(C) Canadian Mathematical Society 2013

The Orthonormal Dilation Property for Abstract Parseval Wavelet Frames

B. Currey and A. Mayeli

Abstract

In this work we introduce a class of discrete groups containing subgroups of abstract translations and dilations, respectively. A variety of wavelet systems can appear as $\pi(\Gamma) \psi$, where π is a unitary representation of a wavelet group and Γ is the abstract pseudo-lattice Γ. We prove a sufficent condition in order that a Parseval frame $\pi(\Gamma) \psi$ can be dilated to an orthonormal basis of the form $\tau(\Gamma) \Psi$, where τ is a super-representation of π. For a subclass of groups that includes the case where the translation subgroup is Heisenberg, we show that this condition always holds, and we cite familiar examples as applications.

1 Introduction and Preliminaries

Given a Parseval frame $\left\{\psi_{\alpha}\right\}$ in a Hilbert space \mathcal{H}, it is known that there is a Hilbert space \mathcal{K} and an orthornomal basis $\left\{\Psi_{\alpha}\right\}$ for \mathcal{K} such that $\mathcal{H} \subset \mathcal{K}$ and $\psi_{\alpha}=P_{\mathcal{H}}\left(\Psi_{\alpha}\right)$, where $P_{\mathcal{H}}$ is the orthogonal projection of \mathcal{K} onto \mathcal{H} [11]. In this case it is said that $\left\{\Psi_{\alpha}\right\}$ is an orthonormal dilation of $\left\{\psi_{\alpha}\right\}$. If $\left\{\psi_{\alpha}\right\}$ is of the form $\pi(G) \psi$ where G is group and π is a unitary representation of G, then it is also known [11] that there is an orthonormal dilation of the form $\tau(G) \Psi$, where τ is a unitary representation of G acting in \mathcal{K} such that $\left.\tau(g)\right|_{\mathcal{H}}=\pi(g)$ for all $g \in G$ and such that $P_{\mathcal{H}}(\Psi)=$ ψ. An affine wavelet system is not of the form $\pi(G) \psi$, but there is nevertheless an underlying group structure that can be regarded as having the form $\pi(\Gamma) \psi$, where Γ is a discrete p seudo-lattice in a group G. For the wavelet system $\left\{2^{/ 2} \psi\left(2^{j} \cdot-k\right)\right.$: $j \in \mathbb{Z}, k \in \mathbb{Z}\}$ in $L^{2}(\mathbb{R})$, one can take G to be the connected Lie group of affine transformations of the line with π the quasiregular representation induced from the dilation subgroup, or (as in [8]) one can take G to be the Baumslag-Solitar group $B S(1,2)=\left\langle u, t: u t u^{-1}=t^{2}\right\rangle$ with $\pi(u)$ and $\pi(t)$ the 2-dilation and unit translation, respectively. When a Parseval wavelet frame has such a structure, it is natural to ask if there is an orthonormal dilation with the same structure; more precisely, if $\left\{\psi_{\alpha}\right\}=\pi(\Gamma) \psi$, is there a unitary representation τ of G acting in a Hilbert space \mathcal{K} containing \mathcal{H}, and a vector $\Psi \in \mathcal{K}$, such that $\left.\tau(g)\right|_{\mathcal{H}}=\pi(g)$ for all $g \in G$ and such that $P_{\mathcal{H}}(\Psi)=\psi$? In this case we say that $\pi(\Gamma) \psi$ has the G-dilation property, and it was then natural to ask for an explicit description of a G-dilation of $\pi(\Gamma) \psi$. For the 2 -wavelet system on the line, it was shown in [8] that for the $G=B S(1,2)$, every system $\pi(\Gamma) \psi$ has the G-dilation property, and an explicit description of G-dilations

[^0]is carried out for Shannon-type wavelets. More recently, various generalizations of results in [8, 11] have been obtained in [2].

In this paper we introduce a natural and general class of groups G for which a number of well-known function systems, including both affine wavelet systems and shearlet systems, can be viewed as systems of the form $\pi(\Gamma) \psi$, where Γ is a pseudolattice in G. We generalize the methods of [8] in this direction to prove a sufficient condition on the group G in order that every such system has the G-dilation property. We then describe two natural families of wavelet groups and prove that they satisfy this sufficient condition. As one example, we exhibit a natural group G and representation π such that a shearlet system is of the form $\pi(\Gamma) \psi$ and has the G-dilation property.

For the remainder of this paper, all groups are automatically countable and discrete. By representation of a group G, we shall mean a homomorphism of G into the group of unitary operators on some Hilbert space \mathcal{H} that is continuous in the strong operator topology. Representations will be assumed to faithful, that is, one-to-one mappings.

Let Γ_{0} be a countable discrete group and $\alpha: \Gamma_{0} \rightarrow \Gamma_{0}$ a monomorphism. Define

$$
G\left(\alpha, \Gamma_{0}\right):=\left\langle u, \Gamma_{0}: u \gamma u^{-1}=\alpha(\gamma), \forall \gamma \in \Gamma_{0}\right\rangle
$$

The subset $\Gamma=\Gamma_{1} \Gamma_{0}$, where $\Gamma_{1}=\left\{u^{j}: j \in \mathbb{Z}\right\}$ will be called the standard pseudolattice in G. As an example, observe that if $\Gamma_{0}=\mathbb{Z}$ and α_{2} is the monomorphism of \mathbb{Z} defined by $\alpha(1)=2$, then $G(\alpha, \mathbb{Z})=B S(1,2)$.

In the following section we use positive-definite maps to obtain a sufficient condition on the group G in order that every Parseval wavelet frame $\pi(\Gamma) \psi$ has the G-dilation property. Then in Section 3 we prove that our condition holds for two families of groups $G\left(\alpha, \Gamma_{0}\right)$ and describe three examples.

2 The Group Dilation Property

A map $K: X \times X \rightarrow \mathbb{C}$ is called a positive definite map if for all finite sequences $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ in X and $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right\} \subset \mathbb{C}$,

$$
\sum_{1 \leq i, j \leq k} K\left(\gamma_{i}, \gamma_{j}\right) \xi_{i} \bar{\xi}_{j} \geq 0
$$

If $X=G$ is a group, then, following [7], we say that $K: G \times G \rightarrow \mathbb{C}$ is a group positive definite map if K is a positive definite map and $K(s x, s y)=K(x, y)$ holds for all s, x, and y in G. By [7, Theorem 2.8], every group positive definite map has the form

$$
K_{\rho, \eta}(x, y)=\langle\rho(x) \eta, \rho(y) \eta\rangle
$$

where ρ is a representation of G and η is a cyclic vector for ρ.
For the remainder of this section, we fix a group $G=G\left(\alpha, \Gamma_{0}\right)$, with $\Gamma=\Gamma_{1} \Gamma_{0}$, and write the element $u^{j} \gamma \in \Gamma$ as (j, γ). Let ρ be a representation of Γ_{0}; we say that a representation T is an α-root of ρ if $T \circ \alpha=\rho$. In the following abstract version of [8, Theorem 2.1], we use this notion to formulate a sufficient condition in order that a positive definite map on Γ extends to a group positive definite map.

Proposition 2.1 Suppose that every representation of Γ_{0} has an α-root. Let $K: \Gamma \times$ $\Gamma \rightarrow \mathbb{C}$ be a positive definite mapping such that for any (j, γ) and $\left(j^{\prime}, \gamma^{\prime}\right)$ in Γ, and $\gamma_{0} \in \Gamma_{0}$, the relations

$$
\begin{align*}
K\left((j+1, \gamma),\left(j^{\prime}+1, \gamma^{\prime}\right)\right) & =K\left((j, \gamma),\left(j^{\prime}, \gamma^{\prime}\right)\right) \tag{2.1}\\
K\left(\left(j, \alpha^{-j}\left(\gamma_{0}\right) \gamma\right),\left(j^{\prime}, \alpha^{-j^{\prime}}\left(\gamma_{0}\right) \gamma^{\prime}\right)\right) & =K\left((j, \gamma),\left(j^{\prime}, \gamma^{\prime}\right)\right), \quad j, j^{\prime} \leqslant 0,
\end{align*}
$$

both hold. Then K is the restriction of a group positive definite map $K_{\tau, \psi}$. More explicitly, there is a representation τ of G acting in a Hilbert space \mathcal{H} and a vector $\psi \in \mathcal{H}$, such that $\mathcal{H}=\overline{\operatorname{span}}\{\tau(\Gamma) \psi\}$ and

$$
K\left((j, \gamma),\left(j^{\prime}, \gamma^{\prime}\right)\right)=\left\langle\tau(j, \gamma) \psi, \tau\left(j^{\prime}, \gamma^{\prime}\right) \psi\right\rangle .
$$

Proof By a theorem attributed to Kolmogorov (see, for example, [7]), we have a Hilbert space \mathcal{H} and a mapping $v: \Gamma \rightarrow \mathcal{H}$, such that $\operatorname{span}\{v(j, \gamma):(j, \gamma) \in \Gamma\}$ is dense in \mathcal{H}, and

$$
K\left((j, \gamma),\left(j^{\prime}, \gamma^{\prime}\right)\right)=\left\langle v(j, \gamma), v\left(j^{\prime}, \gamma^{\prime}\right)\right\rangle
$$

holds for all (j, γ) and $\left(j^{\prime}, \gamma^{\prime}\right)$ belonging to Γ. Define the operator $D: \mathcal{H} \rightarrow \mathcal{H}$ by $D v(j, \gamma)=v(j+1, \gamma)$ and by extending to all of \mathcal{H} by linearity and density as usual. The first of the relations (2.1) shows that D is unitary. For each $n=-1,0,1,2, \ldots$, set

$$
\mathcal{H}_{n}=\overline{\operatorname{span}}\{v(j, \gamma):(j, \gamma) \in \Gamma, j \leq n\} .
$$

Note that $D \mathcal{H}_{n}=\mathcal{H}_{n+1}$ and $\mathcal{H}_{n} \subset \mathcal{H}_{n+1}$. Set $\mathcal{K}_{n}=\mathcal{H}_{n} \ominus \mathcal{H}_{n-1}, n \geq 0$. For $\gamma_{0} \in \Gamma_{0}$, define the operator $T_{0}\left(\gamma_{0}\right)$ on \mathcal{H}_{0} by

$$
T_{0}\left(\gamma_{0}\right)(v(j, \gamma))=v\left(j, \alpha^{-j}\left(\gamma_{0}\right) \gamma\right)
$$

and again extending to all of \mathcal{H}_{0}; the second relation in (2.1) shows that $\gamma \mapsto T_{0}(\gamma)$ is a (unitary) representation of Γ_{0}. Since the subspace \mathcal{K}_{0} is invariant under T_{0}, we can define the representation ρ_{1} of Γ_{0} acting in \mathcal{K}_{1} by $\rho_{1}(\gamma)=D T_{0}(\gamma) D^{-1}$. Now by our hypothesis, ρ_{1} has an α-root T_{1}, since T_{1} acts in \mathcal{K}_{1} and satisfies $T_{1} \circ \alpha=\rho_{1}$. Now the representation $\gamma \mapsto \rho_{2}(\gamma)=D T_{1}(\gamma) D^{-1}$ of Γ_{0} acting in \mathcal{K}_{2} has an α-root T_{2} acting in \mathcal{K}_{2}. Continuing in this way, we obtain, for each positive integer n, a representation T_{n} of Γ_{0} acting in \mathcal{K}_{n}, so that

$$
T_{n} \circ \alpha=D T_{n-1} D^{-1}
$$

(Again in the preceding, T_{0} is restricted to \mathcal{K}_{0}.) Now write

$$
\mathcal{H}=\mathcal{H}_{0} \oplus\left(\underset{n \geq 1}{\bigoplus} \mathcal{K}_{n}\right)
$$

and define the representation T of Γ_{0} by $T=T_{0} \oplus\left(\bigoplus_{n \geq 1} T_{n}\right)$.

Next we must verify the relation $D T(\gamma) D^{-1}=T(\alpha(\gamma))$. Fix $\gamma_{0} \in \Gamma_{0}$; for $v(j, \gamma)$ with $j \leq 0$,

$$
\begin{aligned}
\left(D T_{0}\left(\gamma_{0}\right) D^{-1}\right)(v(j, \gamma)) & =\left(D T_{0}\left(\gamma_{0}\right)\right)(v(j-1, \gamma)) \\
& =D\left(v\left(j-1, \alpha^{-j+1}\left(\gamma_{0}\right) \gamma\right)\right) \\
& =T_{0}\left(\alpha\left(\gamma_{0}\right)\right)(v(j, \gamma))
\end{aligned}
$$

and hence the relation $D T_{0}(\gamma) D^{-1}=T_{0}(\alpha(\gamma))$ holds on \mathcal{H}_{0}. Now for $v \in \mathcal{H}$, write $v=\sum_{n \geq 0} v_{n}$. We have $D T(\gamma) D^{-1} v_{0}=T(\alpha(\gamma)) v_{0}$ and for $n \geq 1$,

$$
D T(\gamma) D^{-1} v_{n}=D T_{n-1}(\gamma) D^{-1} v_{n}=T_{n}(\alpha(\gamma)) v_{n}
$$

so

$$
D T(\gamma) D^{-1} v=\sum_{n \geq 0} D T(\gamma) D^{-1} v_{n}=\sum_{n \geq 0} T_{n}(\alpha(\gamma)) v_{n}=T(\alpha(\gamma))
$$

It follows that the mapping τ defined by $\tau(u)=D$ and $\tau(\gamma)=T(\gamma)$ is a representation of G.

Finally, take $\psi=v(0,0)$. Then

$$
v(j, \gamma)=D^{j} v(0, \gamma)=D^{j} T(\gamma) v(0,0)=D^{j} T(\gamma) \psi
$$

so ψ is cyclic for τ. Hence the group positive definite map defined for all $x, y \in G$ by $K_{\tau, \psi}(x, y)=\langle\tau(x) \psi, \tau(y) \psi\rangle$ is an extension of K.

We combine the preceding with general results also from [8] to obtain our condition for the G-dilation property.

Theorem 2.2 Suppose that every representation of Γ_{0} has an α-root, and let π be any representation of $G\left(\alpha, \Gamma_{0}\right)$. Then every Parseval wavelet frame $\pi(\Gamma) \psi$ has the G-dilation property.
Proof Let $\Gamma=\Gamma_{1} \Gamma_{0} \subset G$ as above and recall that we write $u^{j} \gamma=(j, \gamma)$. Define

$$
K\left((j, \gamma),\left(j^{\prime}, \gamma^{\prime}\right)\right)=\delta_{j, j^{\prime}} \delta_{\gamma, \gamma^{\prime}}-\left\langle\pi(j, \gamma) \psi, \pi\left(j^{\prime}, \gamma^{\prime}\right) \psi\right\rangle
$$

Observe that $\delta_{j+1, j^{\prime}+1}=\delta_{j, j^{\prime}}$ and

$$
\delta_{j, j^{\prime}} \delta_{\left(\alpha^{-j} \gamma_{0}\right) \gamma,\left(\alpha^{-j^{\prime}} \gamma_{0}\right) \gamma^{\prime}}=\delta_{j, j^{\prime}} \delta_{\gamma, \gamma^{\prime}}
$$

and that in the group $G, u^{-j} \gamma_{0} u^{j}=\alpha^{-j}\left(\gamma_{0}\right)$ holds for $j, \gamma_{0} \in \Gamma_{0}$. Hence

$$
\begin{aligned}
K\left((j+1, \gamma),\left(j^{\prime}+1, \gamma^{\prime}\right)\right) & =\delta_{j+1, j^{\prime}+1} \delta_{\gamma, \gamma^{\prime}}-\left\langle\pi(j+1, \gamma) \psi, \pi\left(j^{\prime}+1, \gamma^{\prime}\right) \psi\right\rangle \\
& =\delta_{j, j^{\prime}} \delta_{\gamma, \gamma^{\prime}}-\left\langle D \pi(j, \gamma) \psi, D \pi\left(j^{\prime}, \gamma^{\prime}\right) \psi\right\rangle \\
& =K\left((j, \gamma),\left(j^{\prime}, \gamma^{\prime}\right)\right)
\end{aligned}
$$

and for $j, j^{\prime} \leq 0$,

$$
\begin{aligned}
& K\left(\left(j,\left(\alpha^{-j} \gamma_{0}\right) \gamma\right),\left(j^{\prime},\left(\alpha^{-j^{\prime}} \gamma_{0}\right) \gamma^{\prime}\right)\right) \\
& \quad=\delta_{j, j^{\prime}} \delta_{\alpha^{-j}\left(\gamma_{0}\right) \gamma, \alpha^{-j^{\prime}}\left(\gamma_{0}\right) \gamma^{\prime}}-\left\langle\pi\left(j, \alpha^{-j}\left(\gamma_{0}\right) \gamma\right) \psi, \pi\left(j^{\prime}, \alpha^{-j^{\prime}}\left(\gamma_{0}\right) \gamma^{\prime}\right) \psi\right\rangle \\
& \quad=\delta_{j, j^{\prime}} \delta_{\gamma, \gamma^{\prime}}-\left\langle\pi\left(\gamma_{0} u^{j} \gamma\right) \psi, \pi\left(\gamma_{0} u^{j^{\prime}} \gamma^{\prime}\right) \psi\right\rangle \\
& \quad=\delta_{j, j^{\prime}} \delta_{\gamma, \gamma^{\prime}}-\left\langle\pi\left(\gamma_{0}\right) \pi(j, \gamma) \psi, \pi\left(\gamma_{0}\right) \pi\left(j^{\prime}, \gamma^{\prime}\right) \psi\right\rangle \\
& \quad=\delta_{j, j^{\prime}} \delta_{\gamma, \gamma^{\prime}}-\left\langle\pi(j, \gamma) \psi, \pi\left(j^{\prime}, \gamma^{\prime}\right) \psi\right\rangle \\
& \quad=K\left((j, \gamma),\left(j^{\prime}, \gamma^{\prime}\right)\right)
\end{aligned}
$$

The calculations show that the map K satisfies both of the conditions in (2.1). By Proposition 2.1 we conclude that K is a positive definite map and hence there exists a representation τ of G with Hilbert space \mathcal{K} and $\eta \in \mathcal{K}$ such that $K=K_{\tau, \eta}$ on $\Gamma \times \Gamma$. Then by [8, Lemma 2.5, proof of Theorem 2.6] $\pi \oplus \tau$ is a super-representation of π (acting in $\mathcal{H} \oplus \mathcal{K}$) for which $\tilde{\psi}=\psi \oplus \eta$ is a G-dilation vector for ψ and $\tilde{\pi}(x) \psi=\pi(x) \psi$.

Observe that in the case of $B S(1,2)=G\left(\alpha_{2}, \mathbb{Z}\right)$, the fact that every representation of Γ_{0} has an α-root is a simple consequence of the Borel functional calculus. For every unitary operator T on a Hilbert space \mathcal{H}, there is a unitary operator S such that $S^{2}=T$. However, in general it seems difficult to prove that a pair $\left(\alpha, \Gamma_{0}\right)$ has the property that every representation of Γ_{0} has an α-root. In the following section we describe two families of groups $G\left(\alpha, \Gamma_{0}\right)$ for which this property does in fact hold.

3 Examples

We begin with the case where Γ_{0} is a finitely-generated abelian group. A variety of fundamental results for countable abelian groups have been obtained by Baggett, Bownik, Merrill, Furst, Packer, and many others. See, for example, [1].

Example 3.1 (A-wavelet system) Let Γ_{0} be the free abelian group generated by $t_{1}, t_{2}, \ldots, t_{n}$, and let $\alpha\left(t_{j}\right)=t_{1}^{a_{1 j}} t_{2}^{a_{2 j}} \cdots t_{n}^{a_{n j}}$, where $\mathbf{A}=\left[a_{i, j}\right] \in G L(n, \mathbb{Z})$.

We claim that every representation of Γ_{0} has an α-root. Let ρ be any representation of Γ_{0}, and write $\mathbf{A}^{-1}=\left[b_{i, j}\right]$. Since the $b_{i, j}$ are rational, the Borel functional calculus obtains operators $V_{i, j}, 1 \leq i, j \leq n$ such that $V_{i, j}=\rho\left(t_{1}\right)^{b_{i, j}}$. Define $T\left(t_{j}\right), 1 \leq j \leq n$ by

$$
T\left(t_{j}\right)=V_{1, j} V_{2, j} \cdots V_{n, j}
$$

An easy computation shows that $T \circ \alpha=\rho$.
Next we consider wavelet groups where the subgroup Γ_{0} is nilpotent, but not abelian. Nearest to the abelian case is the case where Γ_{0} is Heisenberg: let $\Gamma_{0}=$ $\left\langle t_{1}, t_{2}, t_{3}\right\rangle$ with relations $t_{3} t_{2}=t_{1} t_{2} t_{3}, t_{1} t_{2}=t_{2} t_{1}, t_{1} t_{3}=t_{3} t_{1}$. Then Γ_{0} is isomorphic
with the discrete Heisenberg group

$$
\mathbb{H}=\left\{\left[\begin{array}{ccc}
1 & k & m \\
0 & 1 & l \\
0 & 0 & 1
\end{array}\right]: k, l, \text { and } m \text { are integers }\right\}
$$

via the map $t_{1} \mapsto t_{1}^{m}, t_{2} \mapsto t_{2}^{l}, t_{3} \mapsto t_{3}^{k}$, and we identify $\Gamma_{0}=\mathbb{H}$. For any positive numbers a and b, the mapping α defined by $\alpha\left(t_{3}\right)=t_{3}^{a}, \alpha\left(t_{2}\right)=t_{2}^{b}, \alpha\left(t_{1}\right)=t_{1}^{a b}$ is a monomorphism of \mathbb{H}.

When α is of the form above, we use the notation $G(\alpha, \mathbb{H})=G(a, b, \mathbb{H})$. The following lemma shows that, at least where a and b are integers, $G(a, b, \mathbb{H})$ has the α-root property.

Lemma 3.2 Let A, B, and C be unitary operators on a Hilbert space \mathcal{H} satisfying $A B=C B A, A C=C A, B C=C B$, and let a, b, and c be positive integers such that $c=a b$. Suppose that U and V are unitary operators belonging to the von-Neumann algebra generated by A and B, and satisfying $U^{a}=A$ and $V^{b}=B$. Then the element $W=U V U^{-1} V^{-1}$ satisfies $U W=W U, V W=W V$, and $W^{c}=C$.
Proof Let \mathcal{A} be the von Neumann algebra generated by A and B. The group N generated by A and B is isomorphic with the Heisenberg group \mathbb{H}, and so for any P and Q in $N,[P, Q]=P Q P^{-1} Q^{-1}$ belongs to the center of N. It follows that $[\mathcal{A}, \mathcal{A}] \subset$ $\operatorname{cent}(\mathcal{A})$ and in particular $W \in \operatorname{cent}(\mathcal{A})$. It remains to show that $W^{c}=C$. To prove this, we proceed by induction on $c=a b$. If $c=1$, then $a=b=1$, and there is nothing to prove. Suppose that $c>1$ and that for any $a^{\prime}, b^{\prime}, c^{\prime}$ with $a^{\prime} b^{\prime}=c^{\prime}$ and $c^{\prime}<c$, we have

$$
W^{c^{\prime}}=U^{a^{\prime}} V^{b^{\prime}} U^{-a^{\prime}} V^{-b^{\prime}}
$$

If $a>1$, then we have

$$
W^{(a-1) b}=U^{a-1} V^{b} U^{-a+1} V^{-b}
$$

Observe that U commutes with $V^{b} U^{-a+1} V^{-b}$. Indeed, by definition of $W, U V^{b}=$ $W^{b} V^{b} U$, so $U V^{-b}=W^{-b} V^{-b} U$, from which the observation follows. Hence

$$
\begin{aligned}
W^{a b} & =W^{(a-1) b} W^{b}=\left(U^{a-1} V^{b} U^{-a+1} V^{-b}\right)\left(U V^{b} U^{-1} V^{-b}\right) \\
& =U^{a-1}\left(V^{b} U^{-a+1} V^{-b}\right) U\left(V^{b} U^{-1} V^{-b}\right) \\
& =U^{a-1} U\left(V^{b} U^{-a+1} V^{-b}\right)\left(V^{b} U^{-1} V^{-b}\right) \\
& =U^{a} V^{b} U^{-a} V^{-b}
\end{aligned}
$$

If $a=1$, then $b>1$, and the proof is similar.
It is almost immediate that for α as in the preceding, every representation of \mathbb{H} has an α-root. More generally, we consider the following class of groups that includes $G(\alpha, \mathbb{H})$. Let n be a positive integer, and let $t_{1}, t_{2}, \ldots, t_{n}$, and $z_{i j}, 1 \leq i, j \leq n$ satisfy the relations for all i, j and k :

$$
t_{i} t_{j}=z_{i, j} t_{j} t_{i}, \quad \text { and } \quad z_{i j} t_{k}=t_{k} z_{i j}
$$

Observe that the relation $z_{j i}=z_{i j}^{-1}$ follows from the above. The group

$$
F_{n}=\left\langle t_{1}, t_{2}, \ldots t_{n}, z_{i j}, 1 \leq i, j \leq n\right\rangle
$$

is the free, two-step (discrete) nilpotent group generated by the n elements $t_{k}, 1 \leq$ $k \leq n$.
Theorem 3.3 Define $\alpha: F_{n} \rightarrow F_{n}$ by $\alpha\left(t_{k}\right)=t_{k}^{a_{k}}$ and $\alpha\left(z_{i j}\right)=z_{i j}^{a_{i j} a_{j}}$, where the a_{k} are integers. Then every representation of F_{n} has an α-root.
Proof Let ρ be any representation of F_{n} acting in \mathcal{H}, put $A_{k}=\rho\left(t_{k}\right), C_{i j}=$ $\rho\left(z_{i j}\right), 1 \leq i, j, k \leq n$ and let \mathcal{A} be the von-Neumann algebra generated by $\left\{A_{1}, \ldots, A_{n}\right\}$. An argument similar to that of Lemma 3.2 applied to the group N generated by $\left\{A_{1}, \ldots, A_{n}\right\}$ shows that $[\mathcal{A}, \mathcal{A}] \subset \operatorname{cent}(\mathcal{A})$. By the Borel functional calculus, for each k we have $U_{k} \in \mathcal{A}$ such that $U_{k}^{a_{k}}=A_{k}$. Now for each i and j put $W_{i j}=U_{i} U_{j} U_{i}^{-1} U_{j}^{-1}$. By the preceding we have that $W_{i j}$ is central, and by Lemma 3.2, $W_{i j}^{a_{i} a_{j}}=C_{i, j}$. Put $T\left(t_{k}\right)=U_{k}$ and $T\left(z_{i j}\right)=W_{i j}, 1 \leq i, j, k \leq n$. Since

$$
T\left(z_{i j}\right)=T\left(t_{i}\right) T\left(t_{j}\right) T\left(t_{i}\right)^{-1} T\left(t_{j}\right)^{-1}
$$

holds for all i and j, then T is a representation of F_{n}. Since

$$
T\left(\alpha\left(t_{k}\right)\right)=T\left(t_{k}^{a_{k}}\right)=T\left(t_{k}\right)^{a_{k}}=A_{k}=\rho\left(t_{k}\right)
$$

and

$$
T\left(\alpha\left(z_{i j}\right)\right)=T\left(z_{i j}^{a_{i} a_{j}}\right)=T\left(z_{i j}\right)^{a_{i} a_{j}}=C_{i j}=\rho\left(z_{i j}\right)
$$

then $T \circ \alpha=\rho$.
The following are two examples of representations of $G(a, a, \mathbb{H})$, where \mathbb{H} is the simply connected Heisenberg group.

Example 3.4 Let π be the representation of $G(2,2, \mathbb{H})$ acting in $L^{2}\left(\mathbb{R}^{2}\right)$ by $t_{1} \mapsto$ $e^{2 \pi i \lambda} I, t_{2} \mapsto M$, and $t_{3} \rightarrow T$, where I is the identity operator, and M and T are the operators on $\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right)$ given by

$$
M f(\lambda, t)=e^{-2 \pi i \lambda t} f(\lambda, t), \quad T f(\lambda, t)=f(\lambda, t-1)
$$

Now define $\pi(u) f(\lambda, t)=f\left(4 \lambda, 2^{-1} t\right) 2^{3 / 2}$. The systems $\pi(\Gamma) \psi$ are Fourier transforms of wavelet systems of multiplicity one subspaces of $L^{2}(\mathbb{H})$, and large classes of Parseval wavelet frames have been found in our earlier work [4].

Example 3.5 (Shearlet system) Let π be the representation of $G(a, a, \mathbb{H})$ given by $u \mapsto D, t_{1} \mapsto T_{1}, t_{2} \mapsto T_{2}$, and $t_{3} \mapsto M$, where D, T_{1}, T_{2}, M are the unitary operators on $L^{2}\left(\mathbb{R}^{2}\right)$ defined by

$$
\begin{aligned}
& D f(x)=a^{-3 / 2} f\left(a^{-2} x_{1}, a^{-1} x_{2}\right) \quad M f(x)=f\left(x_{1}-x_{2}, x_{2}\right) \\
& T_{1} f(x)=f\left(x_{1}-1, x_{2}\right) \quad T_{2} f(x)=f\left(x_{1}, x_{2}-1\right) .
\end{aligned}
$$

Systems of this form have been well studied; see, for example, $[6,9,10]$.

Remark Lemma 3.2 can be used to prove that for other nilpotent groups Γ_{0}, every representation has an α-root. For example, let

$$
\Gamma_{0}=\left\langle t_{1}, t_{2}, t_{3}, t_{4}, t_{5}: t_{5} t_{4}=t_{4} t_{5} t_{2}, t_{5} t_{3}=t_{3} t_{5} t_{1}, t_{i} t_{j}=t_{j} t_{i}, 1 \leq i, j \leq 4\right\rangle ;
$$

Γ_{0} is the integer lattice in a two-step simply-connected Lie group whose Lie algebra has basis $\left\{X_{1}, X_{2}, \ldots, X_{5}\right\}$ with $\left[X_{5}, X_{4}\right]=X_{2}$ and $\left[X_{5}, X_{3}\right]=X_{1},\left[X_{i}, X_{j}\right]=0,1 \leq$ $i, j \leq 4$. Let a and b be integers and define $\alpha: \Gamma_{0} \rightarrow \Gamma_{0}$ by $\alpha\left(t_{5}\right)=t_{5}^{a}, \alpha\left(t_{k}\right)=t_{k}^{b}, k=$ 3,4 and for $k=1,2, \alpha\left(t_{k}\right)=t_{k}^{a b}$. By application of Lemma 3.2 to $\left\{\pi\left(t_{5}\right), \pi\left(t_{3}\right), \pi\left(t_{1}\right)\right\}$ and $\left\{\pi\left(t_{5}\right), \pi\left(t_{4}\right), \pi\left(t_{2}\right)\right\}$, we find that π has an α-root. One example of π is the following. Let $\pi: G \rightarrow \mathcal{U}\left(L^{2}\left(\mathbb{R}^{4}\right)\right)$ be given by $u \mapsto D, t_{k} \mapsto T_{k}, k=1,2,3,4$, and $t_{5} \mapsto M$, where T_{k} is the translation operator $T_{k} f(x)=f\left(x_{1}, \ldots, x_{k}-1, \ldots x_{4}\right)$ and D, M are defined by

$$
\begin{aligned}
D f(x) & =a^{-3 / 2} f\left((a b)^{-1} x_{1},(a b)^{-1} x_{2}, a^{-1} x_{3}, a^{-1} x_{4}\right) \\
M f(x) & =f\left(x_{1}-x_{3}, x_{2}-x_{4}, x_{3}, x_{4}\right)
\end{aligned}
$$

References

[1] L. Baggett, V. Furst, K. Merrill, and J. A. Packer, Generalized filters, the low-pass condition, and connections to multiresolution analysis. J. Funct. Anal. 257(2009), no. 9, 2760-2779. http://dx.doi.org/10.1016/j.jfa.2009.05.004
[2] M. Bownik, J. Jasper, and D. Speegle, Orthonormal dilations of non-tight frames. Proc. Amer. Math. Soc. 139(2011), no. 9, 3247-3256. http://dx.doi.org/10.1090/S0002-9939-2011-10887-6
[3] B. N. Currey, Decomposition and multiplicities for the quasiregular representation of algebraic solvable Lie groups. J. Lie Theory 19(2009), no. 3, 557-612.
[4] B. Currey and A. Mayeli, Gabor fields and wavelet sets for the Heisenberg group. Monatsh. Math. 162(2011), no. 2, 119-142. http://dx.doi.org/10.1007/s00605-009-0159-2
[5] A density condition for interpolation on the Heisenberg group. Rocky Mountain J. Math. 42(2012), no. 4, 1135-1151. http://dx.doi.org/10.1216/RMJ-2012-42-4-1135
[6] S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke, Shearlet coorbit spaces and associated Banach frames. Appl. Comput. Harmon. Anal. 27(2009), no. 2, 195-214. http://dx.doi.org/10.1016/j.acha.2009.02.004
[7] D. E. Dutkay, Positive definite maps, representations, and frames Rev. Math. Phys. 16(2004), no. 4, 451-477. http://dx.doi.org/10.1142/S0129055X04002047
[8] D. E. Dutkay, D. Han, G. Picioraga, and Q. Sun, Orthonormal dilations of Parseval wavelets. Math. Ann. 341(2008), no. 3, 483-515. http://dx.doi.org/10.1007/s00208-007-0196-x
[9] G. Easley, D. Labate, and W.-Q. Lim, Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25(2008), no. 1, 25-46. http://dx.doi.org/10.1016/j.acha.2007.09.003
[10] K. Guo and D. Labate, Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(2007), no. 1, 298-318. http://dx.doi.org/10.1137/060649781
[11] D. Han and D. Larsen, Frames, bases, and group representations. Mem. Amer. Math. Soc. 147(2000), no. 697.
Department of Mathematics and Computer Science, Saint Louis University, St. Louis, MO 63103, USA e-mail: curreybn@slu.edu

Mathematics Department, Queensborough College, City University of New York, 222-05 56th Avenue Bayside, NY 11364, USA
e-mail: amayeli@qcc.cuny.edu

[^0]: Received by the editors July 19, 2011; revised April 5, 2012.
 Published electronically March 25, 2013.
 This work was completed while the second author was visiting the Mathematics Department at St. Louis University.

 AMS subject classification: 43A65, 42C40, 42C15.
 Keywords: frame, dilation, wavelet, Baumslag-Solitar group, shearlet.

