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The Orthonormal Dilation Property for
Abstract Parseval Wavelet Frames
B. Currey and A. Mayeli

Abstract. In this work we introduce a class of discrete groups containing subgroups of abstract transla-
tions and dilations, respectively. A variety of wavelet systems can appear as π(Γ)ψ, where π is a unitary
representation of a wavelet group and Γ is the abstract pseudo-lattice Γ. We prove a sufficent condition
in order that a Parseval frame π(Γ)ψ can be dilated to an orthonormal basis of the form τ (Γ)Ψ, where
τ is a super-representation of π. For a subclass of groups that includes the case where the translation
subgroup is Heisenberg, we show that this condition always holds, and we cite familiar examples as
applications.

1 Introduction and Preliminaries

Given a Parseval frame {ψα} in a Hilbert space H, it is known that there is a Hilbert
space K and an orthornomal basis {Ψα} for K such that H ⊂ K and ψα = PH(Ψα),
where PH is the orthogonal projection of K onto H [11]. In this case it is said that
{Ψα} is an orthonormal dilation of {ψα}. If {ψα} is of the form π(G)ψ where G is
group and π is a unitary representation of G, then it is also known [11] that there
is an orthonormal dilation of the form τ (G)Ψ, where τ is a unitary representation
of G acting in K such that τ (g)|H = π(g) for all g ∈ G and such that PH(Ψ) =
ψ. An affine wavelet system is not of the form π(G)ψ, but there is nevertheless an
underlying group structure that can be regarded as having the form π(Γ)ψ, where
Γ is a discrete pseudo-lattice in a group G. For the wavelet system {2/2ψ(2 j · −k) :
j ∈ Z, k ∈ Z} in L2(R), one can take G to be the connected Lie group of affine
transformations of the line with π the quasiregular representation induced from the
dilation subgroup, or (as in [8]) one can take G to be the Baumslag–Solitar group
BS(1, 2) = 〈u, t : utu−1 = t2〉with π(u) and π(t) the 2-dilation and unit translation,
respectively. When a Parseval wavelet frame has such a structure, it is natural to
ask if there is an orthonormal dilation with the same structure; more precisely, if
{ψα} = π(Γ)ψ, is there a unitary representation τ of G acting in a Hilbert space K
containing H, and a vector Ψ ∈ K, such that τ (g)|H = π(g) for all g ∈ G and such
that PH(Ψ) = ψ? In this case we say that π(Γ)ψ has the G-dilation property, and
it was then natural to ask for an explicit description of a G-dilation of π(Γ)ψ. For
the 2-wavelet system on the line, it was shown in [8] that for the G = BS(1, 2), every
system π(Γ)ψ has the G-dilation property, and an explicit description of G-dilations
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is carried out for Shannon-type wavelets. More recently, various generalizations of
results in [8, 11] have been obtained in [2].

In this paper we introduce a natural and general class of groups G for which a
number of well-known function systems, including both affine wavelet systems and
shearlet systems, can be viewed as systems of the form π(Γ)ψ, where Γ is a pseudo-
lattice in G. We generalize the methods of [8] in this direction to prove a sufficient
condition on the group G in order that every such system has the G-dilation property.
We then describe two natural families of wavelet groups and prove that they satisfy
this sufficient condition. As one example, we exhibit a natural group G and repre-
sentation π such that a shearlet system is of the form π(Γ)ψ and has the G-dilation
property.

For the remainder of this paper, all groups are automatically countable and dis-
crete. By representation of a group G, we shall mean a homomorphism of G into the
group of unitary operators on some Hilbert space H that is continuous in the strong
operator topology. Representations will be assumed to faithful, that is, one-to-one
mappings.

Let Γ0 be a countable discrete group and α : Γ0 → Γ0 a monomorphism. Define

G(α,Γ0) :=
〈

u,Γ0 : uγu−1 = α(γ), ∀ γ ∈ Γ0

〉
.

The subset Γ = Γ1Γ0, where Γ1 = {u j : j ∈ Z} will be called the standard pseudo-
lattice in G. As an example, observe that if Γ0 = Z and α2 is the monomorphism of
Z defined by α(1) = 2, then G(α,Z) = BS(1, 2).

In the following section we use positive-definite maps to obtain a sufficient con-
dition on the group G in order that every Parseval wavelet frame π(Γ)ψ has the
G-dilation property. Then in Section 3 we prove that our condition holds for two
families of groups G(α,Γ0) and describe three examples.

2 The Group Dilation Property

A map K : X × X → C is called a positive definite map if for all finite sequences
{γ1, γ2, . . . , γk} in X and {ξ1, ξ2, . . . , ξk} ⊂ C,∑

1≤i, j≤k

K(γi , γ j)ξiξ j ≥ 0.

If X = G is a group, then, following [7], we say that K : G×G→ C is a group positive
definite map if K is a positive definite map and K(sx, sy) = K(x, y) holds for all s, x,
and y in G. By [7, Theorem 2.8], every group positive definite map has the form

Kρ,η(x, y) =
〈
ρ(x)η, ρ(y)η

〉
,

where ρ is a representation of G and η is a cyclic vector for ρ.
For the remainder of this section, we fix a group G = G(α,Γ0), with Γ = Γ1Γ0,

and write the element u jγ ∈ Γ as ( j, γ). Let ρ be a representation of Γ0; we say that
a representation T is an α-root of ρ if T ◦ α = ρ. In the following abstract version of
[8, Theorem 2.1], we use this notion to formulate a sufficient condition in order that
a positive definite map on Γ extends to a group positive definite map.
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Proposition 2.1 Suppose that every representation of Γ0 has an α-root. Let K : Γ ×
Γ → C be a positive definite mapping such that for any ( j, γ) and ( j ′, γ ′) in Γ, and
γ0 ∈ Γ0, the relations

K
(

( j + 1, γ), ( j ′ + 1, γ ′)
)

= K
(

( j, γ), ( j ′, γ ′)
)

K
(

( j, α− j(γ0)γ), ( j ′, α− j ′(γ0)γ ′)
)

= K
(

( j, γ), ( j ′, γ ′)
)
, j, j ′ 6 0,

(2.1)

both hold. Then K is the restriction of a group positive definite map Kτ ,ψ . More explicitly,
there is a representation τ of G acting in a Hilbert space H and a vector ψ ∈ H, such
that H = span{τ (Γ)ψ} and

K
(

( j, γ), ( j ′, γ ′)
)

=
〈
τ ( j, γ)ψ, τ ( j ′, γ ′)ψ

〉
.

Proof By a theorem attributed to Kolmogorov (see, for example, [7]), we have a
Hilbert space H and a mapping v : Γ → H, such that span{v( j, γ) : ( j, γ) ∈ Γ} is
dense in H, and

K
(

( j, γ), ( j ′, γ ′)
)

=
〈

v( j, γ), v( j ′, γ ′)
〉

holds for all ( j, γ) and ( j ′, γ ′) belonging to Γ. Define the operator D : H → H by
Dv( j, γ) = v( j + 1, γ) and by extending to all of H by linearity and density as usual.
The first of the relations (2.1) shows that D is unitary. For each n = −1, 0, 1, 2, . . . ,
set

Hn = span{v( j, γ) : ( j, γ) ∈ Γ, j ≤ n}.

Note that DHn = Hn+1 and Hn ⊂ Hn+1. Set Kn = Hn 	Hn−1, n ≥ 0. For γ0 ∈ Γ0,
define the operator T0(γ0) on H0 by

T0(γ0)
(

v( j, γ)
)

= v
(

j, α− j(γ0)γ
)

and again extending to all of H0; the second relation in (2.1) shows that γ 7→ T0(γ)
is a (unitary) representation of Γ0. Since the subspace K0 is invariant under T0, we
can define the representation ρ1 of Γ0 acting in K1 by ρ1(γ) = DT0(γ)D−1. Now by
our hypothesis, ρ1 has an α-root T1, since T1 acts in K1 and satisfies T1 ◦ α = ρ1.
Now the representation γ 7→ ρ2(γ) = DT1(γ)D−1 of Γ0 acting in K2 has an α-root
T2 acting in K2. Continuing in this way, we obtain, for each positive integer n, a
representation Tn of Γ0 acting in Kn, so that

Tn ◦ α = DTn−1D−1.

(Again in the preceding, T0 is restricted to K0.) Now write

H = H0 ⊕
(⊕

n≥1
Kn

)
and define the representation T of Γ0 by T = T0 ⊕

(⊕
n≥1 Tn

)
.
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Next we must verify the relation DT(γ)D−1 = T(α(γ)). Fix γ0 ∈ Γ0; for v( j, γ)
with j ≤ 0, (

DT0(γ0)D−1
)(

v( j, γ)
)

=
(

DT0(γ0)
)(

v( j − 1, γ)
)

= D
(

v( j − 1, α− j+1(γ0)γ)
)

= T0

(
α(γ0)

)(
v( j, γ)

)
,

and hence the relation DT0(γ)D−1 = T0

(
α(γ)

)
holds on H0. Now for v ∈ H, write

v =
∑

n≥0 vn. We have DT(γ)D−1v0 = T
(
α(γ)

)
v0 and for n ≥ 1,

DT(γ)D−1vn = DTn−1(γ)D−1vn = Tn

(
α(γ)

)
vn,

so
DT(γ)D−1v =

∑
n≥0

DT(γ)D−1vn =
∑
n≥0

Tn

(
α(γ)

)
vn = T

(
α(γ)

)
.

It follows that the mapping τ defined by τ (u) = D and τ (γ) = T(γ) is a representa-
tion of G.

Finally, take ψ = v(0, 0). Then

v( j, γ) = D jv(0, γ) = D jT(γ)v(0, 0) = D jT(γ)ψ,

so ψ is cyclic for τ . Hence the group positive definite map defined for all x, y ∈ G by
Kτ ,ψ(x, y) = 〈τ (x)ψ, τ (y)ψ〉 is an extension of K.

We combine the preceding with general results also from [8] to obtain our condi-
tion for the G-dilation property.

Theorem 2.2 Suppose that every representation of Γ0 has an α-root, and let π be
any representation of G(α,Γ0). Then every Parseval wavelet frame π(Γ)ψ has the
G-dilation property.

Proof Let Γ = Γ1Γ0 ⊂ G as above and recall that we write u jγ = ( j, γ). Define

K
(

( j, γ), ( j ′, γ ′)
)

= δ j, j ′δγ,γ ′ −
〈
π( j, γ)ψ, π( j ′, γ ′)ψ

〉
.

Observe that δ j+1, j ′+1 = δ j, j ′ and

δ j, j ′δ(α− jγ0)γ,(α− j ′γ0)γ ′ = δ j, j ′δγ,γ ′ ,

and that in the group G, u− jγ0u j = α− j(γ0) holds for j, γ0 ∈ Γ0. Hence

K
(

( j + 1, γ), ( j ′ + 1, γ ′)
)

= δ j+1, j ′+1δγ,γ ′ −
〈
π( j + 1, γ)ψ, π( j ′ + 1, γ ′)ψ

〉
= δ j, j ′δγ,γ ′ −

〈
Dπ( j, γ)ψ,Dπ( j ′, γ ′)ψ

〉
= K

(
( j, γ), ( j ′, γ ′)

)
,
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and for j, j ′ ≤ 0,

K
((

j, (α− jγ0)γ
)
,
(

j ′, (α− j ′γ0)γ ′
))

= δ j, j ′δα− j (γ0)γ,α− j ′ (γ0)γ ′ −
〈
π
(

j, α− j(γ0)γ
)
ψ, π

(
j ′, α− j ′(γ0)γ ′

)
ψ
〉

= δ j, j ′δγ,γ ′ −
〈
π(γ0u jγ)ψ, π(γ0u j ′γ ′)ψ

〉
= δ j, j ′δγ,γ ′ −

〈
π(γ0)π( j, γ)ψ, π(γ0)π( j ′, γ ′)ψ

〉
= δ j, j ′δγ,γ ′ −

〈
π( j, γ)ψ, π( j ′, γ ′)ψ

〉
= K

(
( j, γ), ( j ′, γ ′)

)
.

The calculations show that the map K satisfies both of the conditions in (2.1).
By Proposition 2.1 we conclude that K is a positive definite map and hence there
exists a representation τ of G with Hilbert space K and η ∈ K such that K = Kτ ,η on
Γ×Γ. Then by [8, Lemma 2.5, proof of Theorem 2.6] π⊕τ is a super-representation
of π (acting in H ⊕ K) for which ψ̃ = ψ ⊕ η is a G-dilation vector for ψ and
π̃(x)ψ = π(x)ψ.

Observe that in the case of BS(1, 2) = G(α2,Z), the fact that every representation
of Γ0 has an α-root is a simple consequence of the Borel functional calculus. For
every unitary operator T on a Hilbert space H, there is a unitary operator S such that
S2 = T. However, in general it seems difficult to prove that a pair (α,Γ0) has the
property that every representation of Γ0 has an α-root. In the following section we
describe two families of groups G(α,Γ0) for which this property does in fact hold.

3 Examples

We begin with the case where Γ0 is a finitely-generated abelian group. A variety
of fundamental results for countable abelian groups have been obtained by Baggett,
Bownik, Merrill, Furst, Packer, and many others. See, for example, [1].

Example 3.1 (A-wavelet system) Let Γ0 be the free abelian group generated by
t1, t2, . . . , tn, and let α(t j) = t

a1 j

1 t
a2 j

2 · · · t
an j
n , where A = [ai, j] ∈ GL(n,Z).

We claim that every representation of Γ0 has an α-root. Let ρ be any represen-
tation of Γ0, and write A−1 = [bi, j]. Since the bi, j are rational, the Borel func-
tional calculus obtains operators Vi, j , 1 ≤ i, j ≤ n such that Vi, j = ρ(t1)bi, j . Define
T(t j), 1 ≤ j ≤ n by

T(t j) = V1, jV2, j · · ·Vn, j .

An easy computation shows that T ◦ α = ρ.

Next we consider wavelet groups where the subgroup Γ0 is nilpotent, but not
abelian. Nearest to the abelian case is the case where Γ0 is Heisenberg: let Γ0 =
〈t1, t2, t3〉 with relations t3t2 = t1t2t3, t1t2 = t2t1, t1t3 = t3t1. Then Γ0 is isomorphic
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with the discrete Heisenberg group

H =


1 k m

0 1 l
0 0 1

 : k, l, and m are integers


via the map t1 7→ tm

1 , t2 7→ t l
2, t3 7→ tk

3 , and we identify Γ0 = H. For any positive
numbers a and b, the mapping α defined by α(t3) = ta

3 , α(t2) = tb
2 , α(t1) = tab

1 is a
monomorphism of H.

When α is of the form above, we use the notation G(α,H) = G(a, b,H). The
following lemma shows that, at least where a and b are integers, G(a, b,H) has the
α-root property.

Lemma 3.2 Let A,B, and C be unitary operators on a Hilbert space H satisfying
AB = CBA, AC = CA, BC = CB, and let a, b, and c be positive integers such that
c = ab. Suppose that U and V are unitary operators belonging to the von-Neumann
algebra generated by A and B, and satisfying U a = A and V b = B. Then the element
W = UVU−1V−1 satisfies UW = WU , VW = WV , and W c = C.

Proof Let A be the von Neumann algebra generated by A and B. The group N
generated by A and B is isomorphic with the Heisenberg group H, and so for any P
and Q in N, [P,Q] = PQP−1Q−1 belongs to the center of N. It follows that [A,A] ⊂
cent(A) and in particular W ∈ cent(A). It remains to show that W c = C . To prove
this, we proceed by induction on c = ab. If c = 1, then a = b = 1, and there is
nothing to prove. Suppose that c > 1 and that for any a ′, b ′, c ′ with a ′b ′ = c ′ and
c ′ < c, we have

W c ′ = U a ′V b ′U−a ′V−b ′ .

If a > 1, then we have

W (a−1)b = U a−1V bU−a+1V−b.

Observe that U commutes with V bU−a+1V−b. Indeed, by definition of W , UV b =
W bV bU , so UV−b = W−bV−bU , from which the observation follows. Hence

W ab = W (a−1)bW b =
(

U a−1V bU−a+1V−b
)(

UV bU−1V−b
)

= U a−1
(

V bU−a+1V−b
)

U
(

V bU−1V−b
)

= U a−1U
(

V bU−a+1V−b
)(

V bU−1V−b
)

= U aV bU−aV−b.

If a = 1, then b > 1, and the proof is similar.

It is almost immediate that for α as in the preceding, every representation of H
has an α-root. More generally, we consider the following class of groups that includes
G(α,H). Let n be a positive integer, and let t1, t2, . . . , tn, and zi j , 1 ≤ i, j ≤ n satisfy
the relations for all i, j and k:

tit j = zi, jt jti , and zi jtk = tkzi j .
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Observe that the relation z ji = z−1
i j follows from the above. The group

Fn = 〈t1, t2, . . . tn, zi j , 1 ≤ i, j ≤ n〉

is the free, two-step (discrete) nilpotent group generated by the n elements tk, 1 ≤
k ≤ n.

Theorem 3.3 Define α : Fn → Fn by α(tk) = tak
k and α(zi j) = z

ai a j

i j , where the ak are
integers. Then every representation of Fn has an α-root.

Proof Let ρ be any representation of Fn acting in H, put Ak = ρ(tk), Ci j =
ρ(zi j), 1 ≤ i, j, k ≤ n and let A be the von-Neumann algebra generated by
{A1, . . . ,An}. An argument similar to that of Lemma 3.2 applied to the group N
generated by {A1, . . . ,An} shows that [A,A] ⊂ cent(A). By the Borel functional
calculus, for each k we have Uk ∈ A such that U ak

k = Ak. Now for each i and j put
Wi j = UiU jU

−1
i U−1

j . By the preceding we have that Wi j is central, and by Lemma

3.2, W
ai a j

i j = Ci, j . Put T(tk) = Uk and T(zi j) = Wi j , 1 ≤ i, j, k ≤ n. Since

T(zi j) = T(ti)T(t j)T(ti)
−1T(t j)

−1

holds for all i and j, then T is a representation of Fn. Since

T
(
α(tk)

)
= T(tak

k ) = T(tk)ak = Ak = ρ(tk),

and
T
(
α(zi j)

)
= T(z

ai a j

i j ) = T(zi j)
ai a j = Ci j = ρ(zi j),

then T ◦ α = ρ.

The following are two examples of representations of G(a, a,H), where H is the
simply connected Heisenberg group.

Example 3.4 Let π be the representation of G(2, 2,H) acting in L2(R2) by t1 7→
e2πiλI, t2 7→ M, and t3 → T, where I is the identity operator, and M and T are the
operators on H = L2(R2) given by

M f (λ, t) = e−2πiλt f (λ, t), T f (λ, t) = f (λ, t − 1).

Now define π(u) f (λ, t) = f (4λ, 2−1t)23/2. The systems π(Γ)ψ are Fourier trans-
forms of wavelet systems of multiplicity one subspaces of L2(H), and large classes of
Parseval wavelet frames have been found in our earlier work [4].

Example 3.5 (Shearlet system) Let π be the representation of G(a, a,H) given by
u 7→ D, t1 7→ T1, t2 7→ T2, and t3 7→ M, where D,T1,T2,M are the unitary operators
on L2(R2) defined by

D f (x) = a−3/2 f (a−2x1, a
−1x2) M f (x) = f (x1 − x2, x2)

T1 f (x) = f (x1 − 1, x2) T2 f (x) = f (x1, x2 − 1).

Systems of this form have been well studied; see, for example, [6, 9, 10].
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Remark Lemma 3.2 can be used to prove that for other nilpotent groups Γ0, every
representation has an α-root. For example, let

Γ0 = 〈t1, t2, t3, t4, t5 : t5t4 = t4t5t2, t5t3 = t3t5t1, tit j = t jti , 1 ≤ i, j ≤ 4〉;

Γ0 is the integer lattice in a two-step simply-connected Lie group whose Lie algebra
has basis {X1,X2, . . . ,X5} with [X5,X4] = X2 and [X5,X3] = X1, [Xi ,X j] = 0, 1 ≤
i, j ≤ 4. Let a and b be integers and defineα : Γ0 → Γ0 byα(t5) = ta

5 , α(tk) = tb
k , k =

3, 4 and for k = 1, 2, α(tk) = tab
k . By application of Lemma 3.2 to {π(t5), π(t3), π(t1)}

and {π(t5), π(t4), π(t2)}, we find that π has an α-root. One example of π is the
following. Let π : G → U

(
L2(R4)

)
be given by u 7→ D, tk 7→ Tk, k = 1, 2, 3, 4, and

t5 7→ M, where Tk is the translation operator Tk f (x) = f (x1, . . . , xk − 1, . . . x4) and
D,M are defined by

D f (x) = a−3/2 f
(

(ab)−1x1, (ab)−1x2, a
−1x3, a

−1x4

)
M f (x) = f (x1 − x3, x2 − x4, x3, x4).
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