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Abstract We consider orientable closed connected 3-manifolds obtained by performing Dehn surgery
on the components of some classical links such as Borromean rings and twisted Whitehead links. We
find geometric presentations of their fundamental groups and describe many of them as 2-fold branched
coverings of the 3-sphere. Finally, we obtain some topological applications on the manifolds given by
exceptional surgeries on hyperbolic 2-bridge knots.
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1. Introduction

Dehn surgery is a basic method for constructing closed 3-manifolds. It was introduced by
Dehn to construct homology spheres. In the early 1960s, Lickorish [7] and Wallace [17]
showed that every closed orientable 3-manifold can be obtained by performing Dehn
surgery on the components of some link in the 3-sphere. Kirby [5] found an equivalence
relation, on the class of all framed links (i.e. links with rational coefficients), with the
property that two such links are equivalent if and only if they represent the same surgery
manifold. We study the closed manifolds obtained by performing Dehn surgery on the
components of some classical links, such as Borromean rings and twisted Whitehead links.
We obtain geometric presentations for the fundamental groups of the constructed man-
ifolds and describe some covering properties of them. Some applications to exceptional
surgeries on hyperbolic 2-bridge knots complete the paper.

2. Dehn surgeries on Borromean rings

In this section we consider the manifolds

M = B(m/n; p/q; h/k) and M̄ = B̄(m/n; p/q; h/k)
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Figure 1. Dehn surgery description of the manifolds
M = B(m/n; p/q; h/k) and M̄ = B̄(m/n; p/q; h/k).

obtained by performing Dehn surgery on the oriented components of the Borromean rings
B and of the link B̄, which are illustrated in parts (a) and (b), respectively, of Figure 1.

Of course, we always assume that gcd(m, n) = gcd(p, q) = gcd(h, k) = 1. It is well
known that such manifolds are 2-fold cyclic branched coverings of the lens space L(h, k)
[11]. We now determine geometric presentations for the fundamental groups of M and
M̄ . A group presentation is said to be geometric if it arises from a Heegaard diagram
of a closed connected (orientable) 3-manifold. If it is geometric, then the presentation
also corresponds to a spine of the considered manifold. A Wirtinger presentation of the
link group π(B) (respectively, π(B̄)) has generators x, y, z and relations w1x = xw1,
w2y = yw2 and w3z = zw3 (respectively, w̄1x = xw̄1, w̄2y = yw̄2 and w̄3z = zw̄3), where

w1 = y−1x−1z−1xyx−1z, w̄1 = z−1yzxy,

w2 = x−1zxz−1, w̄2 = zxyxy−1x−1z−1x,

w3 = yxy−1x−1, w̄3 = yxy−1x−1.

The meridians mi and the longitudes �i of the components of B are

m1 = x, �1 = xy−1x−1z−1xyx−1z,

m2 = y, �2 = x−1zxz−1,

m3 = z, �3 = zxyx−1y−1z−1,

where [mi, �i] = 1 for i = 1, 2, 3.
The meridians mi and the longitudes �i of the components of B̄ are

m1 = x, �1 = xy−1x−1z−1y−1z,

m2 = y, �2 = x−1zxyx−1y−1x−1z−1,

m3 = z, �3 = zxyx−1y−1z−1,

where [mi, �i] = 1 for i = 1, 2, 3.
A finite presentation for the fundamental group of the closed connected orientable

3-manifold M = B(m/n; p/q; h/k) (respectively, M̄ = B̄(m/n; p/q; h/k)) is obtained
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from that of π(B) = π1(S3 \ B) (respectively, π(B̄) = π1(S3 \ B̄)) by adding the relations

mp
1�

q
1 = 1,

mm
2 �n

2 = 1,

mh
3�k

3 = 1.

We now improve the presentations of π1(M) and π1(M̄). Since the integers of the pairs
(p, q), (m, n) and (h, k) are coprime, there are integers (α, β), (γ, δ) and (ξ, η) such that

qα − pβ = 1,

nγ − mδ = 1,

kξ − hη = 1.

Let us define

a := mα
1 �β

1 ,

b := mγ
2�δ

2,

c := mξ
3�

η
3 .

We then have

aq = (mα
1 �β

1 )q = m1m
pβ
1 �βq

1 = m1(m
p
1�

q
1)

β = m1 = x,

bn = (mγ
2�δ

2)
n = m2m

mδ
2 �δn

2 = m2(mm
2 �n

2 )δ = m2 = y,

ck = (mξ
3�

η
3)k = m3m

hη
3 �ηk

3 = m3(mh
3�k

3)η = m3 = z,

a−p = (mα
1 �β

1 )−p = m−αp
1 �−qα

1 �1 = (mp
1�

q
1)

−α�1 = �1,

b−m = (mγ
2�δ

2)
−m = m−γm

2 �−nγ
2 �2 = (mm

2 �n
2 )−γ�2 = �2,

c−h = (mξ
3�

η
3)−h = m−ξh

3 �−kξ
3 �3 = (mh

3�k
3)−ξ�3 = �3.

Substituting these relations into the relators of π(B) = π1(S3 \ B) and π(B̄) = π1(S3 \ B̄)
and using the corresponding formulae for the longitudes �i, i = 1, 2, 3, we get the following
result.

Theorem 2.1. The fundamental groups of the surgery manifolds

M = B(m/n; p/q; h/k) and M̄ = B̄(m/n; p/q; h/k)

admit the finite balanced presentations

π1(M) = 〈a, b, c : ap+qb−na−qc−kaqbna−qck = 1, bma−qckaqc−k = 1,

chaqbna−qb−n = 1〉,

π1(M̄) = 〈a, b, c : ap+qb−na−qc−kb−nck = 1, bma−qckaqbna−qb−na−qc−k = 1,

chaqbna−qb−n = 1〉.

These presentations are geometric since they are induced by genus-3 Heegaard diagrams
of the considered manifolds.
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Figure 2. An RR system of genus 3 inducing the presentation of π1(M).

To prove the last sentence of Theorem 2.1, it suffices to draw suitable genus-3 ‘rail-
road systems’ (RR systems), which induce precisely the above presentations (see Figures 2
and 3). For the theory of RR systems we refer the reader to [13] and [14,15].

3. Dehn surgeries on twisted Whitehead links

Following [2], we use the notation [b1, . . . , bn] to denote the partial fraction decomposition
1/(b1 − 1/(b2 − · · · − 1/bn)).

A twisted Whitehead link W is a 2-bridge link b(α, β) associated to a rational number
β/α = [2, r,−2] for some r �= 0. Hence we have Wr = b(4r, 2r+1). Recall that b(α,−β) is
equivalent to the mirror image of b(α, β), and b(α, β −α) is equivalent to the link b(α, β)
with opposite orientation on one of the two components. Then W−r = b(4r, 2r − 1) is
equivalent to the mirror image W∗

r = b(4r, −2r − 1) of Wr, and it is enough to consider
Wr with r � 1. When r = 1, Wr is the torus link b(4, 1) = T (4, 2) of type (4, 2). For
surgery along a torus knot, see [12]. Thus we consider the case r � 2. When r = 2, Wr

is the Whitehead link W = b(8, 3). See Figure 4 for Wr.
Notice that after −1/� surgery, � � 1, on the component of B (respectively, B̄) with

meridian z (see Figure 1), the other components become the twisted Whitehead links Wr,
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Figure 3. An RR system of genus 3 inducing the presentation of π1(M̄).

Figure 4. The twisted Whitehead link Wr = b(4r, 2r + 1), r � 2.

where r = 2� (respectively, r = 2� + 1). Let us denote by Wr(m/n; p/q) the closed con-
nected orientable 3-manifold that is obtained by m/n and p/q Dehn surgeries on the com-
ponents of Wr. From the previous remark, we have W2�(m/n; p/q) = B(m/n; p/q; −1/�)
and W2�+1(m/n; p/q) = B̄(m/n; p/q; −1/�) for every � � 1. As an immediate consequence
of Theorem 2.1 we obtain the following.

Theorem 3.1. Let Wr(m/n; p/q) be the closed 3-manifold obtained by Dehn surgery
on the twisted Whitehead link Wr, r � 2. The fundamental group of Wr(m/n; p/q) then
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Figure 5. An RR system inducing the presentation of π1(W(m/n; p/q)).

admits the finite geometric presentation

〈a, b : ap+q(b−na−qbnaq)�a−q(aqbna−qb−n)� = 1,

bm+n(a−qb−naqbn)�b−n(bnaqb−na−q)� = 1〉, r = 2�,

〈a, b : ap+q(b−na−qbnaq)�b−na−qb−n(aqbna−qb−n)� = 1,

bm+n(a−qb−naqbn)�a−qb−na−q(bnaqb−na−q)� = 1〉, r = 2� + 1.

In particular, the Heegaard genus of Wr(m/n; p/q) is less than or equal to 2, and if the
manifold admits a hyperbolic structure, then the Heegaard genus is exactly 2.

Dehn surgeries on the Whitehead link W = W2 were studied by Mednykh and Vesnin
in [9] and [8]. The Heegaard genus of the surgery manifolds W(m/n; p/q) was discussed
in [8]. The following theorem completes the results of the quoted papers and gives a
different proof of Theorem 3 of [8] (see also Proposition 1 of [9]).

Theorem 3.2. Let W(m/n; p/q) be the closed 3-manifold obtained by m/n and p/q

Dehn surgeries on the Whitehead link. The fundamental group of W(m/n; p/q) then
admits the finite balanced presentation

〈a, b : ap+qb−na−qbnaqbna−qb−n = 1, bm+na−qb−naqbnaqb−na−q = 1〉.

Such a presentation is geometric: that is, it corresponds to a spine of the manifold (or,
equivalently, arises from a Heegaard diagram of genus 2). In particular, if W(m/n; p/q)
admits a hyperbolic structure, then it has Heegaard genus 2.

An RR system inducing the above presentations is depicted in Figure 5.
Following [2], let K = K[b1,b2] denote a 2-bridge knot in S

3 that corresponds to a
continued fraction β/α = [b1, b2] = 1/(b1 − 1/b2). Then α is odd, and we may assume
that β is even and 1 < β < α. As remarked in the quoted paper, at least one of the bi is
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even, and we may set b1 = 2n for some integer n since K[b1,b2] is equivalent to K[b2,b1].
Now, doing a p/q surgery on K[2n,r] is the same as doing p/q and −1/n surgeries on the
components of Wr: that is, K[2n,r](p/q) = Wr(−1/n; p/q). Recall also that K[2n,±2] is a
twist knot and that K[2,−2] is the figure-eight knot. A finite geometric presentation for the
fundamental group of the manifold K[2n,r](p/q) can be obtained from the presentations
given in Theorem 3.1 (r � 2) by taking m = −1.

4. Covering properties of the manifolds Wr(m/n; p/q)

The twisted Whitehead link Wr is strongly invertible (see Figure 4), i.e. there is an
orientation-preserving involution ρ of S

3 that induces in each component of Wr an invo-
lution with two fixed points. A well-known theorem of Montesinos [11] applies to our case,
and we can state that the manifolds Wr(m/n; p/q) are 2-fold coverings of S

3 branched
over a link of at most three components. We now apply the Montesinos algorithm, given
in [11], to describe explicitly the branch sets of the above 2-fold branched coverings.
Let Lr(m/n; p/q) denote the branch set of the 2-fold branched covering Wr(m/n; p/q)
of S

3 that corresponds to the involution ρ shown in Figure 4. Let m1 = x and m2 = y

be the meridians of the components L1 and L2 of Wr, respectively. The pair (m2, �2),
where �2 is the longitude of L2, is a preferred frame, i.e. �2 ∼ 0 in the exterior space
S

3 \ L2 with linking number lk(m2, �2) = +1. The pair (m1, �
∗
1), where �∗

1 is the lon-
gitude of L1, is not a preferred frame since �∗

1 ∼ −(r − 1)m1 in S
3 \ L1. To have a

preferred frame, we take the pair (m1, �1), where �1 = �∗
1 + (r − 1)m1. This gives (in

multiplicative notation) m1 = x, m2 = y, and �1 = (xyx−1y−1)�(xy−1x−1y)� and
�2 = (x−1y−1xy)�(xy−1x−1y)� if r = 2�, and �1 = (xy−1x−1y)�xy−1x−1y−1(xyx−1y−1)�

and �2 = x−1y−1(xyx−1y−1)�x−1y(xy−1x−1y)� if r = 2� + 1, for every � � 1. For sim-
plicity we only treat the case r = 2�, � � 1; one can easily obtain the analogous results
for r = 2� + 1 by replacing Wr with the twisted link B̄r constructed in the same manner
as Wr. Let V be a regular tubular neighbourhood of the link Wr in S

3. Without loss of
generality, we can choose V , the meridians m1 and m2 and the longitudes �1 and �2 on
∂V to be invariant under the involution ρ. The quotient space of S

3 under ρ is illustrated
in Figure 6.

The image of V under the projection π : S
3 → S

3/ρ consists of two disjoint 3-balls: B1

and B2, say. Each ball Bi intersects the image (under π) of the axis of ρ in two disjoint
arcs. To obtain the branch set Lr(m/n; p/q) via the Montesinos algorithm, we can move
by isotopy the Bi along the images π(�i) of the longitudes �i, and replace them by m/n

and p/q rational tangles as in Figure 7. Using Reidemeister’s moves we can redraw the
link Lr(m/n; p/q) in a more convenient form (see Figure 8).

Theorem 4.1. Let M = Wr(m/n; p/q) be the closed connected orientable 3-manifold
obtained by m/n and p/q surgeries on the twisted Whitehead link Wr, r = 2�, � � 1.
Then M is the 2-fold covering of the 3-sphere branched over the link Lr(m/n; p/q)
pictured in Figure 8.

For r = 2 we have the following result proved by Mednykh and Vesnin in [9, Theorem 2]
(see also [8]).
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Figure 6. The quotient (S3 \ int V )/ρ.

Figure 7. The link Lr(m/n; p/q).

Theorem 4.2. Let M = W(m/n; p/q) be the closed manifold obtained by m/n and
p/q surgeries on the Whitehead link W. Then M is the 2-fold covering of S

3 branched
over the link L(m/n; p/q) pictured in Figure 9.

From Theorem 4.1 with m = −1 we immediately obtain a representation of the surgery
manifolds K[2n,2�](p/q) = W2�(−1/n; p/q) as 2-fold branched coverings of the 3-sphere.

5. Exceptional surgeries on hyperbolic 2-bridge knots

Let K be a hyperbolic knot and let K(γ), γ �= ∞, be the closed manifold obtained by
γ Dehn surgery on K. When K(γ) is not hyperbolic, the surgery is said to be excep-
tional. Each hyperbolic knot has only finitely many exceptional surgeries by Thurston’s
Hyperbolic Dehn Surgery Theorem [16]. It was conjectured that, except for the figure-
eight knot K[2,−2] and the (−2, 3, 7)-pretzel knot, any hyperbolic knot admits at most
six exceptional surgeries [6, Problem 1.77 (A) (1)]. On the other hand, the resulting man-
ifold obtained by an exceptional surgery is expected to be a lens space, a Seifert fibred
space over the 2-sphere with three exceptional fibres (referred to as a small Seifert fibred
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Figure 8. The link Lr(m/n; p/q), r = 2�, � � 1.

Figure 9. The link L(m/n; p/q).

manifold), or a toroidal manifold (i.e. a closed manifold that contains an incompressible
torus). Dehn surgeries on 2-bridge knots were studied by Brittenham and Wu in [2]. The
following is the main theorem of that paper. (As it says in [2], part (4) is due to Thurston
and it is included for the sake of completeness.)

Theorem 5.1 (Brittenham and Wu [2]). Let K be a hyperbolic 2-bridge knot.

(1) If K �= K[b1,b2] for any integers b1 and b2, then K admits no exceptional surgery.

(2) If K = K[b1,b2] with |b1|, |b2| > 2, then K(γ) is exceptional for exactly one γ, which
yields a toroidal manifold. When both b1 and b2 are even, γ = 0. If b1 is odd and
b2 is even, then γ = 2b2.

(3) If K = K[2n,±2] and |n| > 1, then K(γ) is exceptional for exactly five γ. K(γ) is
toroidal for γ = 0,∓4 and is small Seifert fibred for γ = ∓1,∓2,∓3.

(4) If K = K[2,−2] is the figure-eight knot, then K(γ) is exceptional for only nine γ.
K(γ) is toroidal for γ = 0, 4,−4 and is small Seifert fibred for γ = −1,−2,−3, 1, 2, 3.

The results in § 4 allow us to complete Theorem 5.1 with some additional information.
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Figure 10. The branch sets of the toroidal manifolds K(0) and K(∓4).

Figure 11. The link L(−1/n; −1) � m(−1; 1
2 ; 1

3 ; n/(6n − 1)).

Theorem 5.2. If K = K[2n,±2] and |n| > 1, then we have

K(∓1) ∼= (O0o : − 1(2, 1)(3, 1)(6n ∓ 1, n)),

K(∓2) ∼= (O0o : − 1(2, 1)(4, 1)(4n ∓ 1, n)),

K(∓3) ∼= (O0o : − 1(3, 1)(3, 1)(3n ∓ 1, n)).

The toroidal manifolds K(0) and K(∓4) are the 2-fold coverings of S
3 branched over the

links pictured in parts (a) and (b), respectively, of Figure 10.

Theorem 5.2 also covers the case of the figure-eight knot K = K[2,−2] noting that
K(γ) = K(−γ) since it is amphicheiral.

Proof of Theorem 5.2. If K = K[2n,±2], then K(γ) ∼= W(∓1/n, γ). Since

K[2n,−2](γ) = K∗
[2(−n),2](γ) = K[2(−n),2](−γ),

where K∗ denotes the mirror image of K, it is enough to consider the case K = K[2n,2]

for some integer n. If γ = −1, then K(−1) ∼= W(−1/n; −1) is the 2-fold covering of S
3

branched over the link L(−1/n; −1) shown in Figure 11 (a). By Reidemeister moves, this
link is equivalent to the Montesinos link m(−1; 1

2 ; 1
3 ; n/(6n−1)) as shown in Figure 11 (b)

(for such links we refer, for example, to [3, Chapter 12]). By [10] it follows that the
surgery manifold K(−1) is homeomorphic to the Seifert fibred space defined by the
Seifert invariants (O0o : − 1(2, 1)(3, 1)(6n − 1, n)).

If γ = −2, then K(−2) = W(−1/n; −2) is the 2-fold covering of S
3 branched over the

link L(−1/n; −2) shown in Figure 12 (a). By Reidemeister moves, this link is equivalent to
the Montesinos link m(−1; 1

2 ; 1
4 ; n/(4n−1)) as shown in Figure 12 (b). Then [10] implies

that K(−2) is the fibred space defined by the Seifert invariants (O0o : −1(2, 1)(4, 1)(4n−
1, n)).
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Figure 12. The link L(−1/n; −2) � m(−1; 1
2 ; 1

4 ; n/(4n − 1)).

Figure 13. The link L(−1/n; −3) � m(−1; 1
3 ; 1

3 ; n/(3n − 1)).

If γ = −3, then K(−3) = W(−1/n; −3) is the 2-fold covering of S
3 branched over the

link L(−1/n; −3) shown in Figure 13 (a). By a sequence of Reidemeister moves, this link
is equivalent to the Montesinos link m(−1; 1

3 ; 1
3 ; n/(3n−1)), as shown in parts (b) and (c)

of Figure 13. Then K(−3) is the small Seifert manifold (O0o : − 1(3, 1)(3, 1)(3n − 1, n)).
The last sentence of the theorem follows from Theorem 4.2. �

From Theorem 4.1 we immediately obtain the following result.

Theorem 5.3. The toroidal manifold K[2n,2�](0) = W2�(−1/n; 0), � > 1, is the 2-fold
covering of the 3-sphere branched over the link L2�(−1/n; 0) depicted in Figure 14.

We observe that the manifold investigated by Birman and Montesinos in [1] is just
the surgery manifold K[4,4](−4) = W4(− 1

2 ; −4). This manifold is hyperbolic of volume
4.229135386 and its symmetry group is the octahedral group D4 (the SnapPea pro-
gram [18] can be used to calculate this). From the above theorems and using SnapPea,
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Figure 14. The link L2�(−1/n; 0).

one can obtain many interesting series of hyperbolic homology spheres of Heegaard
genus 2. For example, the surgery manifolds K[2n,2](−1/n) = W(−1/n; −1/n), n � 2,
give a family of distinct hyperbolic homology 3-spheres of Heegaard genus 2, symmetry
group D4, and strictly increasing volumes as n → +∞.

In a forthcoming paper [4] we shall study some covering properties of the hyperbolic
surgery manifolds arising from 2-bridge knots K �= K[b1,b2], and further generalizations
of them.
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