Canad. Math. Bull. Vol. **56** (4), 2013 pp. 729–736 http://dx.doi.org/10.4153/CMB-2013-005-1 © Canadian Mathematical Society 2013

The Orthonormal Dilation Property for Abstract Parseval Wavelet Frames

B. Currey and A. Mayeli

Abstract. In this work we introduce a class of discrete groups containing subgroups of abstract translations and dilations, respectively. A variety of wavelet systems can appear as $\pi(\Gamma)\psi$, where π is a unitary representation of a wavelet group and Γ is the abstract pseudo-lattice Γ . We prove a sufficient condition in order that a Parseval frame $\pi(\Gamma)\psi$ can be dilated to an orthonormal basis of the form $\tau(\Gamma)\Psi$, where τ is a super-representation of π . For a subclass of groups that includes the case where the translation subgroup is Heisenberg, we show that this condition always holds, and we cite familiar examples as applications.

1 Introduction and Preliminaries

Given a Parseval frame $\{\psi_{\alpha}\}$ in a Hilbert space \mathcal{H} , it is known that there is a Hilbert space \mathcal{K} and an orthornomal basis $\{\Psi_{\alpha}\}$ for \mathcal{K} such that $\mathcal{H} \subset \mathcal{K}$ and $\psi_{\alpha} = P_{\mathcal{H}}(\Psi_{\alpha})$, where $P_{\mathcal{H}}$ is the orthogonal projection of \mathcal{K} onto \mathcal{H} [11]. In this case it is said that $\{\Psi_{\alpha}\}\$ is an orthonormal dilation of $\{\psi_{\alpha}\}$. If $\{\psi_{\alpha}\}\$ is of the form $\pi(G)\psi$ where G is group and π is a unitary representation of G, then it is also known [11] that there is an orthonormal dilation of the form $\tau(G)\Psi$, where τ is a unitary representation of G acting in \mathcal{K} such that $\tau(g)|_{\mathcal{H}} = \pi(g)$ for all $g \in G$ and such that $P_{\mathcal{H}}(\Psi) =$ ψ . An affine wavelet system is not of the form $\pi(G)\psi$, but there is nevertheless an underlying group structure that can be regarded as having the form $\pi(\Gamma)\psi$, where Γ is a discrete *pseudo-lattice* in a group G. For the wavelet system $\{2^{/2}\psi(2^{j}\cdot -k):$ $i \in \mathbb{Z}, k \in \mathbb{Z}$ in $L^2(\mathbb{R})$, one can take G to be the connected Lie group of affine transformations of the line with π the quasiregular representation induced from the dilation subgroup, or (as in [8]) one can take G to be the Baumslag–Solitar group $BS(1,2) = \langle u, t : utu^{-1} = t^2 \rangle$ with $\pi(u)$ and $\pi(t)$ the 2-dilation and unit translation, respectively. When a Parseval wavelet frame has such a structure, it is natural to ask if there is an orthonormal dilation with the same structure; more precisely, if $\{\psi_{\alpha}\} = \pi(\Gamma)\psi$, is there a unitary representation τ of G acting in a Hilbert space \mathcal{K} containing \mathcal{H} , and a vector $\Psi \in \mathcal{K}$, such that $\tau(g)|_{\mathcal{H}} = \pi(g)$ for all $g \in G$ and such that $P_{\mathcal{H}}(\Psi) = \psi$? In this case we say that $\pi(\Gamma)\psi$ has the G-dilation property, and it was then natural to ask for an explicit description of a G-dilation of $\pi(\Gamma)\psi$. For the 2-wavelet system on the line, it was shown in [8] that for the G = BS(1, 2), every system $\pi(\Gamma)\psi$ has the G-dilation property, and an explicit description of G-dilations

Received by the editors July 19, 2011; revised April 5, 2012.

Published electronically March 25, 2013.

This work was completed while the second author was visiting the Mathematics Department at St. Louis University.

AMS subject classification: **43A65**, 42C40, 42C15.

Keywords: frame, dilation, wavelet, Baumslag-Solitar group, shearlet.

is carried out for Shannon-type wavelets. More recently, various generalizations of results in [8, 11] have been obtained in [2].

In this paper we introduce a natural and general class of groups G for which a number of well-known function systems, including both affine wavelet systems and shearlet systems, can be viewed as systems of the form $\pi(\Gamma)\psi$, where Γ is a pseudolattice in G. We generalize the methods of [8] in this direction to prove a sufficient condition on the group G in order that every such system has the G-dilation property. We then describe two natural families of wavelet groups and prove that they satisfy this sufficient condition. As one example, we exhibit a natural group G and representation π such that a shearlet system is of the form $\pi(\Gamma)\psi$ and has the G-dilation property.

For the remainder of this paper, all groups are automatically countable and discrete. By *representation* of a group G, we shall mean a homomorphism of G into the group of unitary operators on some Hilbert space \mathcal{H} that is continuous in the strong operator topology. Representations will be assumed to *faithful*, that is, one-to-one mappings.

Let Γ_0 be a countable discrete group and $\alpha \colon \Gamma_0 \to \Gamma_0$ a monomorphism. Define

$$G(\alpha, \Gamma_0) := \langle u, \Gamma_0 : u\gamma u^{-1} = \alpha(\gamma), \forall \gamma \in \Gamma_0 \rangle.$$

The subset $\Gamma = \Gamma_1 \Gamma_0$, where $\Gamma_1 = \{u^j : j \in \mathbb{Z}\}$ will be called the *standard pseudolattice* in *G*. As an example, observe that if $\Gamma_0 = \mathbb{Z}$ and α_2 is the monomorphism of \mathbb{Z} defined by $\alpha(1) = 2$, then $G(\alpha, \mathbb{Z}) = BS(1, 2)$.

In the following section we use positive-definite maps to obtain a sufficient condition on the group G in order that every Parseval wavelet frame $\pi(\Gamma)\psi$ has the G-dilation property. Then in Section 3 we prove that our condition holds for two families of groups $G(\alpha, \Gamma_0)$ and describe three examples.

2 The Group Dilation Property

A map $K: X \times X \to \mathbb{C}$ is called a *positive definite map* if for all finite sequences $\{\gamma_1, \gamma_2, \ldots, \gamma_k\}$ in X and $\{\xi_1, \xi_2, \ldots, \xi_k\} \subset \mathbb{C}$,

$$\sum_{\leq i,j \leq k} K(\gamma_i, \gamma_j) \xi_i \overline{\xi}_j \geq 0.$$

If X = G is a group, then, following [7], we say that $K: G \times G \to \mathbb{C}$ is a *group positive definite map* if K is a positive definite map and K(sx, sy) = K(x, y) holds for all s, x, and y in G. By [7, Theorem 2.8], every group positive definite map has the form

$$K_{\rho,\eta}(x,y) = \left\langle \rho(x)\eta, \rho(y)\eta \right\rangle,\,$$

where ρ is a representation of G and η is a cyclic vector for ρ .

1

For the remainder of this section, we fix a group $G = G(\alpha, \Gamma_0)$, with $\Gamma = \Gamma_1 \Gamma_0$, and write the element $u^j \gamma \in \Gamma$ as (j, γ) . Let ρ be a representation of Γ_0 ; we say that a representation T is an α -root of ρ if $T \circ \alpha = \rho$. In the following abstract version of [8, Theorem 2.1], we use this notion to formulate a sufficient condition in order that a positive definite map on Γ extends to a group positive definite map.

Abstract Parseval Wavelet Frames

Proposition 2.1 Suppose that every representation of Γ_0 has an α -root. Let $K \colon \Gamma \times \Gamma \to \mathbb{C}$ be a positive definite mapping such that for any (j, γ) and (j', γ') in Γ , and $\gamma_0 \in \Gamma_0$, the relations

(2.1)
$$K((j+1,\gamma),(j'+1,\gamma')) = K((j,\gamma),(j',\gamma'))$$
$$K((j,\alpha^{-j}(\gamma_0)\gamma),(j',\alpha^{-j'}(\gamma_0)\gamma')) = K((j,\gamma),(j',\gamma')), \quad j,j' \leq 0,$$

both hold. Then K is the restriction of a group positive definite map $K_{\tau,\psi}$. More explicitly, there is a representation τ of G acting in a Hilbert space \mathcal{H} and a vector $\psi \in \mathcal{H}$, such that $\mathcal{H} = \overline{\text{span}} \{ \tau(\Gamma) \psi \}$ and

$$K((j,\gamma),(j',\gamma')) = \langle \tau(j,\gamma)\psi, \tau(j',\gamma')\psi \rangle.$$

Proof By a theorem attributed to Kolmogorov (see, for example, [7]), we have a Hilbert space \mathcal{H} and a mapping $v: \Gamma \to \mathcal{H}$, such that span $\{v(j,\gamma) : (j,\gamma) \in \Gamma\}$ is dense in \mathcal{H} , and

$$K((j,\gamma),(j',\gamma')) = \langle v(j,\gamma), v(j',\gamma') \rangle$$

holds for all (j, γ) and (j', γ') belonging to Γ . Define the operator $D: \mathcal{H} \to \mathcal{H}$ by $Dv(j, \gamma) = v(j+1, \gamma)$ and by extending to all of \mathcal{H} by linearity and density as usual. The first of the relations (2.1) shows that D is unitary. For each $n = -1, 0, 1, 2, \ldots$, set

$$\mathcal{H}_n = \overline{\operatorname{span}}\{v(j,\gamma) : (j,\gamma) \in \Gamma, j \le n\}.$$

Note that $D\mathcal{H}_n = \mathcal{H}_{n+1}$ and $\mathcal{H}_n \subset \mathcal{H}_{n+1}$. Set $\mathcal{K}_n = \mathcal{H}_n \ominus \mathcal{H}_{n-1}$, $n \ge 0$. For $\gamma_0 \in \Gamma_0$, define the operator $T_0(\gamma_0)$ on \mathcal{H}_0 by

$$T_0(\gamma_0)\big(\nu(j,\gamma)\big) = \nu\big(j,\alpha^{-j}(\gamma_0)\gamma\big)$$

and again extending to all of \mathcal{H}_0 ; the second relation in (2.1) shows that $\gamma \mapsto T_0(\gamma)$ is a (unitary) representation of Γ_0 . Since the subspace \mathcal{K}_0 is invariant under T_0 , we can define the representation ρ_1 of Γ_0 acting in \mathcal{K}_1 by $\rho_1(\gamma) = DT_0(\gamma)D^{-1}$. Now by our hypothesis, ρ_1 has an α -root T_1 , since T_1 acts in \mathcal{K}_1 and satisfies $T_1 \circ \alpha = \rho_1$. Now the representation $\gamma \mapsto \rho_2(\gamma) = DT_1(\gamma)D^{-1}$ of Γ_0 acting in \mathcal{K}_2 has an α -root T_2 acting in \mathcal{K}_2 . Continuing in this way, we obtain, for each positive integer *n*, a representation T_n of Γ_0 acting in \mathcal{K}_n , so that

$$T_n \circ \alpha = DT_{n-1}D^{-1}.$$

(Again in the preceding, T_0 is restricted to \mathcal{K}_0 .) Now write

$$\mathcal{H} = \mathcal{H}_0 \oplus \left(\bigoplus_{n \ge 1} \mathcal{K}_n \right)$$

and define the representation T of Γ_0 by $T = T_0 \oplus (\bigoplus_{n>1} T_n)$.

Next we must verify the relation $DT(\gamma)D^{-1} = T(\alpha(\gamma))$. Fix $\gamma_0 \in \Gamma_0$; for $\nu(j, \gamma)$ with $j \leq 0$,

$$(DT_0(\gamma_0)D^{-1})(\nu(j,\gamma)) = (DT_0(\gamma_0))(\nu(j-1,\gamma))$$

= $D(\nu(j-1,\alpha^{-j+1}(\gamma_0)\gamma))$
= $T_0(\alpha(\gamma_0))(\nu(j,\gamma)),$

and hence the relation $DT_0(\gamma)D^{-1} = T_0(\alpha(\gamma))$ holds on \mathcal{H}_0 . Now for $\nu \in \mathcal{H}$, write $\nu = \sum_{n>0} \nu_n$. We have $DT(\gamma)D^{-1}\nu_0 = T(\alpha(\gamma))\nu_0$ and for $n \ge 1$,

$$DT(\gamma)D^{-1}v_n = DT_{n-1}(\gamma)D^{-1}v_n = T_n(\alpha(\gamma))v_n,$$

so

$$DT(\gamma)D^{-1}v = \sum_{n\geq 0} DT(\gamma)D^{-1}v_n = \sum_{n\geq 0} T_n(\alpha(\gamma))v_n = T(\alpha(\gamma))$$

It follows that the mapping τ defined by $\tau(u) = D$ and $\tau(\gamma) = T(\gamma)$ is a representation of *G*.

Finally, take $\psi = v(0, 0)$. Then

$$v(j,\gamma) = D^j v(0,\gamma) = D^j T(\gamma) v(0,0) = D^j T(\gamma) \psi,$$

so ψ is cyclic for τ . Hence the group positive definite map defined for all $x, y \in G$ by $K_{\tau,\psi}(x, y) = \langle \tau(x)\psi, \tau(y)\psi \rangle$ is an extension of *K*.

We combine the preceding with general results also from [8] to obtain our condition for the *G*-dilation property.

Theorem 2.2 Suppose that every representation of Γ_0 has an α -root, and let π be any representation of $G(\alpha, \Gamma_0)$. Then every Parseval wavelet frame $\pi(\Gamma)\psi$ has the *G*-dilation property.

Proof Let $\Gamma = \Gamma_1 \Gamma_0 \subset G$ as above and recall that we write $u^j \gamma = (j, \gamma)$. Define

$$K((j,\gamma),(j',\gamma')) = \delta_{j,j'}\delta_{\gamma,\gamma'} - \langle \pi(j,\gamma)\psi,\pi(j',\gamma')\psi \rangle.$$

Observe that $\delta_{j+1,j'+1} = \delta_{j,j'}$ and

$$\delta_{j,j'}\delta_{(\alpha^{-j}\gamma_0)\gamma,(\alpha^{-j'}\gamma_0)\gamma'}=\delta_{j,j'}\delta_{\gamma,\gamma'},$$

and that in the group G, $u^{-j}\gamma_0 u^j = \alpha^{-j}(\gamma_0)$ holds for $j, \gamma_0 \in \Gamma_0$. Hence

$$\begin{split} K\big((j+1,\gamma),(j'+1,\gamma')\big) &= \delta_{j+1,j'+1}\delta_{\gamma,\gamma'} - \big\langle \pi(j+1,\gamma)\psi,\pi(j'+1,\gamma')\psi \big\rangle \\ &= \delta_{j,j'}\delta_{\gamma,\gamma'} - \big\langle D\pi(j,\gamma)\psi,D\pi(j',\gamma')\psi \big\rangle \\ &= K\big((j,\gamma),(j',\gamma')\big), \end{split}$$

Abstract Parseval Wavelet Frames

and for $j, j' \leq 0$,

$$\begin{split} & K\left(\left(j, (\alpha^{-j}\gamma_0)\gamma\right), \left(j', (\alpha^{-j'}\gamma_0)\gamma'\right)\right) \\ &= \delta_{j,j'}\delta_{\alpha^{-j}(\gamma_0)\gamma, \alpha^{-j'}(\gamma_0)\gamma'} - \left\langle \pi\left(j, \alpha^{-j}(\gamma_0)\gamma\right)\psi, \pi\left(j', \alpha^{-j'}(\gamma_0)\gamma'\right)\psi\right\rangle \\ &= \delta_{j,j'}\delta_{\gamma,\gamma'} - \left\langle \pi(\gamma_0)u^j\gamma\right)\psi, \pi(\gamma_0u^{j'}\gamma')\psi\right\rangle \\ &= \delta_{j,j'}\delta_{\gamma,\gamma'} - \left\langle \pi(\gamma_0)\pi(j,\gamma)\psi, \pi(\gamma_0)\pi(j',\gamma')\psi\right\rangle \\ &= \delta_{j,j'}\delta_{\gamma,\gamma'} - \left\langle \pi(j,\gamma)\psi, \pi(j',\gamma')\psi\right\rangle \\ &= K\left((j,\gamma), (j',\gamma')\right). \end{split}$$

The calculations show that the map *K* satisfies both of the conditions in (2.1). By Proposition 2.1 we conclude that *K* is a positive definite map and hence there exists a representation τ of *G* with Hilbert space \mathcal{K} and $\eta \in \mathcal{K}$ such that $K = K_{\tau,\eta}$ on $\Gamma \times \Gamma$. Then by [8, Lemma 2.5, proof of Theorem 2.6] $\pi \oplus \tau$ is a super-representation of π (acting in $\mathcal{H} \oplus \mathcal{K}$) for which $\tilde{\psi} = \psi \oplus \eta$ is a *G*-dilation vector for ψ and $\tilde{\pi}(x)\psi = \pi(x)\psi$.

Observe that in the case of $BS(1, 2) = G(\alpha_2, \mathbb{Z})$, the fact that every representation of Γ_0 has an α -root is a simple consequence of the Borel functional calculus. For every unitary operator T on a Hilbert space \mathcal{H} , there is a unitary operator S such that $S^2 = T$. However, in general it seems difficult to prove that a pair (α, Γ_0) has the property that every representation of Γ_0 has an α -root. In the following section we describe two families of groups $G(\alpha, \Gamma_0)$ for which this property does in fact hold.

3 Examples

We begin with the case where Γ_0 is a finitely-generated abelian group. A variety of fundamental results for countable abelian groups have been obtained by Baggett, Bownik, Merrill, Furst, Packer, and many others. See, for example, [1].

Example 3.1 (A-wavelet system) Let Γ_0 be the free abelian group generated by t_1, t_2, \ldots, t_n , and let $\alpha(t_j) = t_1^{a_{1j}} t_2^{a_{2j}} \cdots t_n^{a_{nj}}$, where $\mathbf{A} = [a_{i,j}] \in GL(n, \mathbb{Z})$.

We claim that every representation of Γ_0 has an α -root. Let ρ be any representation of Γ_0 , and write $\mathbf{A}^{-1} = [b_{i,j}]$. Since the $b_{i,j}$ are rational, the Borel functional calculus obtains operators $V_{i,j}$, $1 \le i, j \le n$ such that $V_{i,j} = \rho(t_1)^{b_{i,j}}$. Define $T(t_j)$, $1 \le j \le n$ by

$$T(t_j) = V_{1,j} V_{2,j} \cdots V_{n,j}.$$

An easy computation shows that $T \circ \alpha = \rho$.

Next we consider wavelet groups where the subgroup Γ_0 is nilpotent, but not abelian. Nearest to the abelian case is the case where Γ_0 is Heisenberg: let $\Gamma_0 = \langle t_1, t_2, t_3 \rangle$ with relations $t_3t_2 = t_1t_2t_3, t_1t_2 = t_2t_1, t_1t_3 = t_3t_1$. Then Γ_0 is isomorphic

with the discrete Heisenberg group

$$\mathbb{H} = \left\{ \begin{bmatrix} 1 & k & m \\ 0 & 1 & l \\ 0 & 0 & 1 \end{bmatrix} : k, l, \text{ and } m \text{ are integers} \right\}$$

via the map $t_1 \mapsto t_1^m, t_2 \mapsto t_2^l, t_3 \mapsto t_3^k$, and we identify $\Gamma_0 = \mathbb{H}$. For any positive numbers *a* and *b*, the mapping α defined by $\alpha(t_3) = t_3^a, \alpha(t_2) = t_2^b, \alpha(t_1) = t_1^{ab}$ is a monomorphism of \mathbb{H} .

When α is of the form above, we use the notation $G(\alpha, \mathbb{H}) = G(a, b, \mathbb{H})$. The following lemma shows that, at least where *a* and *b* are integers, $G(a, b, \mathbb{H})$ has the α -root property.

Lemma 3.2 Let A, B, and C be unitary operators on a Hilbert space \mathcal{H} satisfying AB = CBA, AC = CA, BC = CB, and let a, b, and c be positive integers such that c = ab. Suppose that U and V are unitary operators belonging to the von-Neumann algebra generated by A and B, and satisfying $U^a = A$ and $V^b = B$. Then the element $W = UVU^{-1}V^{-1}$ satisfies UW = WU, VW = WV, and $W^c = C$.

Proof Let \mathcal{A} be the von Neumann algebra generated by A and B. The group N generated by A and B is isomorphic with the Heisenberg group \mathbb{H} , and so for any P and Q in N, $[P, Q] = PQP^{-1}Q^{-1}$ belongs to the center of N. It follows that $[\mathcal{A}, \mathcal{A}] \subset$ cent(\mathcal{A}) and in particular $W \in$ cent(\mathcal{A}). It remains to show that $W^c = C$. To prove this, we proceed by induction on c = ab. If c = 1, then a = b = 1, and there is nothing to prove. Suppose that c > 1 and that for any a', b', c' with a'b' = c' and c' < c, we have

$$W^{c'} = U^{a'} V^{b'} U^{-a'} V^{-b'}.$$

If a > 1, then we have

$$W^{(a-1)b} = U^{a-1}V^{b}U^{-a+1}V^{-b}.$$

Observe that *U* commutes with $V^b U^{-a+1} V^{-b}$. Indeed, by definition of *W*, $UV^b = W^b V^b U$, so $UV^{-b} = W^{-b} V^{-b} U$, from which the observation follows. Hence

$$W^{ab} = W^{(a-1)b}W^{b} = (U^{a-1}V^{b}U^{-a+1}V^{-b})(UV^{b}U^{-1}V^{-b})$$

= $U^{a-1}(V^{b}U^{-a+1}V^{-b})U(V^{b}U^{-1}V^{-b})$
= $U^{a-1}U(V^{b}U^{-a+1}V^{-b})(V^{b}U^{-1}V^{-b})$
= $U^{a}V^{b}U^{-a}V^{-b}$.

If a = 1, then b > 1, and the proof is similar.

It is almost immediate that for α as in the preceding, every representation of \mathbb{H} has an α -root. More generally, we consider the following class of groups that includes $G(\alpha, \mathbb{H})$. Let *n* be a positive integer, and let t_1, t_2, \ldots, t_n , and $z_{ij}, 1 \le i, j \le n$ satisfy the relations for all *i*, *j* and *k*:

$$t_i t_j = z_{i,j} t_j t_i$$
, and $z_{ij} t_k = t_k z_{ij}$.

Abstract Parseval Wavelet Frames

Observe that the relation $z_{ji} = z_{ij}^{-1}$ follows from the above. The group

$$F_n = \langle t_1, t_2, \dots, t_n, z_{ij}, 1 \leq i, j \leq n \rangle$$

is the free, two-step (discrete) nilpotent group generated by the *n* elements t_k , $1 \le k \le n$.

Theorem 3.3 Define $\alpha: F_n \to F_n$ by $\alpha(t_k) = t_k^{a_k}$ and $\alpha(z_{ij}) = z_{ij}^{a_i a_j}$, where the a_k are integers. Then every representation of F_n has an α -root.

Proof Let ρ be any representation of F_n acting in \mathcal{H} , put $A_k = \rho(t_k)$, $C_{ij} = \rho(z_{ij}), 1 \leq i, j, k \leq n$ and let \mathcal{A} be the von-Neumann algebra generated by $\{A_1, \ldots, A_n\}$. An argument similar to that of Lemma 3.2 applied to the group N generated by $\{A_1, \ldots, A_n\}$ shows that $[\mathcal{A}, \mathcal{A}] \subset \text{cent}(\mathcal{A})$. By the Borel functional calculus, for each k we have $U_k \in \mathcal{A}$ such that $U_k^{a_k} = A_k$. Now for each i and j put $W_{ij} = U_i U_j U_i^{-1} U_j^{-1}$. By the preceding we have that W_{ij} is central, and by Lemma 3.2, $W_{ij}^{a_i a_j} = C_{i,j}$. Put $T(t_k) = U_k$ and $T(z_{ij}) = W_{ij}, 1 \leq i, j, k \leq n$. Since

$$T(z_{ij}) = T(t_i)T(t_j)T(t_i)^{-1}T(t_j)^{-1}$$

holds for all *i* and *j*, then *T* is a representation of F_n . Since

$$T(\alpha(t_k)) = T(t_k^{a_k}) = T(t_k)^{a_k} = A_k = \rho(t_k),$$

and

$$T(\alpha(z_{ij})) = T(z_{ij}^{a_i a_j}) = T(z_{ij})^{a_i a_j} = C_{ij} = \rho(z_{ij}),$$

then $T \circ \alpha = \rho$.

The following are two examples of representations of $G(a, a, \mathbb{H})$, where \mathbb{H} is the simply connected Heisenberg group.

Example 3.4 Let π be the representation of $G(2, 2, \mathbb{H})$ acting in $L^2(\mathbb{R}^2)$ by $t_1 \mapsto e^{2\pi i\lambda}I$, $t_2 \mapsto M$, and $t_3 \to T$, where *I* is the identity operator, and *M* and *T* are the operators on $\mathcal{H} = L^2(\mathbb{R}^2)$ given by

$$Mf(\lambda, t) = e^{-2\pi i \lambda t} f(\lambda, t), \quad Tf(\lambda, t) = f(\lambda, t-1).$$

Now define $\pi(u)f(\lambda, t) = f(4\lambda, 2^{-1}t)2^{3/2}$. The systems $\pi(\Gamma)\psi$ are Fourier transforms of wavelet systems of multiplicity one subspaces of $L^2(\mathbb{H})$, and large classes of Parseval wavelet frames have been found in our earlier work [4].

Example 3.5 (Shearlet system) Let π be the representation of $G(a, a, \mathbb{H})$ given by $u \mapsto D, t_1 \mapsto T_1, t_2 \mapsto T_2$, and $t_3 \mapsto M$, where D, T_1, T_2, M are the unitary operators on $L^2(\mathbb{R}^2)$ defined by

$$Df(x) = a^{-3/2} f(a^{-2}x_1, a^{-1}x_2) \qquad Mf(x) = f(x_1 - x_2, x_2)$$
$$T_1 f(x) = f(x_1 - 1, x_2) \qquad T_2 f(x) = f(x_1, x_2 - 1).$$

Systems of this form have been well studied; see, for example, [6,9,10].

https://doi.org/10.4153/CMB-2013-005-1 Published online by Cambridge University Press

Remark Lemma 3.2 can be used to prove that for other nilpotent groups Γ_0 , every representation has an α -root. For example, let

$$\Gamma_0 = \langle t_1, t_2, t_3, t_4, t_5 : t_5t_4 = t_4t_5t_2, t_5t_3 = t_3t_5t_1, t_it_i = t_it_i, 1 \le i, j \le 4 \rangle;$$

 Γ_0 is the integer lattice in a two-step simply-connected Lie group whose Lie algebra has basis $\{X_1, X_2, \ldots, X_5\}$ with $[X_5, X_4] = X_2$ and $[X_5, X_3] = X_1$, $[X_i, X_j] = 0, 1 \le i, j \le 4$. Let *a* and *b* be integers and define $\alpha \colon \Gamma_0 \to \Gamma_0$ by $\alpha(t_5) = t_5^a, \alpha(t_k) = t_k^b, k = 3, 4$ and for $k = 1, 2, \alpha(t_k) = t_k^{ab}$. By application of Lemma 3.2 to $\{\pi(t_5), \pi(t_3), \pi(t_1)\}$ and $\{\pi(t_5), \pi(t_4), \pi(t_2)\}$, we find that π has an α -root. One example of π is the following. Let $\pi \colon G \to \mathcal{U}(L^2(\mathbb{R}^4))$ be given by $u \mapsto D$, $t_k \mapsto T_k$, k = 1, 2, 3, 4, and $t_5 \mapsto M$, where T_k is the translation operator $T_k f(x) = f(x_1, \ldots, x_k - 1, \ldots, x_4)$ and D, M are defined by

$$Df(x) = a^{-3/2} f((ab)^{-1}x_1, (ab)^{-1}x_2, a^{-1}x_3, a^{-1}x_4)$$
$$Mf(x) = f(x_1 - x_3, x_2 - x_4, x_3, x_4).$$

References

- L. Baggett, V. Furst, K. Merrill, and J. A. Packer, *Generalized filters, the low-pass condition, and connections to multiresolution analysis.* J. Funct. Anal. 257(2009), no. 9, 2760–2779. http://dx.doi.org/10.1016/j.jfa.2009.05.004
- [2] M. Bownik, J. Jasper, and D. Speegle, Orthonormal dilations of non-tight frames. Proc. Amer. Math. Soc. 139(2011), no. 9, 3247–3256. http://dx.doi.org/10.1090/S0002-9939-2011-10887-6
- [3] B. N. Currey, *Decomposition and multiplicities for the quasiregular representation of algebraic solvable Lie groups*. J. Lie Theory **19**(2009), no. 3, 557–612.
- B. Currey and A. Mayeli, *Gabor fields and wavelet sets for the Heisenberg group*. Monatsh. Math. 162(2011), no. 2, 119–142. http://dx.doi.org/10.1007/s00605-009-0159-2
- [5] _____, A density condition for interpolation on the Heisenberg group. Rocky Mountain J. Math. 42(2012), no. 4, 1135–1151. http://dx.doi.org/10.1216/RMJ-2012-42-4-1135
- [6] S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke, Shearlet coorbit spaces and associated Banach frames. Appl. Comput. Harmon. Anal. 27(2009), no. 2, 195–214. http://dx.doi.org/10.1016/j.acha.2009.02.004
- D. E. Dutkay, *Positive definite maps, representations, and frames* Rev. Math. Phys. 16(2004), no. 4, 451–477. http://dx.doi.org/10.1142/S0129055X04002047
- [8] D. E. Dutkay, D. Han, G. Picioraga, and Q. Sun, Orthonormal dilations of Parseval wavelets. Math. Ann. 341(2008), no. 3, 483–515. http://dx.doi.org/10.1007/s00208-007-0196-x
- [9] G. Easley, D. Labate, and W.-Q. Lim, Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25(2008), no. 1, 25–46. http://dx.doi.org/10.1016/j.acha.2007.09.003
- [10] K. Guo and D. Labate, Optimally sparse multidimensional representation using shearlets. SIAM J.
- Math. Anal. **39**(2007), no. 1, 298–318. http://dx.doi.org/10.1137/060649781
- [11] D. Han and D. Larsen, Frames, bases, and group representations. Mem. Amer. Math. Soc. 147(2000), no. 697.

Department of Mathematics and Computer Science, Saint Louis University, St. Louis, MO 63103, USA e-mail: curreybn@slu.edu

Mathematics Department, Queensborough College, City University of New York, 222-05 56th Avenue Bayside, NY 11364, USA

e-mail: amayeli@qcc.cuny.edu