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ON A PROBLEM OF RANDOM WALK IN SPACE(:) 
BY 

R. ELAZAR AND M. GUTTERMAN 

Introduction. The following theorem is well known [1, p. 66]: Suppose that, in 
a ballot, candidate P scores p votes and candidate Q scores q votes, where p>q. 
The probability that throughout the counting there are always more votes for P 
than for Q, equals {p-q)l{p+q). 

The process of counting the votes is called a path. If the above condition is ful­
filled during the processes we say that candidate P "leads". The proof of this so-
called "Ballot theorem" is based on a Reflection principle, a method credited in the 
probability literature to Andre (1887). 

A result of the above theorem is the following: Among the I j different ran­
dom walks describing the vote-counting process in a ballot in which there are 2n 
votes for two candidates, with each candidate scoring n votes at the end of the 
counting—the number of the walks ("paths") in which A leads throughout the 
process is ([1, p. 71]): 

^ 2 n ~ n+l \n) 

We will discuss a natural generalization of these theorems from two dimensions 
to three and more, i.e. the case that throughout the counting process candidate A 
leads the rest, candidate B leads relative to candidate C, and so on. 

We did not succeed in applying the Reflection principle to this case, and even­
tually used a result of Young [2](2). 

The idea of generalizing the classical Ballot theorem, an idea important in itself, 
arose in the context of a traffic-light problem. Yadin used the two-dimensional 
Ballot theorem for solving such a problem [4], and our own version was con­
structed in the course of generalizing his results to space. 

1. A Ballot theorem in space. 

THEOREM. Suppose that in a ballot, candidate Ax scores ax votes, A2 scores a2 

votes and, in general, candidate Ak scores ak votes (k=l,2,...,h), where ax> 

Received by the editors August 20, 1970. 
(x) The idea of this study was suggested by Prof. H. Hanani, at the Faculty of Mathe­

matics, Technion, Israel Institute of Technology, Haifa, Israel. 
(2) A direct result of [2] helped Schwarz in counting the number of matrices composed of 

n2 pairwise different elements arranged in decreasing order in the rows and columns [3]. This 
was needed for finding extremal eigenvalues of the matrices composed of those elements. 
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a2> • • • ><%. The total o/(2?=i UiV-ITlhi aA different random walks describing the 
vote-counting process in a ballot comprising 2f= 1 «i votes, contains 

(1) IS*)1 rL(«r+A-r)! 
paths in which A± leads the rest, A2 leads relative to A39 and so on. 

Proof. To prove this theorem, we start with the following: In [2, p. 260] it was 
proved that (1) is the number of standard tables belonging to Tal9 a2,..., och. In 
other words, if we construct from 2{L i ai given pairwise different numbers, tables 
of the form : 

01,101,2 01,3 • • • « I . ai 

02,1 02,2 02,3 • • • 02, <x2 

(2) 03 ,103,2 03,3 • • • 03, a3 

0ft, 1 0ft, 2 0ft, 3 • • • 0ft, ah 

where al9 a2,.. .,cch,a1> a2> • • • >%, are given natural numbers, then by standard 
tables we mean those in which the elements are arranged in decreasing order in the 
rows and columns. Noting this remarkable fact, our proof is within reach. Instead 
of counting the vote processes in analogy to the Reflection principle (which seems 
too complicated in this case), we assert a one-to-one correlation between them and 
the standard tables. Let us arrange all au j9 i G {1, 2 , . . . , h},j e {1, 2 , . . . , at} in a row 
in decreasing order : 

ft 

{œu cog, . . . , « , } , / = 2 ai-
i = l 

Now œ1 = alt i denotes a vote for Al9 and in every table of type (2) al9 x has to be 
the same, namely a»!. The place of œ2 signifies the second vote in the counting 
process. By the condition of leading, it may be a vote for candidate A2 or again for 
A^ accordingly, we put œ2 as alf2 or a2fl respectively and proceed to the next 
element. Clearly, every counting process obeying our rule of leading yields a table 
of type (2) and vice versa, and our proof is completed. 

2. A geometrical interpretation. The classical counting process is usually des­
cribed along a straight line, such that a vote for candidate A is represented by a unit 
displacement to the right from the origin, and a vote for candidate B by the same 
unit displacement to the left. This Random Walk is described in literature [1] 
in the plane as well, a vote for A being a unit displacement at 45° to the X-axis, 
and a vote for B by one at —45° to it. In this way, a position right or left of the 
origin in the first description, and above or below the X-axis in the second, deter­
mines the leading candidate. 

The three-dimensional case obeying the above conditions may also be described 
in the plane (Fig. 1). 
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Figure 1. 
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Figure 2. 
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There are three alternatives of movement over the polygon, the first representing a 
vote for candidate A, the second-one for B and the third-one for C. The condition 
of A leading the rest and of B leading relative to C, is automatically fulfilled by the 
geometry of the scheme. A similar description is possible for a four-dimensional 
case, using a tetrahedron with four main directions only, as shown in Fig. 2. 
(Movement along unmarked edges and along their counterparts on the extension 
of the tetrahedron is ruled out.) 

3. Some direct combinatorial results. If we set, in (1), a1 = a2= • • • =ah = m, 
/* = «, we get the following number of counting processes: 

1n-l .2n-2 ( „ _ ! ) (m„)j 2 ; 2 t . . .(n- 1)! 
(a) (mn). ^m + n_ly^m + n_2y m[ m ! ( m + i ) t . . ,(m + n-1)! 

and if we set m = 2, we get: 

w v ' n\(n+l) n+l \nj 

which is the case of the classical Ballot theorem [1, p. 71]. 
In the case of square matrices, i.e. (in ballot terminology) the case where not only 

does every candidate score the same number of votes in the end, but this number 
equals the number of candidates, equation (3) becomes: 

( f t 2 ) ! l !2 ! . . . (K- l ) ! 
K) n!(/i + l ) ! . . . ( 2 n - l ) ! 

so that the number of matrices composed of n2 elements, in which the extremal 
eigenvalues can appear, is clearly less than (n2)\, the initial number of matrices, as 
mentioned in [3]. 
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