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The Orthonormal Dilation Property for
Abstract Parseval Wavelet Frames

B. Currey and A. Mayeli

Abstract. In this work we introduce a class of discrete groups containing subgroups of abstract transla-
tions and dilations, respectively. A variety of wavelet systems can appear as 7(I")1), where 7 is a unitary
representation of a wavelet group and I is the abstract pseudo-lattice I". We prove a sufficent condition
in order that a Parseval frame 7(I")1) can be dilated to an orthonormal basis of the form 7(I") ¥, where
T is a super-representation of 7. For a subclass of groups that includes the case where the translation
subgroup is Heisenberg, we show that this condition always holds, and we cite familiar examples as
applications.

1 Introduction and Preliminaries

Given a Parseval frame {1, } in a Hilbert space J, it is known that there is a Hilbert
space X and an orthornomal basis {¥,, } for K such that X C K and ¢, = P5¢(¥,,),
where Py is the orthogonal projection of K onto J{ [11]. In this case it is said that
{¥,} is an orthonormal dilation of {t,}. If {1, } is of the form 7(G)1) where G is
group and 7 is a unitary representation of G, then it is also known [11] that there
is an orthonormal dilation of the form 7(G)V, where 7 is a unitary representation
of G acting in X such that 7(g)|5¢ = 7(g) for all ¢ € G and such that Py (¥) =
1. An affine wavelet system is not of the form 7(G)v, but there is nevertheless an
underlying group structure that can be regarded as having the form m(I")1, where
T is a discrete pseudo-lattice in a group G. For the wavelet system {2/2¢(2/ - —k) :
j € Z,k € Z} in L*(R), one can take G to be the connected Lie group of affine
transformations of the line with 7 the quasiregular representation induced from the
dilation subgroup, or (as in [8]) one can take G to be the Baumslag—Solitar group
BS(1,2) = (u,t : utu™! = t*) with w(u) and 7 (¢) the 2-dilation and unit translation,
respectively. When a Parseval wavelet frame has such a structure, it is natural to
ask if there is an orthonormal dilation with the same structure; more precisely, if
{¥a} = 7(I")1, is there a unitary representation 7 of G acting in a Hilbert space X
containing J, and a vector ¥ € X, such that 7(g)|5c = 7(g) for all g € G and such
that P3¢ (V) = ? In this case we say that w(I")y) has the G-dilation property, and
it was then natural to ask for an explicit description of a G-dilation of 7(I")?). For
the 2-wavelet system on the line, it was shown in [8] that for the G = BS(1, 2), every
system 7(I")4 has the G-dilation property, and an explicit description of G-dilations
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is carried out for Shannon-type wavelets. More recently, various generalizations of
results in [8, 11] have been obtained in [2].

In this paper we introduce a natural and general class of groups G for which a
number of well-known function systems, including both affine wavelet systems and
shearlet systems, can be viewed as systems of the form 7(I")1), where I is a pseudo-
lattice in G. We generalize the methods of [8] in this direction to prove a sufficient
condition on the group G in order that every such system has the G-dilation property.
We then describe two natural families of wavelet groups and prove that they satisfy
this sufficient condition. As one example, we exhibit a natural group G and repre-
sentation 7 such that a shearlet system is of the form 7(I")y) and has the G-dilation
property.

For the remainder of this paper, all groups are automatically countable and dis-
crete. By representation of a group G, we shall mean a homomorphism of G into the
group of unitary operators on some Hilbert space JH that is continuous in the strong
operator topology. Representations will be assumed to faithful, that is, one-to-one
mappings.

Let I'y be a countable discrete group and a: I'g — I'g @ monomorphism. Define

G(a,Ty) == <u,I‘0 cuyuT = a(y), Vy € F0>.

The subset I' = T',T, where 'y = {1/ : j € Z} will be called the standard pseudo-
lattice in G. As an example, observe that if I'y = Z and «; is the monomorphism of
Z defined by (1) = 2, then G(«, Z) = BS(1,2).

In the following section we use positive-definite maps to obtain a sufficient con-
dition on the group G in order that every Parseval wavelet frame 7(I')1) has the
G-dilation property. Then in Section 3 we prove that our condition holds for two
families of groups G(a, I'g) and describe three examples.

2 The Group Dilation Property

A map K: X x X — C is called a positive definite map if for all finite sequences
{717725 s a’yk} in X and {6175% s 7§k} C (C’

> Ky, v)&€; > 0.

1<i,j<k

If X = Gis a group, then, following [7], we say that K: G x G — C is a group positive
definite map if K is a positive definite map and K(sx, sy) = K(x, y) holds for all 5, x,
and y in G. By [7, Theorem 2.8], every group positive definite map has the form

K, (x,y) = (p(x)n, p(y)n),

where p is a representation of G and 7 is a cyclic vector for p.

For the remainder of this section, we fix a group G = G(«, I'y), with I' = I'1 T,
and write the element u/y € I" as (j,~). Let p be a representation of I'y; we say that
a representation T is an a-root of p if T o a = p. In the following abstract version of
[8, Theorem 2.1], we use this notion to formulate a sufficient condition in order that
a positive definite map on I extends to a group positive definite map.
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Proposition 2.1 Suppose that every representation of I'g has an a-root. Let K: T" x
' — C be a positive definite mapping such that for any (j,~) and (j',~') in T, and
Yo € Lo, the relations

(2.1) K(G+1L7,G"+1,9") =K(G,7), ("))

K(G,a™ (o)), Gl a™ (") = K(Gom), (G371), 3" <0,

both hold. Then K is the restriction of a group positive definite map K ;5. More explicitly,
there is a representation T of G acting in a Hilbert space H and a vector v € H, such
that H = span{7(I")y} and

K, GA") = (mGamnw, 7)) -

Proof By a theorem attributed to Kolmogorov (see, for example, [7]), we have a
Hilbert space H and a mapping v: I' — X, such that span{v(j,~) : (j,7) € T'}is
dense in H, and

K(G,7),G" ") = (v(G,,v(G',4")

holds for all (7,~) and (j’,~’) belonging to T'. Define the operator D: H — H by
Dv(j,v) = v(j + 1,7) and by extending to all of J{ by linearity and density as usual.
The first of the relations (2.1) shows that D is unitary. For each n = —1,0,1,2,...,
set

j{n = span{v(j,'y) : (]7’7) e Fa] S T’l}
Note that D, = H,;4; and H,, C H,pq. Set K,, = H, & H,,_1,n > 0. For vy € T'y,
define the operator Ty (7o) on Hy by

To(70) (v(j,7)) =v(J, a_j(’Yo)V)

and again extending to all of Jy; the second relation in (2.1) shows that v — Ty(7)
is a (unitary) representation of I'g. Since the subspace K is invariant under Ty, we
can define the representation p; of I'g acting in K; by p;(v) = DTy(y)D~!. Now by
our hypothesis, p; has an a-root T}, since T; acts in X and satisfies T} o a« = p.
Now the representation v — p;(y) = DT, (v)D~! of I'y acting in K, has an a-root
T, acting in X,. Continuing in this way, we obtain, for each positive integer n, a
representation T, of 'y acting in &,,, so that

T,oa =DT,_D7L.
(Again in the preceding, T is restricted to Ky.) Now write

g{:j‘fo@(@g@)

n>1

and define the representation T of 'y by T = Ty & (@n>1 Tn) .
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Next we must verify the relation DT(y)D~! = T(a(%)). Fix vy € To; for v(j, )
with j <0,

(DTo(7)D7Y) (v(j,7)) = (DTo(y)) (v(j —1,7))
=D(v(j — 1L,a " (y0)7))
= To(a()) (v(j,7)),

and hence the relation DTy(y)D~! = Ty (a(’y)) holds on Hy. Now for v € JH, write
V'=13",50 Vn- Wehave DT(7)D~ vy = T(a(y))voand forn > 1,

DT(’V)D_IVVI = DTn—l(’Y)D_IVn = Tn(Oé(’Y)) Vins

SO
DT()D~'v=3 DIT()D v, = T(ay)v.=T(al7).

n>0 n>0

It follows that the mapping 7 defined by 7(1) = D and 7(y) = T() is a representa-
tion of G.
Finally, take ¢ = v(0,0). Then

v(j,7) = D'v(0,) = D' T(v)»(0,0) = D' T()v,

s0 ) is cyclic for 7. Hence the group positive definite map defined for all x, y € G by
K: 4 (x,y) = (1(x)¢, T(y)1) is an extension of K. [ |

We combine the preceding with general results also from [8] to obtain our condi-
tion for the G-dilation property.

Theorem 2.2 Suppose that every representation of I'g has an a-root, and let 7w be
any representation of G(a, I'g). Then every Parseval wavelet frame m(I')i) has the
G-dilation property.

Proof LetI' =TI',Ty C G as above and recall that we write u/y = (j, ). Define
K((G), (G'9") = 8550000 = (m(i, b, (5,7 ) -
Observe that 041 j-41 = 6;j» and

51’«,1’/5 = 51“1"5%7”

(a j"/o)"/v(a_jl%)”//

and that in the group G, u/yyu/ = a~/(~y) holds for j, vy € I'y. Hence
K((] + 177)5 (]/ + 177/)> - 6j+1,j’+16’y.7’ - <7T(] + 177)¢a”(j/ + 17’7’)¢>
= 08;j10y — (D (j, ), Dr(j', 7))
=K((G,,0G",7"),
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and for j, j' <0,

K( (- (@ 007), (' @ 707"))
= 0100 ity (o — (T (i o)) ¥, (5 a7 (o)) )
— {m(ow e, wyow! 7))
=00y 5 — ()7 (G, Y, 7(y0)w (', v )
=810y = (TGN, 7 (v )
=K((G,, G, ")-

= 5j‘j’5ww’

The calculations show that the map K satisfies both of the conditions in (2.1).
By Proposition 2.1 we conclude that K is a positive definite map and hence there
exists a representation 7 of G with Hilbert space X and nn € X such that K = K, on
I' xI'. Then by [8, Lemma 2.5, proof of Theorem 2.6] @ 7 is a super-representation
of 7 (acting in H @ K) for which ¢y = ¢ @ 7 is a G-dilation vector for 1) and
(%) = w(x). ]

Observe that in the case of BS(1,2) = G(a,, Z), the fact that every representation
of I'y has an a-root is a simple consequence of the Borel functional calculus. For
every unitary operator T on a Hilbert space J{, there is a unitary operator S such that
$? = T. However, in general it seems difficult to prove that a pair (v, I'y) has the
property that every representation of I'y has an a-root. In the following section we
describe two families of groups G(«, I'y) for which this property does in fact hold.

3 Examples

We begin with the case where I'y is a finitely-generated abelian group. A variety
of fundamental results for countable abelian groups have been obtained by Baggett,
Bownik, Merrill, Furst, Packer, and many others. See, for example, [1].

Example 3.1 (A-wavelet system) Let I'y be the free abelian group generated by
ti,ty, ... tpyandlet a(t;) = t;7t,” - - - t,", where A = [a; ;] € GL(n,Z).

We claim that every representation of I'y has an a-root. Let p be any represen-
tation of I'y, and write A™' = [b; ;]. Since the b; ; are rational, the Borel func-
tional calculus obtains operators V; j,1 < i, j < nsuch thatV;; = p(tl)bf-f. Define
T(t;)),1 < j<nby

T(t;) =Vi,Vaj V-

An easy computation shows that T o o = p.
Next we consider wavelet groups where the subgroup I'y is nilpotent, but not

abelian. Nearest to the abelian case is the case where I'y is Heisenberg: let I'y =
(t1, 12, t3) with relations t3t, = t1t,13, 11, = tht1, f1t3 = t3t;. Then Iy is isomorphic
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with the discrete Heisenberg group

1 k m
H= 0 1 1] :k,1I and m are integers
0 0 1

via the map t; +— " t, + t},t; > t£, and we identify Iy = H. For any positive
numbers a and b, the mapping « defined by a(t;) = t4, a(t;) = t5,a(t;) = t¥ isa
monomorphism of H.

When « is of the form above, we use the notation G(«, H) = G(a, b, H). The
following lemma shows that, at least where a and b are integers, G(a, b, H) has the
a-root property.

Lemma 3.2 Let A, B, and C be unitary operators on a Hilbert space I satisfying
AB = CBA, AC = CA, BC = CB, and let a, b, and c be positive integers such that
¢ = ab. Suppose that U and V are unitary operators belonging to the von-Neumann
algebra generated by A and B, and satisfying U® = A and V® = B. Then the element
W = UVU~V ! satisfies UW = WU, VW = WV, and W¢ = C.

Proof Let A be the von Neumann algebra generated by A and B. The group N
generated by A and B is isomorphic with the Heisenberg group H, and so for any P
and Qin N, [P, Q] = PQP~'Q~! belongs to the center of N. It follows that [A, A] C
cent(A) and in particular W € cent(A). It remains to show that W¢ = C. To prove
this, we proceed by induction on ¢ = ab. If ¢ = 1, thena = b = 1, and there is
nothing to prove. Suppose that ¢ > 1 and that for any a’, b’, ¢’ with a’b’ = ¢’ and
¢’ < ¢, we have
we =urvtuvr,

If a > 1, then we have
W(a—l)b — Ua—lva—aJer—b.

Observe that U commutes with VPU =91V =t Indeed, by definition of W, Uvt =
WOVPU, so UV =Y = WtV —bU, from which the observation follows. Hence

Wab — W(a—l)bwb — (Ua—lva—a+1V—b) (Uva—lv—b)
— qul (VbUfu-FlVfb) U(vaflvfb)
— UaflU(Vth{H’lVfb) (Vthlvfh)
=UVUTvh
Ifa = 1, then b > 1, and the proof is similar. |

It is almost immediate that for « as in the preceding, every representation of H
has an a-root. More generally, we consider the following class of groups that includes
G(a, H). Let n be a positive integer, and let ¢, t,, ..., t,, and z;;, 1 < i, j < n satisfy
the relations for all i, j and k:

tit; = z; jtjt;, and Zijtk = 1kzij.
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Observe that the relation zj; = z;; ! follows from the above. The group
Fn = <t1,t2, .. .tn,Zij, 1 S 1,] S n>

is the free, two-step (discrete) nilpotent group generated by the n elements t,1 <
k<n.

Theorem 3.3 Define a: F,, — F, by a(ty) = t,‘:k and a(z;j) = z?;a], where the ay are
integers. Then every representation of F,, has an a-root.

Proof Let p be any representation of F, acting in J(, put Ay = p(t), Ci; =
p(zj),1 < i,j,k < n and let A be the von-Neumann algebra generated by
{A1,...,A,}. An argument similar to that of Lemma 3.2 applied to the group N
generated by {Aj,...,A,} shows that [A, A] C cent(A). By the Borel functional
calculus, for each k we have Uy € A such that U* = A;. Now for each i and j put
Wi = UiU; Ui_lUj_l. By the preceding we have that W;; is central, and by Lemma
3.2, Wl-u]."“j =C; ;. Put T(ty) = Ugand T(z;;) = W;j, 1 <1, j, k < n. Since
T(zi;) = T T(t)T(t) "' T(t;) ™!
holds for all i and j, then T is a representation of F,. Since

T(at) = T(tg) = T(t)™ = Ax = p(ty),
and -
T(alzi)) = T(z;") = T(zi))" = Cij = p(zj),
then T o o = p. [ ]

The following are two examples of representations of G(a, a, H), where H is the
simply connected Heisenberg group.

Example 3.4 Let 7 be the representation of G(2,2, H) acting in L*(R?) by #; +
ALt — M, and t; — T, where I is the identity operator, and M and T are the
operators on H = L*(R?) given by

Mft) = e N FNE),  TFOE) = f(\t—1).

Now define 7(u) f(\,t) = f(4\,27'£)2%2. The systems 7(I")t) are Fourier trans-
forms of wavelet systems of multiplicity one subspaces of L*(H), and large classes of
Parseval wavelet frames have been found in our earlier work [4].

Example 3.5 (Shearlet system) Let 7 be the representation of G(a, a, H) given by
u— D, ty — Ty, t; — Ty, and t3 — M, where D, T}, T,, M are the unitary operators
on L*(R?) defined by

Df(x) = af(a x,a 'x;) MFf(x) = f(x1 — X2, %)
T f(x) = flx1 — 1,x) Trf(x) = flx1, % — 1).

Systems of this form have been well studied; see, for example, [6,9, 10].
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Remark Lemma 3.2 can be used to prove that for other nilpotent groups L', every
representation has an c-root. For example, let

Lo = (t1,ta, t3, ta, b5 < sty = tatsty, tsts = tatsty, tit; = tit;, 1 < i, j < 4);

Iy is the integer lattice in a two-step simply-connected Lie group whose Lie algebra
has basis {)(],)(27 [SPN ,Xs} with [Xs,X4] = X2 and [Xs,X_?,] = Xl, [X,,X]] = 0, 1<
i, j < 4. Letaand bbe integers and define av: I'g — L' by a(ts) = t£, a(ty) = t,’(’, k=
3,4andfork = 1,2, a(ty) = tgh. By application of Lemma 3.2 to {m(ts), 7(t3), 7(t1) }
and {7 (ts), m(ty), (t2)}, we find that m has an a-root. One example of 7 is the
following. Let 7: G — U(L*(R*)) be given by u + D, t; ~— Ty, k = 1,2,3,4, and
ts — M, where T is the translation operator Ty f(x) = f(x1,...,xx — 1,...x4) and
D, M are defined by

Df(x) = a_3/2f( (ab)"'xy, (ab) " 'xy, a1 xs, a_1x4)

Mf(x) = f(x1 — x3,% — X4, %3, %X4).
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