG PRODUCTS OF GRAPHS

BY

J. C. BERMOND, A. GERMA, AND M. C. HEYDEMANN

ABSTRACT. Let $\overline{\times} G^k$ denote the graph $G \overline{\times} G \overline{\times} \cdots \overline{\times} G$ (k times) where $G \overline{\times} H$ is the strong product of the two graphs G and H. In this paper we prove the conjecture of J. Zaks [3]: For every connected graph G with at least two vertices there exists an integer k = k(G) for which the graph $\overline{\times} G^k$ is hamiltonian.

Let G be a graph (undirected) and let V(G) and E(G) denote the vertex set and the edge set of G. The strong product $G \times H$ of two graphs G and H is defined by

$$V(G \times H) = V(G) \times V(H)$$

 $E(G \times H) = \{\{(u_1, v_1)(u_2, v_2)\} \mid u_1, u_2 \in V(G), v_1, v_2 \in V(H) \text{ and } \}$

either $u_1 = u_2$ and $\{v_1, v_2\} \in E(H)$

either $v_1 = v_2$ and $\{u_1, u_2\} \in E(G)$

either $\{u_1, u_2\} \in E(G)$ and $\{v_1, v_2\} \in E(H)\}$.

This product is commutative and associative and following [3] we shall denote by $\bar{\times} G^k$ the graph $G \bar{\times} G \bar{\times} \cdots \bar{\times} G$ (k times).

In [3] J. Zaks proved that: "For every h and k, $h \ge 1$, $k \ge 1$, there exists an h-connected graph G = G(h, k), such that the graph $\overline{\times} G^k$ is non-hamiltonian" and asked:

"Is it true that for every connected graph G with at least two vertices there exists an integer k = k(G) for which the graph $\overline{\times} G^k$ is hamiltonian".

We give an affirmative answer to this question in Theorem 11, the proof of which needs Lemmata and Propositions 1 to 10.

Our notations are as follows:

 $-P_n$ the path with *n* vertices.

4

 $-d_G(x)$ the degree of the vertex x in G.

 $-\Delta(G)$ the maximum degree of the vertices of G.

— For a in V(H) (resp. b in V(G)) G_a (resp. H_b) denote the subgraph $G \times \{a\}$ of $G \times H$ (resp. $\{b\} \times H$ of $G \times H$).

Received by the editors March 29, 1978 and, in revised form, August 1st, 1978.

The reader is referred to C. Berge [1] for any graph theory terms not defined here.

LEMMA 1. The strong product of two connected graphs is connected.

LEMMA 2. For every graph G and every integer $n \ge 2$, there exists a covering of the vertices of $G \times P_n$ by vertex-disjoint subgraphs isomorphic to P_n .

Proof. The subgraphs of the covering are $(P_n)_a$ with $a \in V(G)$.

LEMMA 3. For every n and m, $2 \le n < m$, there exists a covering of the vertices of $K_{1,n} \times K_{1,m}$ by vertex-disjoint subgraphs isomorphic to $K_{1,n}$.

Proof. The subgraphs of the covering are $(K_{1,n})_a$ with $a \in V(K_{1,m})$.

LEMMA 4. For every $n, n \ge 3$, there exists a covering of the vertices of $\times K_{1,n}^2$ by vertex-disjoint subgraphs isomorphic to K_{1,n_i} with $n_i < n$.

Proof. The general construction is an easy generalization of decomposition shown in Fig. 1 for n = 5.

Figure 1

PROPOSITION 5. For every connected graph G, there exists an integer $k_1 = k_1(G)$ such that $V(\bar{\times} G^{k_1})$ can be covered by vertex-disjoint paths of positive length.

Proof. Every non empty graph G with no isolated vertices is vertex covered by disjoint paths of positive length and by stars, as can be easily shown by induction on the number of vertices of G (or by considering a maximal matching of G). Let the disjoint paths P_{n} , $i \in I$, of positive length and stars

1979]

 $K_{1,n_i}, j \in J$, cover all vertices of G. If $J = \emptyset$ the proposition is true for $k_1 = 1$. If $J \neq \emptyset$, $V(\bar{\times}G^2)$ can be covered by vertex-disjoint subgraphs of the following types: $P_{n_i} \bar{\times} P_{n_i}, P_{n_i} \bar{\times} K_{1,n_i}, K_{1,n_i} \bar{\times} K_{1,n_i}$.

Then, as a consequence of Lemmata 2, 3, 4, $V(\bar{\times}G^2)$ admits a covering by vertex-disjoint subgraphs isomorphic to paths of positive length and stars K_{1,n_l} , $l \in L$ with

$$\max\{n_i, l \in L\} \le \max\{n_i, j \in J\} - 1.$$

Since $\bar{\times} G^2$ is connected (Lemma 1) an easy induction on $\max\{n_j, j \in J\}$ shows that an integer k_1 exists, as required; in fact, k_1 can be chosen to satisfy $k_1 \leq 2^{\Delta(G)-2}$.

LEMMA 6. For every n and m, n, $m \ge 2$, $P_n \times P_m$ admits a hamiltonian cycle (of length nm).

Proof. The construction of a hamiltonian cycle in $P_n \times P_m$ is an immediate generalization of one of the two following constructions of Fig. 2.

Figure 2

PROPOSITION 7. Let G be a graph of maximum degree $\Delta(G)$; if there exists a covering of V(G) by vertex-disjoint paths of positive length, then there exists an integer $k_2 = k_2(G)$ such that $V(\bar{\times}G^{k_2})$ can be covered by vertex-disjoint cycles of length at least $\Delta(G)$.

Proof. Let us consider a covering of V(G) by vertex-disjoint paths P_{n_i} , $i \in I$, $n_i \ge 2$. Then, by Lemma 6, $V(\bar{\times}G^2)$ admits a covering by vertex-disjoint cycles of length at least $(Inf_{i\in I}n_i)^2$ and thus by paths with at least $(Inf_{i\in I}n_i)^2$ vertices. Then, by induction, $\bar{\times}G^p$ can be covered by vertex-disjoint cycles of length at least $(Inf_{n_i})^p$. As $Inf_{i\in I}n_i \ge 2$, there exists an integer k_2 such that $(Inf_{i\in I}n_i)^{k_2} \ge \Delta(G)$

As pointed out by the referee the following lemma is similar to lemma 5 of [2] (see also the proof of theorem 4 in [2]).

LEMMA 8. Let T be a tree of maximum degree $\Delta(T)$ and C be a cycle of length $k \ge \Delta(T)$, then $T \times C$ is hamiltonian and there exists a hamiltonian cycle which uses, for any vertex $u \in V(T)$ exactly $k - d_T(u)$ edges of C_u .

Proof. By induction on |V(T)|.

308

When $T = \{u\}, \{u\} \times C$ is isomorphic to C, so the result is true.

If |V(T)| > 1, let *u* be an end vertex of *T* and *v* its neighbour in *T*, let *T'* be the subtree induced by $V(T) - \{u\}$. By induction hypothesis, $T' \times C$ admits a hamiltonian cycle which uses $k - d_{T'}(v) = k - (d_T(v) - 1)$ edges of C_v . Since $k \ge \Delta(T)$, $k - d_{T'}(v) \ge 1$, so there exists an edge $\{(v, c_1)(v, c_2)\}$ of this hamiltonian cycle, with $\{c_1, c_2\}$ in E(C).

Then we construct a hamiltonian cycle in $T \times C$ by replacing this edge by the following path:

- the edge $\{(v, c_1)(u, c_1)\}$

- the path obtained by removing the edge $\{(u, c_1)(u, c_2)\}$ of the cycle C_u
- the edge $\{(u, c_2)(v, c_2)\}$.

This cycle uses for any vertex u in T exactly $k - d_T(u)$ edges of C_u .

REMARK. Lemma 8 gives an iterative method to construct a hamiltonian cycle of $T \times C$. Furthermore, by starting the construction with u and v we have that, for any edge $\{u, v\}$ of T and for any edge $\{c_1, c_2\}$ of C, there exists a hamiltonian cycle in $T \times C$ which uses the two following edges $\{(u, c_1)(v, c_1)\}$ and $\{(u, c_2)(v, c_2)\}$.

COROLLARY 9. If $\overline{\times} G^k$ is hamiltonian, then for every $p \ge 0$, $\overline{\times} G^{k+p}$ is hamiltonian too.

Proof. By induction on *p*. Lemma 8 applied with *T* a spanning tree of *G* and *C* a hamiltonian cycle in $\overline{\times} G^k$ shows that $\overline{\times} G^{k+1}$ is hamiltonian.

Corollary 9 is true even for just the cartesian product and it has been proved in [3] as theorem 1.

PROPOSITION 10. If G is connected and if there exists a covering of V(G) by α vertex-disjoint cycles of length at least l, with $\alpha \ge 2$, then for every tree T with at least two vertices and with $\Delta(T) \le l$, there exists a covering of $V(G \times T)$ by β vertex-disjoint cycles of length at least l with $\beta \le \alpha - 1$.

Proof. Since G is connected, there exists two cycles of the covering C_1 and C_2 , and vertices c_1 in $V(C_1)$ and c_2 in $V(C_2)$ with $\{c_1, c_2\}$ in E(G).

By Lemma 8, there exists a covering of $V(G \times T)$ by α hamiltonian cycles of $C_i \times T$. To prove the proposition it suffices to construct a hamiltonian cycle in $V(C_1 \times T) \cup V(C_2 \times T)$.

Let $\{u, v\}$ be an edge of T. By the remark of Lemma 8, we can construct a

hamiltonian cycle H_1 in $C_1 \times \overline{T}$ (resp. H_2 in $C_2 \times \overline{T}$) which uses the edge $\{(u, c_1)(v, c_1)\}$ (resp. $\{(u, c_2)(v, c_2)\}$). We obtain a cycle in $V(C_1 \times \overline{T}) \cup V(C_2 \times \overline{T})$ by replacing in $E(H_1) \cup E(H_2)$ the preceding edges by $\{(u, c_1)(u, c_2)\}$ and $\{(v, c_1)(v, c_2)\}$.

THEOREM 11. For any connected graph G with at least two vertices there exists an integer k = k(G) for which the graph $\overline{\times} G^k$ is hamiltonian.

Proof. By Proposition 5, there exists an integer k_1 such that there exists a covering of $V(\bar{\times}G^{k_1})$ by vertex-disjoint paths, with at least two vertices; then by Proposition 7 applied to $\bar{\times}G^{k_1}$, there exists an integer k_2 such that $V(\bar{\times}G^{k_1k_2})$ can be covered by α vertex-disjoint cycles of length at least $\Delta(G)$ (since $\Delta(G^{k_1}) \ge \Delta(G)$).

Repeated applications of Proposition 10 show that there exists an integer $k_3 \le \alpha - 1$ such that $\overline{\times} G^{k_1 k_2 k_3}$ is hamiltonian. Thus Theorem 11 is proved with $k = k_1 k_2 k_3$.

REMARK. The integer k found in the proof of theorem 11 is not the best possible. We conjecture that:

CONJECTURE. For any connected graph G with at least two vertices $\overline{\times} G^{\Delta(G)}$ is hamiltonian.

ACKNOWLEDGEMENT. We thank Professor J. Zaks for having drawn our attention to the article [2].

REFERENCES

1. C. Berge. Graphs and Hypergraphs, North-Holland. Amsterdam 1973.

2. M. Rosenfeld and D. Barnette, Hamiltonian Circuits in Certain Prisms, Discrete Math. 5, 1973, 389-394.

3. J. Zaks. Hamiltonian cycles in products of graphs, Canadian Math. Bull. vol. 17 (5), 1975, 763-765.

Université Paris-Sud Informatique, Bâtiment 490 91405. Orsay, France