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Introduction

Let X be a compact Kahler manifold and j a Kahler class. For a Kahler met-

ric g on X we denote by Rg the scalar curvature on X According to Calabi [3][4],

consider the functional <&(g) — I Rgdvg defined on the set of all the Kahler met-

rics g whose Kahler forms belong to j , where dvg is the volume form associated to

g . Such a Kahler metric is called extremal if it gives a critical point of O . In par-

ticular, if Rg is constant, g is extremal. The converse is also true if

dim L(X) — 0, where L(X) is the maximal connected linear algebraic subgroup

of Auto X (cf. [5]). Note also that any Kahler-Einstein metric is of constant scalar

curvature.

As for the existence of Kahler metrics with Rg constant and also of extremal

Kahler metrics some necessary conditions have been obtained in [15] [4](cf. Lemma

9 below) and [9]. Accordingly, there exist many examples of compact Kahler man-

ifolds which admit no such metrics (cf. [14] and Remark 2 below). Though the

above conditions become trivial in the case L(X) = ie), Burns and de Baltolomeis

[1] found examples of ruled surfaces X with a Kahler class y such that

L(X) = A u t o X ^ {e} and j contains no extremal Kahler metric. On the other

hand, as for the uniqueness, nothing seems to be known for the Kahler-Einstein

case (cf. [2] [22]).

Note also that this problem of uniqueness and existence is important from the

moduli point of view; in [8] we have constructed the moduli space of extremal

Kahler metrics, and the uniqueness and existence correspond respectively to the

injectivity and surjectivity of the natural map of this space into the corresponding

moduli space of compact Kahler manifolds. It would therefore be of interest to

study the problem even in a very special case. In this note we study the case of

ruled manifolds over a compact Riemann surface and gather some remarks for this
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case.

The paper is arranged as follows. Section 1 is preliminary. We determine in

Section 2 the Kahler classes on ruled manifolds, and then in Section 3 consider

generalized Kahler Einstein metrics. In Section 4 we treat the special case where

either the base curve is an elliptic curve or the manifold comes from a finite rep-

resentation of the fundamental group of the base curve. In Section 5 we supple-

ment the above result of Burns and de Baltolomeis by determining ruled surfaces

of vanishing scalar curvature. In Section 6 we discuss an interesting relation be-

tween existence and uniqueness problems.

This work was done during the author's stay at SFB 170 in 1988; he would

like to thank Prof. H. Grauert and SFB 170 for the hospitality, and also to thank

Prof. M. Maruyama for discussions about the subject of this paper.

§ 1. Preliminaries

The notations of this section will be used throughout this note. We fix a com-

pact connected Riemann surface C and a positive integer r. Denote by P the com-

plex projective space of dimension r-1. A ruled manifold is by definition a holo-

morphic P-bundle over C, which is then written in the form X = P(E) for some

(holomorphic) vector bundle Ey where P(E) — (E — C) /C* with C identified

with the zero section.

We denote by £ and / t h e classes in H2(X, R) of the (negative) tautological

line bundle L = L(E) of E, and of a fiber of the projection q : X—• C respective-

ly. We also set

e = cdX/S)/r = - Cl(Kx/s)/r e H2(X, R).

From the relative canonical bundle formula KX/c — Lr ® #*det E* for the projec-

tion q : X~^ C we get

(1) e=-£ + /jL(E)f,

where fu(E) = degis/rank E as usual. The various intersection numbers are

given by:

(2) er = 0, ( - ty =-d, e"l'f= 1, e'-'- fj = 0, ; > 2,

where d = deg E

Let h be a hermitian metric on E with curvature form 6, which is an End

E-valued (l,l)-form on X. This induces a natural hermitian metric on L whose

curvature form 0L is described as a difference of two (l,l)-forms on X as follows

(cf. [10; § 2(g)]);
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REMARKS ON EXTREMAL KAHLER METRICS ON RULED MANIFOLDS 9 1

(3) {i/2it)6L = - cox/c + (i/27i)6

where for any £ ^ X,

with £ any representative of f in E — C; furthermore, o)x/c has the property that

1) it is a Kahler form on each fiber and 2) if Tx — TX/c © H is the C°° splitting

of the holomorphic tangent bundle Tx into the vertical and a horizontal compo-

nents via the hermitian connection of (E, h), then any horizontal vectors annihi-

late Q)X/c, where Tx/C is the relative tangent bundle.

Fix a Kahler-Einstein form a>c with total volume one on C, which is unique if

the genus g = #(C) > 2. A hermitian vector bundle is called Hermitian-Einstein

(with respect to coc) if we have the equality of the curvature forms

(4) (i/27t)6 = ti(E)IE®<Oc,

where IE is the identity of E. In this case we have (i/2iz)6L = n(E)q*(DC- We

call X = P(E) Hermitian-Einstein if so is (E, h) for some h.

Let C—> C be the universal covering map and Y — C X P. Given a projec-

tive unitary representation p : TT—• if : = PU (r) of the fundamental group TT of C

we consider the ruled manifold JCP : = Y/F, where Fp = {(7, ^(7) ; 7 ^ 7r} re-

garded as a subgroup of Aut F.

Take a iT-invariant Kahler-Einstein form cop on P with total volume 1. If

p'.Y-^P is the projection, p*Q)p descends to a ^-closed (l,l)-form a>q on

X=XP.

LEMMA 1. coq represents the class e.

Proof. Take a unique volume form y o n P with total volume 1 and with its Ric-

ci form $ satisfying (i/2it)^ — rcop. Since £ is TT-invariant as well as o)p, p*v de-

scends to a relative volume form for q, or equivalently, a hermitian metric /z on

Kx/s . Then it suffices to check that {i/2it) \ogh = ra^ which follows readily

from the defining equation (i/2it)^= rcop as above.

By Lemma 1 for any real numbers a, b

(5) COab : = ClU>a + V 0 ) c

represents the class jab — ae ~\~ bf on Jfp, which is a Kahler form if a, b > 0.

Recall that £ is said to be stable (resp. semistable) if ^ ( F ) < ^ ( £ ) ( r e s p . < ) .

The notions descend to those for X = P(2?). We also recall the following basic re-

sult of Narasimhan and Seshadri [18] (cf. also [19]), which is true for curves of
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any genus.

LEMMA 2. For a ruled manifold X the following three conditions are equivalent:

1) X is isomorphic to P(E), where E is a direct sum of stable vector bundles Ei with

one and the same (i — fi (Ei). 2) X is isomorphic to Xp for some representation

p : 7Z—+K. 3) X is Hermitian-Einstein.

We shall call a ruled manifold satisfying the above equivalent conditions

quasi-stable.

§ 2. Kahler classes on ruled manifolds

All the vector bundles will be over C. Let E be a vector bundle and X —

P ( £ ) . We set

= max {fi(F); F £ E subbundle}.

Though this depends on E, the number

t(X) =/w(£) -fi(E)

depends only on X. Then we prove

PROPOSITION 1. Let X be a ruled manifold. Let y= yab — ae + bf be a class in

H2(X, R) . Then y is a Kahler class if and only if a > 0 and b > max (0, at(X)).

Remark 1. 1) When y ^ H2(X, Q), the result is known in a somewhat diffe-

rent formulation (cf. [13]). 2) max(0, at(X)) = 0 if and only if X i s stable.

By using the Harder-Narasimhan filtration [11; 1.3] from the definition of sta-

bility one gets easily the following well-known:

LEMMA 3. Every vector bundle admits an increasing filtration 0 —Eo ̂  • • • £

Em — E of subbundles such that 1) Ft : = Ej/Ei-i are stable for all i > 1,

2) fjL(Fd > n(Ft) for all i > 2, and 3)

If we set F : = ®f=\Fi in the above lemma with the increasing filtration

by ®ki=iFt, 1 < k < rn, then the lemma obviously applies also to F instead of

to E. The following lemma is also more or less standard.

LEMMA 4. Let E, 0 = Eo £ Ei Q • • • £ Em, and Ft be as in Lemma 3. Let

F : = ©J=i Ft. Then there exists a holomorphic family {Et} t e c of vector bundles pa-

rametrized by the complex line C such that Eo = F and Et = E for any t =£ 0.
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Proof. Under our assumption the structure group of E is reduced to a para-

bolic subgroup P of GL(r, C) fixing a certain flag {Wj} of subspaces of Cr,

where r— rank E\ with respect to the standard basis {e}) \<j^r we may assume

that Wi is spanned by ej9 1 < j < rit, where rt = rank Et. For any ( e C * define

a diagonal matrix A(t) whose k-th diagonal is tm~* if r,_i < k < r(. Then for any

element g e P if we set #(f) = X{t)gX{t)~l, the limit #(0) = lim,-oo£(f) exists in

P and preserves the subspaces V* spanned by £,• with r,-_i < j ^ r,-. Now suppose

that £ is defined by a system of transition functions {gij} with values in P with

respect to some open covering of C. Then it is clear that the family of systems of

transition functions {gij(t))t<=c represents a family of vector bundles with the re-

quired property.

LEMMA 5. Let Ft, 1< i < m, be as in Lemma 3, and set F = ®T=i Ft. Then

on X — P ( F ) a class y — — a£ + bf, a, b ̂  R, is a Kahler class of a > 0 and

Proof As follows immediately from Lemma 2 we can find a hermitian metric

hi on each Ft so that the curvature form 0 of the resulting hermitian metric on F

takes the form

(6) (i/2x)e = D(ii(F1)I1,--,ti(Fm)Im)®coc,

where D(Ai, * • *, Am) denotes the diagonal matrix with entries Au and 1% is the

identity of Ft. By § 1 (3) j is represented by the form

co \ = acox/c + ( — a(i/27z)&+bq*Q)C)-

Take any point f e f - C with *(? , ?) = 1. Write £ = Sf=i & with £ e F,.

Then by the definition of 0 and (6) we get

-a(i/2x)9i+bq*a>c = -a(Zr

where f £ X is the image of £. Since a > 0 and #(Fi) > {i(Fi), we have

&)) + 6 ̂  -a/tCFi) + b > 0.

Thus the second term of a) is positive on the horizontal subbundle H. Together

with the property of OJx/c mentioned in Section 1 this implies that co is a Kahler

form.

Let E be a vector bundle of rank r and F a subbundle of rank v. Identifying

the subbundle Q : = P ( F ) £ X : = P ( F ) with its class in H2{r~u)(X, R) we

have
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(7) Q = er~v + nve
r-v~lf.

LEMMA 6. We have t(F) : = fi(F) - (JL(E) = -nv/v.

Proof. Let c = —£. Then in view of § 1 (2) and (7) we may write Q = cr~v

+ nf
vc

r~v~lf iov a unique integer n'v such that s : = (r — y)c r + ra£ = my. Hence it

suffices to show that t(F) = — s / ry . In fact, we have

= Qcv = (er~v + nicr'v'1f)cv = -

so that 5 = (r — v){— Ci(E)) + rrtv= —rvt(F) as desired.

Proof of Proposition 1. Necessity. Suppose that y is a Kahler class. Then we

have 0 < yY = (ae + bf)r = rar~lb, and for the class u of a line in a fiber of q

we get 0 < (ae + bf) - u = a. Hence we have a, b > 0. Moreover, with F and Q

as before we have 0 < Qyv = av~l(anv + bv). Hence, by Lemma 6 b > —(nv/v)a

— t(F)a. Since F i s arbitrary, we get b > t(X)a.

Sufficiency. If X is stable and a, b > 0, 7a& contains a Kahler form cofl& of §1

(4). So we may assume that X— P(E) for some non-stable bundle E (cf. Remark

1). We consider a filtration 0 = Eo Q • • • £ £ w = E of £ as in Lemma 2. By

Lemma 4 we can find a holomorphic family {Xt} tec °f ruled manifolds such that

Xt = X for t * 0 and Xo = P(©f=i(F,)), where F{ = Et/E^i. If 7 = rfl6 is a

Kahler class on Xo (considered naturally as an element of H2(X, R)), then by

continuity 7 is also a Kahler class on Xt (considered naturally as an element of

H2(Xt, R)) for all sufficiently small t (cf. e.g. [7; Lemma 1]). Hence, by replacing

X by Xo if necessary we may assume from the beginning that E = 05=i F,-. In this

case r= ~ a£+ (a/u(E) + 6 ) / (cf. §1(2)) and it is a Kahler class if a > 0

and (afi(E) + b) > fi(Fi) =^ m ax , or equivalently, <z > 0 and b > at(X).

§ 3. Generalized Kahler-Einstein metrics on ruled manifolds

Let X be a ruled manifold over C. For simplicity we assume that p ^ 1 in the

sequel, where p — p(C) is the genus of C. In this case we donote by L(X) the

identity component of the relative automorphism group AutX/C of X over C.

When p > 2, it coincides with the identity component Auto X of the automorphism

group of X, while when p = 1 the other case also occurs where the quotient group

T(X) = Aut0X/L(X) is isogenous to the complex torus AutoC. In all

cases L(X) is the maximal connected linear algebraic subgroup of Aut 0 X We

call X simple if X = P ( F ) for a simple vector bundle £, where F is by definition

simple if the scalar multiplication is the only endomorphisms of E. Then the fol-
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lowing holds true (cf. the proof of Lemma 9, 2) below for the second statement).

LEMMA 7. L(X) reduces to the identity if and only if X is simple. In this case

any extremal Kahler metric is of constant scalar curvature.

Now let g be a Kahler metric and n : (X, g) —> (X, g) the universal covering

of (X ,g). Then the metric g is called a generalized Kahler-Einstein metric if the de

Rham decomposition {X, g) is isomorphic to (C, gc) x ( P ^ p ) , where gd and

g?> are Kahler-Einstein metrics on C and P respectively. Such a metric is of con-

stant scalar curvature and hence is extremal in its Kahler class.

LEMMA 8. Let X be a ruled manifold with p > 1. If there exists a generalized

Kahler-Einstein metric on X, then X is quasistable. Conversely, if X is quasistable,

then for any Kahler class yab, #, b > 0, there exists a unique generalized Kahler-Ein-

stein metric gab in jab up to the natural action of L(X).

Proof The uniqueness assertion is a special case of the main result of [6],

which also shows that if (X, g) is generalized Kahler-Einstein, it can be written

in the form (X, g) = (Y, gy) x (F , gF)/Fp for some compact Kahler-Einstein

manifolds (Y, gY) and(F, gF) with seminegative and positive Ricci tensors re-

spectively, where (Y, gy) is the universal covering space of (Y,gy), and Fp
 =

{(j, p(r)) ; 7 G iZi(Y)} for some homomorphism p : Hi(Y) —• Aut(F, gF). In our

case clearly we have Y—C and F = P; hence X is quasistable. Conversely, if X

is quasistable, the Kahler metric gab corresponding to the Kahler form a)ab in §1(5)

gives the desired metric.

We call the extremal Kahler metrics gab in the above lemma the canonical ex-

tremal (Kahler) metrics on X. Our basic questions in this note are then the follow-

ing:

QUESTION. Are the following statements true ?

lab- For a quasistable ruled manifold X, gab is the unique extremal Kahler

metric in the Kahler class yab, a, b > 0, up to the natural action of L(X). (Note

that by [4; Th. 4] any other extremal Kahler metric in 7^, if any, would also be of

constant scalar curvature.)

2: A simple ruled manifold X which is not quasistable admits no extremal

Kahler metric (in any Kahler class).

In the next two sections we give examples of affirmative answers to these two

questions in certain special cases. Also we show in Section 6 how these two prob-

lems are interrelated.
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§ 4. Two special cases

Let p : 7i —• K be a homomorphism. In this section we shall prove the follow-

ing:

THEOREM 1. Let X = Xp be a quasistable ruled manifold as in Lemma 2. Suppose

that either 1) the image p(iz) is a finite subgroup of K, or 2) C is an elliptic curve.

Then Question lab has an affirmative answer for any a, b > 0.

First recall general results of Lichnerowicz and Calabi in terms of auto-

morphism groups.

LEMMA 9. 1) Let X be a ruled manifold with a Kahler metric g of constant scalar

curvature. Then L(X) is a reductive algebraic group and Aut(X, g) 0 L(X) is a

maximal compact subgroup of it; furthermore the natural map AutoCX", g) —* T (X) is

surjective. Here Au t (^ , g) denotes the group of biholomorphic isometrics and Auto(X,

g) its identity component.

2) If L(X) is unipotent and is of positive dimension, then X admits no extremal

Kahler metric (in any Kahler class).

Proof. 1) Let La be the complex Lie algebra of holomorphic vector fields on

X and / (resp. B) the subalgebra of La of those vector fields which are annihilated

by any holomorphic 1-form on X (resp. which are parallel), where B is in the cen-

ter of La. Now the theorem in [15; §10] states that La is generated by the Lie

algebra of Aut o(^, g). Note that / is identified with the Lie algebra of L(X), B

generates a subgroup of Auto(^T, g), and the natural projection La~*La/I = B

corresponds to the homomorphism of Lie groups Aut0W, g) —*T(X) (cf. [5; Prop.

6.7]). The assertion follows from this.

2) Let g be an extremal Kahler metric on X. In view of 1) we may assume

that g is not of constant scalar curvature. Then the vector field corresponding to

the (0,l)-form dRg is in / and generates a nontrivial one parameter subgroup of

AuU(X, g) n i f f l , where Rg is the scalar curvature of g (cf. [15; §9][3; Th.

2.1]). Thus in this case also L(X) is not unipotent.

In view of Lemma 8 the theorem follows from:

LMMEA 10. Let Xp be as in Theorem 1. Then any Kahler metric g with constant

scalar curvature on Xp is a generalized Kahler-Einstein metric.

Proof. 1) Assume that p(n) is a finite group. Then after passing to a suitable

unramified covering we may assume that X — C X P . L{X) is then naturally
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identified with G : = Aut P. Since g is of constant scalar curvature, it is left fixed

by a maximal compact subgroup Kg of G by Lemma 9. By replacing g by h*g for

some h e G with hKgh~l = K we may further assume that i ^ = X. Let pi : X

—* C and />2 • X^> P be the natural projections. Then according to the Ktinneth de-

composition of the bundle A1'1 of (1, l)-forms on X

A i , i = p f A i4

we have the decomposition

(8 ) CO — COn + O>22 + O)i2 + CO21, &>12 = &>21

of the Kahler form co — a)g with each component again if-invariant. Fix any point

p ^ C and a local parameter z around p. Then on the fiber P(p) : — p X P we

may write o>2i — (pdz for a unique if-invariant C°° (l,0)-form 0 on P ( ^ ) = P; (p

thus is d-closed and hence vanishes identically. We get: a>i2 = CO21 = 0. Further,

we may write o>n = ^fo>i for some Kahler form a>i on C and a)22 — />*/ * P*OJ? for

some C°° function / o n C. Then from doj22
 = 0, we deduce t h a t / i s actually a con-

stant. Since co is of constant scalar curvature, the same must be true also for O)i,

hence coi is also Kahler-Einstein. Thus the lemma is proved in this case.

2) Assume that C is an elliptic curve. Then Ci(X) — Ci(X/S) = re, and it is

represented by the semipositive (l,l)-form O)r0. Hence by [16, §§12, 13] the natu-

ral homomorphism Auto^"~~> AutoC is surjective, then since g is of constant scalar

curvature, by Lemma 9 AutoC^, g) also is mapped surjectively to AutoC. Passing

to the universal covering X = C X P we see that Auto(^\ g) is covered by a

product group of the form C X Aut(P, gp), where £p is some Kahler metric on P.

Especially, the induced Kahler metric g on X is invariant by the C-action on the

first factor. We now consider the Kunneth decomposition as (8) for the Kahler

form co — (Dg on C X P; for example a>n = <x>n(0 (resp. o>22 — £^22(0) is a C°°

family of (l,l)-forms on C (resp. P) parametrized by P (resp. C). By the C-in-

variance o>22 is ^-closed. If we write a>2i
 = (/) A di for some C°° family

(p — (p(t) of C°° (l,0)-forms on P parametrized by t ^ C, this implies that

9 (0 (0 ) = 0 o n P ( 0 := t X P; hence (p = 0 and o)n = (O21 = 0. This in turn im-

plies that a>n is ^-closed, and hence is independent of C G P- Thus we have a) —

Pc^i + pp(i)2 for some Kahler forms coi on C and co2 on P. Since co is of constant

scalar curvature, so are a>\ and co2. The lemma follows.

In the case of ruled surfaces over an elliptic curve the general situation is as

follows.

EXAMPLE. Any ruled surface of genus 1 is isomorphic to one of the following
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ones (cf. [20]): a) Xn = P(lc®L), deg L = n > 0. b) XL = P(1C®L),
deg L = 0, c) Xo = P(Fo), and d) XM = P(FM), deg M = 1, where Fo (resp. FM)

is the unique vector bundle obtained as a nontrivial extension of lc (resp. M) by

lc. Here L and M denote line bundles over C in general and lc denotes the trivial

line bundle. Among these, only Xn and Xo are not quasistable. Since L(X) of these

surfaces are not reductive (cf. [17; Th. 2(3)]), they never admit a Kahler metric

with constant scalar curvature.

Remark 2. Similarly, in general no nonsimple semistable ruled surfaces admit

an extremal Kahler metric. In fact, such a ruled surface is written a s l = P(E),

where E is obtained as a nontrivial extension

and we have L(X) = C naturally (cf. [17; Th. 2(2)]).

§ 5. Case with vanishing curvature

In this section we assume that X is a ruled surface. We shall make precise

the result of Burns and de Baltolomeis [1]. Denote by EK the unique vector bundle

of rank 2 which is obtained as the nontrivial extension 0—* Kc~^ EK~+ 1C~* 0.

EK is not stable. Let p be the genus of C.

LEMMA 11. I) If a class y in H2(X, R) is a class containing a Kahler metric g

with vanishing scalar curvature, then y is of the form c((e + (p — 1)/)) =

(1/2) cci (K~x/c ® Q*Kc) for some real number c > 0. Any Kahler metric with con-

stant scalar curvature in such a class has vanishing scalar curvature.

2) A class y of the form y = c(e + (p — 1)/) with c > 0 is a Kahler class on X if

and only if p > 2 and X ¥P(EK), P ( 1 C © L), where L is a line bundle with

degL < 2(1 -p).

Proof 1) If Rg is the scalar curvature of g, we have

2TTCI(X) ' y = J Rgdvg/J dvg,

where dvg is the volume form of g. The assertions then follow from the relation

Ci(X) = (2-2p)f+2e.
2) Let s = s(X) be the minimum of the self-intersection number of the sec-

tions of X. Then we have t(X) — — s/2. Hence, by Proposition 1 y is a Kahler

class if and only if 2p > 2 — min (0, s), i.e., if and only if p ^ 2 and

2(1 — p) < 5. On the other hand, if X is indecomposable, we have s > 2(1 — p)

and the equality holds if and only if X is isomorphic to P(ER) (cf. Th. 2.12 and
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its proof in [12; V]). If X is decomposable, we may write X — P ( l c © L) for some

line bundle L with deg L < 0. Then we have 5 = deg L (cf. [12; V, 2.11.2, 3]).

The lemma follows from these.

The following result is essentially due to Burns and de Baltolomeis [1].

PROPOSITION 2. On a ruled surface X any Kdhler metric g with vanishing scalar

curvature is a generalized Kdhler-Einstein metric.

The proof is the same as that of Lemma 2 in [1] though it is proved there for

a certain special ruled surface; in fact the proof shows that g is locally symmetric,

and hence in particular a generalized Kahler-Einstein metric. Combined with Lem-

mas 11 and 2 this yields:

THEOREM 2. Let X be a ruled surface satisfying the last condition of Lemma 12.

Then Question \ab ornd Question 2 (§3) have the affirmative answers for Kdhler classes

of the form y = c(e + (p - 1 ) / ) , c > 0. (Thus (a, b) = (c, c(p - 1)) . )

Remark 3. If X is a compact connected Kahler surface admitting a Kahler

metric g with vanishing scalar curvature, then either Ci(X) — 0 or X is bira-

tionally ruled ([21; Th. 2]).

§ 6 Interrelation of the two questions

Let a and b be positive real numbers. In this section we assume for simplicity

that the base curve C of a ruled manifold X has genus p(C) > 2. By a standard

argument (cf. the proof of [19; Prop. 7.5]) one gets immediately the following:

LEMMA 12. Let {Xt} be a holomorphic family of stable ruled manifolds paramet-

rized by a complex manifold T. Denote by gab(t) the canonical extremal metric gab de-

fined on X = Xt. Then gab(t) depends smoothly on t.

LEMMA 13. Let {Xt) be a holomorphic family of ruled manifolds parametrized by

the unit disc D — it ^ C; | t\ < 1} such that Xt is stable for any t =£ 0. Let

{gt)teD, be the C°° family of extremal metrics gt — gab(t) on Xt over D' = D — 0. / /

this family extends to a C°° family of Kdhler metrics (gt) t<=D across 0, then Xo is

quasistable.

Proof Suppose that an extension {gt)t*D as above exists. Let TXt be the holo-

morphic tangent bundle of Xt. Let Ht be the orthogonal complement of the vertical

tangent bundle Txt/c in TXt with respect to gt. Ht is then a C°° complex line sub-

bundle of TXt which is holomorphic for t i= 0. We show that Ho also is holomor-

phic. In fact, Ht defines a C°° section ot: Xt —* P* of the natural projection P , : =
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* Xt, which is holomorphic if t "=h 0. Then we may consider dtot for any t

with respect to local coordinates. Since it vanishes for t =£ 0, so does it for t — 0

by continuity. Thus Ho is a holomorphic subbundle and we get the orthogonal

holomorphic decomposition Tx0 ~ Txo/c © Ho. Moreover, as a limit of integrable

distributions Hu HQ also is integrable. This implies that (Xo, g0) is locally a pro-

duct of two Kahler s.ubmanifolds arising from the foliations defined by TXo/c and

-Ho. Since go is of constant curvature as well as gt, the same must also be true for

both of the two factors; hence (Xo, go) is generalized Kahler-Einstein. Xo is then

quasistable by Lemma 8.

THEOREM 3. Let X be a simple non-quasistable ruled manifold. If there exists an

extremal Kahler metric on X in a class Tab, then for any stable ruled manifold Xf

which is a sufficiently small deformation of X the class jab contains an extremal

Kahler metric other than the canonical one gab-

In particular, if Question \ab has an affirmative answer in general, Question 2

has also the affirmative answer.

LEMMA 14. Let X be a simple ruled manifold. Let f : 9f—• S, Xo = X, o e 5,

be a deformation of X. Then for any extremal Kahler metric g on X in a Kahler class

Jab there exists a unique C°° family {gs} 5eS of extremal Kahler metrics gs on Xs : =

/"Hs) in Tab (after restricting S around o).

Proof. Clearly, f : ~ ^Tab(s)} Ses forms a section of the locally constant sheaf

of i?2/*R and Tab(s) is of type (1,1) on each fiber. In view of Lemma 7 the result

then follows from [8; Th. 6.3.].

Proof of Theorem 3. Let g be any extremal Kahler metric on X in Tab- Let

f : $C ~-> S, Xo — X, o ^ S, be a Kuranishi family of X, where S is nonsingular

(cf. [19; Th. 4.2]). By Lemma 14 g extends to a unique C°° family {gs)ses of ex-

tremal Kahler metrics gs on Xs, if we restrict S around o. Let £/ = (s ^ S; Xs is

stable}. Then U is a dense Zariski open subset of S (cf. [19; Prop. 4.1]). It then

suffices to show that for any s e U, gs =£ gab', indeed, if £s = gab for some point s

^ U, then again by Lemmas 12 and 14 we must have gab = gs for all s ^ U; then

the restriction of / to any unit disc D embedded in S with D C\ (S — U) — {o}

gives rise to a contradiction to Lemma 13.
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