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Monstrous Moonshine

Thomas Edison once said that to invent you need a good imagination and a pile of junk.
Let’s see what some imagination can do.

This book has been about Moonshine: a diverse collection of points-of-contact between
algebra, number theory and mathematical physics, which nevertheless has a common
theory. The most remarkable example of Moonshine is surely the association of Haupt-
moduls with elements of the Monster M. It is to this we finally turn.

The reader should reread the introductory chapter, which quickly sketches the basics
of Monstrous Moonshine. In this chapter we explore this in more detail. The original
article [111] is still very readable and contains a wealth of information not found in other
sources. Other reviews are [107], [410], [73], [154], [412], [249], [75], [469], [78], [237]
and the introductory chapter in [201], and each has its own emphasis.

7.1 The Monstrous Moonshine Conjectures

Recall from the introductory chapter the McKay equation

196 884 = 196 883+ 1. (7.1.1)

The number on the left is the first nontrivial coefficient of the j-function, and the num-
bers on the right are the dimensions of the smallest irreducible representations of the
Fischer–Griess Monster M. On the one side, we have a modular function; on the other, a
sporadic finite simple group. Monstrous Moonshine explores this completely unexpected
connection between finite groups and modular functions.

The world is full of coincidences, and it isn’t always clear how seriously they should
be regarded. For instance, at the heart of Monstrous Moonshine is a holomorphic c = 24
VOA; the conjectured number of holomorphic c = 24 VOAs [488] is 71, and this is the
largest prime dividing ‖M‖. There are 26 sporadics, 26 generators in a presentation of
the Bimonster discussed shortly, and 26 conjugacy classes in the largest Mathieu group
M24. Are any of those numbers related to the 24 of Section 2.5.1, the k-group Z48 of the
integers or the number (24) of 24-dimensional even self-dual lattices?1

Nor is physics immune to such thoughts. The great physicist Dirac noticed [140] that
the ratio of the electrostatic to gravitational force between the proton and electron in a

1 Perhaps this Mathieu group remark is related somehow to the fact that for subgroups G of SL3(C), the
Euler number of a minimal resolution of the quotient singularity C3/G equals the number of conjugacy
classes of G [143], [471].
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hydrogen atom is a number N of order 1040. He computed that the ratio of the mass
of the universe to the mass of a proton is roughly N 2, and that the ratio of the age of
the universe with the time needed for light to travel across the classical radius of the
electron is again roughly N . One can add that

√
N is roughly Avagadro’s number, so

gives a measure of the minimum number of molecules needed in a macroscopic object.
Dirac argued that the simple functional relation of these numbers indicates that they are
all somehow physically related.

What distinguishes (7.1.1) from some of these other coincidences is that the more it
was studied, the more the coincidences multiplied, and the more structure was revealed.

A noble goal for mathematics is surely to find interesting and fundamentally new
theorems. Both history and common-sense suggest that to this end it is most profitable to
look simultaneously at both exceptional structures and generic structures, to understand
the special features of the former in the context of the latter, and to be led in this way
to a new generation of exceptional and generic structures. That is the spirit in which
Monstrous Moonshine should be studied.

7.1.1 The Monster revisited

Recall the finite simple group classification discussed in Section 1.1.2. The sporadics are
summarised in Table 7.1 (its dates are only approximate and the list of investigators is
taken from [109]). The Monster M is the largest of these 26 sporadic groups. Its existence
was conjectured in 1973 by Fischer and Griess, and finally constructed (somewhat artifi-
cially) in 1980 by Griess [263]. Tits [528] showed that M is the automorphism group of
a 196 883-dimensional commutative non-associative algebra also constructed by Griess
and now called the Griess algebra (Griess showed only that M was a subgroup of that
automorphism group). We now understand the Griess algebra as the first nontrivial tier
(0-mode algebra) of a VOA, the Moonshine module V �, lying at the heart of Monstrous
Moonshine.

The Monster has 194 conjugacy classes, and so that number of irreducible represen-
tations. Its character table (and other useful information) is given in the Atlas [109],
where we also find analogous data for the other simple groups of ‘small’ order. Table 7.2
gives the upper-left 0.25% or so of the character table of M. The name ‘4C’, for exam-
ple, is given to the third smallest (hence ‘C’) conjugacy class of elements of order 4.
Table 7.2 tells us that the dimensions of the smallest irreducible representations of M
are 1, 196 883, 21 296 876 and 842 609 326.

The centralisers CG(g) of conjugate elements are isomorphic (why?). The centralisers
for all classes of order up to 11 are given in table 2a of [111]. The first few are CM(2A) ∼=
2.B, CM(2B) ∼= 225.Co1, CM(3A) ∼= 3.Fi ′24, CM(3B) ∼= 313.2.Suz, CM(3C) ∼= 3× T h.
We follow the notation of [109]: by, for example, ‘2.B’ we mean a group with Z2 as a
normal subgroup and B as the quotient, or equivalently an extension of B by Z2. Of course
the centraliser CG(g) has 〈g〉 as a subgroup of its centre, hence 〈g〉 is normal in CG(g) –
that is, for example, the ‘2’ in 2.B. Knowing the centraliser, the sizes of the conjugacy
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Table 7.1. The 26 sporadic groups

Group Exact order Approximate order Investigators

M11 24.32.5.11 7.9× 103 Mathieu (1861, 1873)
M12 26.33.5.11 9.5× 104 Mathieu (1861, 1873)
J1 23.3.5.7.11.19 1.8× 105 Janko (1965)
M22 27.32.5.7.11 4.4× 105 Mathieu (1861, 1873)
J2 27.33.52.7 6.0× 105 Hall, Janko (1960s)
M23 27.32.5.7.11.23 1.0× 107 Mathieu (1861, 1873)
H S 29.32.53.7.11 4.4× 107 Higman, Sims (1968)
J3 27.35.5.17.19 5.0× 107 Janko, Higman, McKay (1960s)
M24 210.33.5.7.11.23 2.4× 108 Mathieu (1861, 1873)
McL 27.36.53.7.11 9.0× 108 McLaughlin (1969)
He 210.33.52.73.17 4.0× 109 Held, Higman, McKay (1960s)
Ru 214.33.53.7.13.29 1.5× 1011 Rudvalis, Conway, Wales (1973)
Suz 213.37.52.7.11.13 4.5× 1011 Suzuki (1969)
O’N 29.34.5.73.11.19.31 4.6× 1011 O’Nan, Sims (1970s)
Co3 210.37.53.7.11.23 5.0× 1011 Conway (1968)
Co2 218.36.53.7.11.23 4.2× 1013 Conway (1968)
Fi22 217.39.52.7.11.13 6.5× 1013 Fischer (1970s)
H N 214.36.56.7.11.19 2.7× 1014 Harada, Norton, Smith (1975)
Ly 28.37.56.7.11.31.37.67 5.2× 1016 Lyons, Sims (1972)
T h 215.310.53.72.13.19.31 9.1× 1016 Thompson, Smith (1975)
Fi23 218.313.52.7.11.13.17.23 4.1× 1018 Fischer (1970s)
Co1 221.39.54.72.11.13.23 4.2× 1018 Conway, Leech (1968)
J4 221.33.5.7.113.23.29.31.37.43 8.7× 1019 Janko, Norton, Parker, Benson,

Conway, Thankray (1970s)
Fi ′24 221.316.52.73.11.13.17.23.29 1.3× 1024 Fischer (1970s)
B 241.313.56.72 4.2× 1033 Fischer, Sims, Leon (1970s)

.11.13.17.19.23.31.47
M 246.320.59.76.112.133 8.1× 1053 Fischer, Griess (1973, 1982)

.17.19.23.29.31.41.47.59.71

classes can be quickly determined through the formula ‖Kg‖ = ‖M‖/‖CM(g)‖. These
centralisers play a large role in Section 7.3 below.

The Monster M has a remarkably simple presentation. As with any noncyclic finite
simple group, it is generated by its involutions (i.e. elements of order 2) and so is a
homomorphic image of a Coxeter group (Definition 3.2.1) – see Question 7.1.1.

Let Gpqr , p ≥ q ≥ r ≥ 2, be the graph consisting of three strands of lengths
p + 1, q + 1, r + 1, sharing a common endpoint. Label the p + q + r + 1 nodes as
in Figure 7.1 (this labelling is not standard). Given any graph Gpqr , define Ypqr to be the
group consisting of a generator for each node, obeying the usual Coxeter group relations,
together with an additional one (what Conway calls the ‘spider relation’):

(ab1b2ac1c2ad1d2)10 = 1. (7.1.2)

The relation (7.1.2) arises naturally in a generalisation of the Coxeter group due
to Conway, called a fabulous group. Conway conjectured and, building on work by
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Table 7.2. The north-west corner of the Monster character table

ch\Kg 1A 2A 2B 3A 3B 3C 4A 4B 4C 4D 5A 5B

ρ0 1 1 1 1 1 1 1 1 1 1 1 1
ρ1 196883 4371 275 782 53 −1 275 51 19 −13 133 8
ρ2 21296876 91884 −2324 7889 −130 248 1772 −52 −20 12 626 1
ρ3 842609326 1139374 12974 55912 −221 −248 8878 782 −82 78 2451 −49
ρ4 18538750076 8507516 123004 249458 1598 248 28796 2652 380 156 6326 76
ρ5 19360062527 9362495 −58305 297482 1508 −247 35903 −833 63 −65 8152 27
ρ6 293553734298 53981850 98970 1055310 −3927 3876 94874 1274 −102 −454 17423 −77
ρ7 3879214937598 337044990 −690690 4751823 −4173 −3876 345598 −3874 −258 286 54473 98
ρ8 36173193327999 1354188159 2864511 12616074 18954 0 701823 20383 −897 351 91124 −126
ρ9 125510727015275 3215883115 1219435 24688454 −25375 248 1223531 19499 −661 −1365 145275 −350
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Fig. 7.1 The graph G555 presenting the Bimonster.

Ivanov [311], Norton proved [451] that Y555
∼= Y444 is the Bimonster, the wreathed-square

M - Z2
∼= (M×M).2 of the Monster (in fact it is a semi-direct product (M×M)×Z2).

We define the wreath product in Question 7.1.2; the wreathed-square M - Z2 has G = M
and H = S = Z2, where H acts on S by group multiplication. The group-theoretic
significance of the wreath product is that any group G containing a normal subgroup
N with quotient G/N ∼= H can be identified with a subgroup of N - H with S = H .
Thus any extension M.2 of Z2 by M is a subgroup of the Bimonster. The Bimonster
appears naturally in Section 7.3.9. A closely related presentation of the Bimonster has 26
involutions as generators and has relations given by the incidence graph of the projective
plane of order 3; the Monster itself arises from 21 involutions and the affine plane of
order 3. See [112] for details.

The groups Ypqr , for p ≤ 5, have now all been identified – see [312] for a unified
treatment. The ones involving sporadic groups are

Y553
∼= Y443

∼= M× Z2,

Y533
∼= Y433

∼= Z2 × (2.B),

Y552
∼= Y442

∼= 3.(Fi ′24.2),

Y532
∼= Y432

∼= Z2 × Fi23,

Y332
∼=Z2 × (2.Fi22).

The Coxeter groups of the graphs G555, G553, G533, G552 and G532 are all infinite groups
of hyperbolic reflections in, for example, R17,1, and contain copies of groups such as the
affine E8 Weyl group, so there should be rich geometry here.

What role, if any, these remarkable presentations have in Monstrous Moonshine hasn’t
been established yet. As a first step though, [424] has found in the automorphism group
of the Moonshine module V � the 21 involutions generating M. Perhaps this can simplify
the hardest part of [201] (see Section 7.2.1 below). Indeed, Miyamoto’s simplified con-
struction [427] of V � and proof that Aut(V �) ∼= M uses Ivanov’s characterisation [311]
of M. There is a correspondence [425] between certain involutions of a VOA V (e.g.
class 2A in M for V �) and certain vertex operator subalgebras of V isomorphic to the
unique c = 1/2 rational VOA (the Ising model of Section 4.3.2); this technical tool has
many applications, for example the association of various vertex operator superalgebras
to V �, and the VOA interpretation of McKay’s E8

(1) observation in Section 7.3.6.
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7.1.2 Conway and Norton’s fundamental conjecture

As mentioned in the introductory chapter, the central structure in the attempt to under-
stand equations (0.2.1) is an infinite-dimensional graded module for the Monster,
V = V−1 ⊕ V1 ⊕ V2 ⊕ · · · , with graded dimension J (τ ) = j(τ )− 744 (see (0.3.2)). If
we let ρd denote the dth smallest irreducible M-module, numbered as in Table 7.2, then
the first few subspaces will be V0 = ρ0, V1 = {0}, V2 = ρ0 ⊕ ρ1, V3 = ρ0 ⊕ ρ1 ⊕ ρ2 and
V4 = ρ0 ⊕ ρ0 ⊕ ρ1 ⊕ ρ1 ⊕ ρ2 ⊕ ρ3. As we know from Section 1.1.3, a dimension can
(and should) be twisted, by replacing it with the character. This gives us the graded traces

Tg(τ ) := chV−1 (g) q−1 +
∞∑

n=1

chVn (g) qn, (7.1.3)

called the McKay–Thompson series for this module V . Of course, Te = J .

Conjecture 7.1.1 (Conway–Norton [111]) There exists a graded M-module V such
that, for each element g of the Monster M, the McKay–Thompson series Tg is the
Hauptmodul

J�g (τ ) = q−1 +
∞∑

n=1

an(g) qn (7.1.4)

for a genus-0 group�g of Moonshine-type. These groups each contain�0(N ) as a normal
subgroup, for some N dividing o(g) gcd(24, o(g)), and the quotient group�g/�0(N ) has
exponent ≤ 2.

So for each n the map g �→ an(g) is a character chVn (g) of M. The quantity o(g) is the
order of g. We defined the groups of Moonshine-type in Definition 2.2.4 and �0(N )
in (2.2.4b). By the exponent of a group we mean the smallest positive m such that
hm = 1 for all h in the group. [111] explicitly identify each of the groups �g . The first
50 coefficients an(g) of each Tg are given in [413]. Together with the recursions given in
Section 7.1.4 below, this allows one to effectively compute arbitrarily many coefficients
an(g) of the Hauptmoduls. It is also this that uniquely defines V , up to equivalence, as a
graded M-module.

There are around 8× 1053 elements in the Monster, so naively we may expect about
8× 1053 different Hauptmoduls Tg . However, a character evaluated at g and at hgh−1

will always be equal, so Tg = Thgh−1 . Hence there can be at most 194 distinct Tg (one for
each conjugacy class). All coefficients an(g) are integers (as are in fact most entries of
the character table of M). This implies that Tg = Th whenever the cyclic subgroups 〈g〉
and 〈h〉 are equal (why?). In fact, the total number of distinct McKay–Thompson series
Tg arising in Monstrous Moonshine turns out to be only 171.

Of those many redundancies among the Tg , only one is unexpected (and unexplained):
the McKay–Thompson series of two unrelated classes of order 27, namely 27A and 27B,
are equal. It would be interesting to understand what general phenomenon (if any) is
responsible for T27A(τ ) = T27B(τ ). But as we know from Section 5.3.3, the McKay–
Thompson series Tg(τ ) are actually specialisations of 1-point functions and as such
are functions of not only τ but of all M-invariant vectors v in V �. What we call Tg(τ )
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is really the specialisation Tg(τ, 1) of this function Tg(τ, v). All 194 Tg (one for each
conjugacy class) will be linearly independent, if we include this v ∈ (V �)M dependence.
Thus the equality T27A(τ ) = T27B(τ ) should be regarded as an accidental redundancy
caused by specialisation, and is not of any deep significance. Plenty of other Norton’s
series N(g,h)(τ ) (Section 7.3.2) will likewise be accidentally equal. Modular aspects of
the 1-point functions Tg(τ, v) are studied in [155].

Recall that there are two different conjugacy classes of order 2 elements: 2A and 2B.
Class 2B corresponds to �0(2) and gives the Hauptmodul J2 in (2.2.17a), while class 2A
corresponds to �0(2)+, where for any prime p we define

�0(p)+ :=
〈
�0(p),

1√
p

(
0 −1
p 0

)〉
. (7.1.5)

Similarly, (2.2.17b) corresponds to an order 13 element in M, but J25 in (2.2.17c)
doesn’t equal any Tg . Recall that there are exactly 616 Hauptmoduls of Moonshine-
type with integer coefficients [121], so most of these don’t arise as Tg . Recently [110], a
fairly simple characterisation has been found of the groups arising as �g in Monstrous
Moonshine:

Proposition 7.1.2 [110] A subgroup G of SL2(R) equals one of the modular groups
�g appearing in Conjecture 7.1.1, iff:

(i) G is genus 0;
(ii) G has the form ‘�0(n||h)+ e, f, g, . . . ’;

(iii) the quotient of G by �0(nh) is a group of exponent ≤ 2; and
(iv) each cusp Q ∪ i∞ can be mapped to i∞ by an element of SL2(R) that conjugates

the group to one containing �0(nh).

The notation in (ii) is a little too technical to explain here, but it is given in [111] or [110].
We now understand the significance, in the VOA or CFT framework, of transformations
in SL2(Z) (see especially Section 5.3.6), but (ii) emphasises that many modular trans-
formations relevant to Moonshine are more general (called Atkin–Lehner involutions).
Monstrous Moonshine will remain mysterious until we can understand its Atkin–Lehner
symmetries. This isn’t a hopeless task – for example, [433] provides an early attempt at
studying string theories with Atkin–Lehner symmetries, as well as its possible physical
significance. Some of these involutions appear naturally in Weil’s Converse Theorem
(see e.g. page 64 of [90]). Perhaps a topological interpretation for the groups �g not con-
tained in SL2(Z), in the spirit of Section 2.4.3, will help us understand their relevance
in VOAs and the meaning of Atkin–Lehner involutions to CFT. This proposition is the
answer to an important question, but unfortunately their proof of this characterisation is
by exhaustion, and so by itself doesn’t contribute anything conceptually.

7.1.3 E8 and the Leech

There are other less important conjectures in [111]. We’ve already seen easy-to-
understand relations of E8 and the Leech lattice � to the J -function: (0.5.1) (explained
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in Section 3.2.3) and (0.5.2) (explained in Question 2.2.7). There is another way E8 and
� can be related to modular functions.

Lattices are related to groups through their automorphism groups, which are always
finite for positive-definite lattices. The automorphism group Aut(�) = Co0 of the Leech
lattice has order about 8× 1018, and is a central extension by Z2 of Conway’s simple
group Co1. Several other sporadic groups are also involved in Co0, as we’ll see in
Section 7.3.1. To each automorphism α ∈ Co0, let θα denote the theta function of the
sublattice of � fixed by α. Conway–Norton also associate with each automorphism α

a certain function ηα(τ ) of the form
∏

i η(aiτ )/
∏

j η(b jτ ) built out of the Dedekind
eta function (2.2.6b). Both θα and ηα are constant on each conjugacy class in Co0, of
which there are 167. [111] remarks that the ratio θα/ηα always seems to equal some
McKay–Thompson series Tg(α).

It turns out that this observation isn’t quite correct [366]. For each automorphism
α ∈ Co0, the subgroup of SL2(R) that fixes θα/ηα is indeed always genus 0, but for
exactly 15 conjugacy classes in Co0, θα/ηα is not the Hauptmodul. Nevertheless, this
construction proved useful for establishing Moonshine for M24 [407].

Similarly, one can ask this for the E8 root lattice, whose automorphism group is the
Weyl group of the Lie algebra E8 (of order 696 729 600). The automorphisms of the
lattice E8 that yield a Hauptmodul were classified in [95]. On the other hand, Koike
established a Moonshine of this kind for the groups PSL2(F7), PSL2(F5) ∼= A5 and
PSL2(F3), of order 168, 60 and 12, respectively [356].

7.1.4 Replicable functions

A conjecture in [111] that played an important role in ultimately proving the main conjec-
ture involves the replication formulae. Conway–Norton want to think of the Hauptmoduls
Tg as being intimately connected with M; if so, then the group structure of M should
somehow directly relate different Tg . Considering the power map g �→ gn leads to the
following.

It was well known classically that J (τ ) (equivalently, j(τ )) has the property that

s(τ ) := J (pτ )+ J

(
τ

p

)
+ J

(
τ + 1

p

)
+ · · · + J

(
τ + p − 1

p

)
(7.1.6a)

is a polynomial in J (τ ), for any prime p. The proof is straightforward, and is based on
the principle that the easiest way to construct a function invariant with respect to some
group G is by averaging it over the group:

∑
g∈G f (g.x). Here f (x) is J (pτ ) and G is

SL2(Z), and we’ll average over finitely many cosets rather than infinitely many elements.
First, writing � for SL2(Z), note that

�

(
p 0
0 1

)
� =

(
p 0
0 1

)
� ∪

p−1⋃
i=0

(
1 i
0 p

)
� = {A ∈ M2×2(Z) | det(A) = p}.

(7.1.6b)

In Question 7.1.4 you show that this implies (7.1.6a) is a modular function for SL2(Z).
Hence s(τ ) equals a rational function Q(J (τ ))/P(J (τ )) of J (τ ), as in (0.1.7). Because
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the only poles of J are at the cusps, the same applies to s(τ ). This implies that the
denominator polynomial P(z) must be trivial (recall that J (H) = C). QED

The map J (τ ) �→ s(τ ) in (7.1.6a) is called a ‘Hecke operator’, and is an important
ingredient of modular theory. More generally, the same argument says∑

ad=n,0≤b<d

J

(
aτ + b

d

)
= Qn(J (τ )), (7.1.7)

where Qn is the unique polynomial for which Qn(J (τ ))− q−n has a q-expansion with
only strictly positive powers of q . For example, Q2(x) = x2 − 2a1 and Q3(x) = x3 −
3a1x − 3a2, where we write J (τ ) =∑

n anqn . These equations (7.1.7) can be rewritten
into recursions such as a4 = a3 + (a2

1 − a1)/2, or collected together into the remarkable
expression (3.4.7a).

Conway and Norton conjectured that these formulae have an analogue for any McKay–
Thompson series Tg . In particular, (7.1.7) becomes∑

ad=n,0≤b<d

Tga

(
aτ + b

d

)
= Qn,g(Tg(τ )), (7.1.8a)

where Qn,g plays the same role for Tg that Qn plays for J . For example, we get

Tg2 (2τ )+ Tg

(τ
2

)
+ Tg

(
τ + 1

2

)
= Tg(τ )2 − 2a1(g),

Tg3 (3τ )+ Tg

(τ
3

)
+ Tg

(
τ + 1

3

)
+ Tg

(
τ + 2

3

)
= Tg(τ )3 − 3a1(g) Tg(τ )− 3a2(g).

These are called the replication formulae. Again, these yield recursions like a4(g) =
a2(g)+ (a1(g)2 − a1(g2))/2, or can be collected into the expression

p−1 exp

⎡⎣−∑
k>0

∑
m>0
n∈Z

amn(gk)
pmkqnk

k

⎤⎦ = Tg(z)− Tg(τ ). (7.1.8b)

This looks a lot more complicated than (3.4.7a), but you can glimpse the Taylor expansion
of log(1− pmqn) there and in fact for g = e, (7.1.8b) reduces to (3.4.7a).

Axiomatising (7.1.8a) leads to Conway and Norton’s notion of replicable function
[449], [6].

Definition 7.1.3 Let f be any function of the form f (τ ) = q−1 +∑∞
n=1 bnqn, and

write f (1) = f and b(1)
n = bn. Let Qn, f be the unique (degree n) polynomial such that

the q-expansion of Qn, f ( f (τ ))− q−n has only positive powers of q. Use∑
ad=n,0≤b<d

f (a)

(
aτ + b

d

)
= Qn, f

(
f (1)(τ )

)
, (7.1.9)

to recursively define each f (n). If each f (n) has a q-expansion of the form f (n)(τ ) =
q−1 +∑∞

k=1 b(n)
k qk – that is, no fractional powers of q arise – then we call f

replicable.
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Proposition 7.1.4 [6] Suppose f is of the form f (τ ) = q−1 +∑∞
n=1 anqn, and define

Qn, f as in Definition 7.1.3. Define Hm,n by

Qn, f ( f (τ )) = q−n +
∞∑

n=1

nHn,m qm .

Then f is replicable iff Hn,m = Hr,s holds whenever mn = rs and gcd(n,m) = gcd(r, s).

The proof isn’t hard: if f is replicable, with replicates f (n) = q−1 +∑k a(n)
k qk , then

Hn,m =
∑

d|gcd(n,m)

1

d
a(d)

nm/d2

and the Hn,m = Hr,s property is manifest. See Question 7.1.5 for the converse.
Equation (7.1.8a) conjectures that the McKay–Thompson series are replicable. In

particular, we have (Tg)(n)(τ ) = Tgn (τ ). [123] proved that the Hauptmodul of any genus-
0 modular group of Moonshine-type is replicable, provided its coefficients are rational.
Incidentally, if the coefficients b(1)

k are irrational, then Definition 7.1.3 should be modified
to include Galois automorphisms (see section 8 of [114]). Replication in positive genus
is discussed in [510].

Conversely, Norton has conjectured:

Conjecture 7.1.5 Any replicable function with rational coefficients is either a Haupt-
modul for a genus-0 modular group of Moonshine-type, or is one of the ‘modular
fictions’ f (τ ) = q−1 = exp[−2π iτ ], f (τ ) = q−1 + q = 2 cos[2πτ ], f (τ ) = q−1 −
q = −2i sin[2πτ ].

This conjecture seems difficult and is still open.
As is manifest in (7.1.8a), replication concerns the power map g �→ gn in M. Can

Moonshine see more of the group structure of M? One step in this direction is explored
in Section 7.3.6, where McKay models products of conjugacy classes using Coxeter–
Dynkin diagrams. A different idea is given in Section 7.3.2. It would be very desirable
to find other direct connections between the group operation in M and, for example, the
McKay–Thompson series.

Question 7.1.1. Let G be a finite simple group, and let K �= {e} be any nontrivial con-
jugacy class. Prove that K generates G. Why is any noncyclic finite simple group a
homomorphic image of a (possibly infinite) Coxeter group?

Question 7.1.2. Let G, H be any groups, and S any finite set on which H acts. By the
wreath product G - H we mean the set of all pairs ( f, h), where f is any function from
S → G and h ∈ H . Group multiplication is given by ( f, h)( f ′, h′) = ( f ′′, hh′), where
f ′′ : S → G is defined by f ′′(s) = f (s) f ′(h−1.s).
(a) Verify that G - H is a group. Compute its order.
(b) Find a normal subgroup in G - H , isomorphic to G × · · · × G (‖S‖ times). Identify
the quotient of G - H by this normal subgroup.
(c) Find a subgroup of G - H isomorphic to H .
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412 Monstrous Moonshine

Question 7.1.3. Note that the dimensions 196 883 and 21 296 876 – see (0.2.1) – exactly
divide the order of the Monster – see (0.2.2). Is this (i) merely a coincidence; (ii) a
mysterious property of M perhaps relevant to Moonshine; or (iii) does it have a more
mundane explanation?

Question 7.1.4. Prove (7.1.6b). Use that to prove that the sum s(τ ) in (7.1.6a) is invariant
under SL2(Z).

Question 7.1.5. Complete the proof of Proposition 7.1.4.

Question 7.1.6. Suppose f (τ ) = q−1 +∑N
k=1 akqk is a replicable Laurent polynomial.

Prove that f is a modular fiction: f (τ ) = q−1 or f (τ ) = q−1 ± q .

Question 7.1.7. As we know from Section 3.2.3, j
1
3 is the graded dimension of the E8

(1)-
module L(ω0). Thus j is the graded dimension of L(ω0)⊗ L(ω0)⊗ L(ω0), on which the
Lie group (E8(C)× E8(C)× E8(C))×S3 acts. Explain why L(ω0)⊗ L(ω0)⊗ L(ω0)
cannot be the M-module V whose graded characters (7.1.3) are the McKay–Thompson
series (ignoring the irrelevant constant 744).

7.2 Proof of the Monstrous Moonshine conjectures

At first glance, any deep significance to the Moonshine conjectures seems very unlikely:
they constitute after all a finite set of very specialised coincidences. The whole point
though is to try to understand why such seemingly incomparable objects as the Monster
and the Hauptmoduls can be so related, and to try to extend and apply this understand-
ing to other contexts. Establishing the truth (or falsity) of the conjectures was merely
meant as an aid to uncovering the meaning of Monstrous Moonshine. Indeed, in proving
them, important new algebraic structures were formulated. We sketch this proof in this
section.

The main Conway–Norton conjecture was attacked almost immediately. Thompson
showed [524] (see also [476]) that if g �→ an(g) is a character for all sufficiently small n
(apparently n ≤ 1300 is sufficient), then it will be for all n. He also showed that if certain
congruence conditions hold for a certain number of an(g) (all with n ≤ 100), then all
g �→ an(g) will be virtual characters (i.e. differences of true characters of M). Atkin,
Fong and Smith (see [511] for details) used that and a computer to prove that indeed
all an(g) were virtual characters (they didn’t quite get to n = 1300 though). But their
work doesn’t say anything more about the underlying (possibly virtual) representation
V , other than its existence, and so adds no light to Moonshine. It plays no role in the
following.

We want to prove Conjecture 7.1.1, that is, show that the McKay–Thompson series
Tg(τ ) of (7.1.3) equals the Hauptmodul J�g (τ ) in (7.1.4). First, we need to construct
the infinite-dimensional module V of M. This we discuss in Section 7.2.1. Borcherds’
strategy was to bring in Lie theory, by associating with the module V a ‘Monster Lie
algebra’. This example of a Borcherds–Kac–Moody algebra is described in Section 7.2.2.
Next, we go from the Monster Lie algebra to the replication formula, and conclude the
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Table 7.3. The first few homogeneous spaces of
the Moonshine module V �

M-module

V �

0 ρ0

V �

1 0
V �

2 ρ0 ⊕ ρ1

V �

3 ρ0 ⊕ ρ1 ⊕ ρ2

V �

4 2ρ0 ⊕ 2ρ1 ⊕ ρ2 ⊕ ρ3

V �

5 2ρ0 ⊕ 3ρ1 ⊕ 2ρ2 ⊕ ρ3 ⊕ ρ5

V �

6 4ρ0 ⊕ 5ρ1 ⊕ 3ρ2 ⊕ 2ρ3 ⊕ ρ4 ⊕ ρ5 ⊕ ρ6

V �

7 4ρ0 ⊕ 7ρ1 ⊕ 5ρ2 ⊕ 3ρ3 ⊕ ρ4 ⊕ 3ρ5 ⊕ ρ6 ⊕ ρ7

V �

8 7ρ0 ⊕ 11ρ1 ⊕ 7ρ2 ⊕ 6ρ3 ⊕ 3ρ4 ⊕ 4ρ5 ⊕ 2ρ6 ⊕ 2ρ7 ⊕ ρ8

proof. In the final subsection, we explain the need for a second proof, and suggest what
it may involve.

Thanks largely to Borcherds, the Monstrous Moonshine conjectures opened a door to
mathematical riches far beyond what Conway and Norton could have originally hoped.
For his work in Monstrous Moonshine and related topics, Richard Borcherds was awarded
the Fields medal in 1998.

7.2.1 The Moonshine module V �

The first essential step in the proof of the Monstrous Moonshine conjectures was the
construction by Frenkel–Lepowsky–Meurman [200] of a graded infinite-dimensional
representation V � of M. They conjectured (correctly) that it is the representation V in
(0.3.1). As we know, V � has a very rich algebraic structure: it is in fact a VOA. A somewhat
simpler construction of V � is now available [427]; in particular, the fundamental fact
that Aut(V �) ∼= M seems much clearer.

Each homogeneous space V �
n of V � is a finite-dimensional M-module – see Table 7.3.

Being a finite group, M only has finitely many (in fact exactly 194) irreducible represen-
tations, whereas J (τ ) has infinitely many coefficients an , which grow polynomially with
n. As can already be observed in the table, the decompositions of V �

n into irreducible
M-modules become increasingly complicated, with ever-increasing multiplicities. Thus
the fact that 196 884 almost equals 196 883 is of no special significance, other than that
it made it easier to anticipate that j and M are related.

Now, V � was constructed before VOAs had been defined. It was natural for Frenkel–
Lepowsky–Meurman to use vertex operators to try to construct the M-module V of
(0.3.1), because there were already vertex operator constructions associated with lat-
tices, affine algebra modules and string theory, and all of these have connections to
modular functions. Borcherds’ definition [68] of vertex algebras abstracted out alge-
braic properties of V � as well as those older vertex operator constructions.
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414 Monstrous Moonshine

As we discuss in Sections 4.3.4 and 5.3.6, the Moonshine module V � was constructed
as the orbifold of the Leech lattice VOAV(�) by the±1-symmetry of� – more precisely,
by an involution in Aut(V(�)) restricting to the automorphism −1 of �. This orbifold
construction implies that V � is the direct sum of an invariant part V �

+ := V(�)1
+ and a

twisted part V �
− := V(�)−1

+ (recall (4.3.16)). The underlying vector spaces can be (and
usually are) chosen to be real, and in fact later we speculate that they can be taken to be
Z-modules (Conjecture 7.3.3).

The orbifold serves two purposes. First, it removes the constant term ‘24’ from the
graded dimension J + 24 of V(�). This means that the Lie algebra V �

1 vanishes, giving
V � a chance to have a finite automorphism group (Section 5.2.1). Second, this orbifold
construction enhances the symmetry from the discrete part of Aut(V(�)), which is an
extension of Co0 by (Z2)24, to all of M. In particular, that discrete part of Aut(V(�))
preserves the decomposition V � = V �

+ ⊕ V �
− and is isomorphic to the centraliser CM(2B).

An additional automorphism of V �, an involution σ mixing V �
± and related to ‘triality’,

was constructed by hand. A theorem of Griess [263] shows that together they generate
M. See [201] for more details. Establishing this symmetry enhancement is the most
difficult part of [201].

A major claim of [201] is that V � is a ‘natural’ structure (hence their notation). This
has been uncontested. We have V �

0 = C1, as usual, and V �

1 = 0. Hence the space V �

2 will
be a commutative non-associative algebra with product u × v := u1v and identity 1

2ω

(Question 5.2.3). In fact, it is the 196 883-dimensional Griess algebra [263] extended
by an identity element, which is known to have automorphism group exactly M [528].
Using this, the automorphism group of V � can be seen to equal the Monster M. The only
irreducible module for V � is itself – such a VOA is called holomorphic (Section 5.3.1).
Together with Zhu’s Theorem 5.3.8, this implies that its graded dimension must be a
modular function for SL2(Z), and in fact j(τ )− 744 (Question 5.3.4).

All arguments relating V � to M are complicated by the bipartite structure V �
± built into

V �. In particular, not all elements of Aut(V �) are equally accessible. For example, [201]
could prove Conjecture 7.1.1 when g ∈ M preserves V �

± – equivalently, for any g ∈ M
commuting with some element in class 2B – but not for the other g ∈ M. Perhaps the
work of [424] will make the Monster’s action on V � more uniformly accessible.

Conjecturally, there are 71 holomorphic VOAs with central charge c = 24 [488].
Recall that the Leech lattice � is the unique even self-dual positive-definite lattice of
dimension 24 containing no norm-squared 2-vectors [113]. Under the lattice↔VOA
correspondence mentioned at the end of Section 5.2.2, we are led to the following:

Conjecture 7.2.1 [201] The Moonshine module V � is the unique holomorphic VOA V
with central charge c = 24 and with trivial V1.

Proving Conjecture 7.2.1 is one of the most important and difficult challenges in the
subject – the first small step towards this is [146]. If true, as is expected, it would tell
us V � is a fundamental exceptional structure, on par with the Leech lattice or the E8

Lie algebra or indeed the Monster M. We return to this conjecture in Section 7.3.4; the
analogue A f � for vertex operator superalgebras (holomorphic, c = 12 and V1/2 = 0) is
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Proof of the Monstrous Moonshine conjectures 415

known and has automorphism group Co1 [163]. Although the theta series L usually
doesn’t determine the lattice, � is the unique lattice with theta series � (this follows
quickly from its above-mentioned uniqueness). It is thus tempting to also conjecture that
the Moonshine module is the unique VOA with graded dimension J (see Question 7.2.7).

7.2.2 The Monster Lie algebra m

It was discovered early on that every Hauptmodul is replicable, and moreover that any
replicable function is determined by its first few coefficients. An obvious approach to
Conjecture 7.1.1 then is to show that the McKay–Thompson series Tg are also replica-
ble. To get the necessary identities satisfied by their q-expansions, Borcherds used the
denominator identity (Section 3.4.2) of a Lie algebra he associated with V �.

We want to construct a Lie algebra m from the Moonshine module V � = V �

0 ⊕ V �

1 ⊕
· · · . Of course, the direct choice V �

1 is 0-dimensional, so we must modify V � first. Recall
from Section 5.2.2 that a near-VOA V(L) is associated with any even indefinite lattice
L . Let V1,1 := V(I I1,1) be the near-VOA associated with the two-dimensional even self-
dual indefinite lattice I I1,1 defined in Section 1.2.1. We take both V � and V1,1 to be real.
Define V to be the near-VOA V � ⊗ V1,1. As we know, the Monster M acts on V �; extend
this action to V by defining M to fix V1,1. An invariant positive-definite bilinear form on
V � is constructed in [201]; extend it to V in the obvious way. Then the resulting form
(�|�) is M-invariant.

The Monster Lie algebra m is the quotient of PV1 by the radical of the form (�|�)
on V , where the spaces PVn are defined in (5.2.3). The radical contains PV0, so m has
a natural (real) Lie algebra structure (see Question 7.2.4). From the V1,1 part of V we
get the involution ω and Z-grading (see e.g. section 6.2 of [323] for details). Then by
Theorem 3.3.6, a certain central extension of m is some universal Borcherds–Kac–
Moody algebra ĝ(A) – see [72], [323] for details. More precisely, its CartanBK M

matrix

A =

⎛⎜⎜⎜⎜⎜⎝
2 0 · · · 0 −1 · · · −1 · · ·
0 −2 · · · −2 −3 · · · −3 · · ·
...

...
...

...
...

0 −2 · · · −2 −3 · · · −3 · · ·
...

...
...

⎞⎟⎟⎟⎟⎟⎠ (7.2.1)

consists for each i, j ∈ {−1, 1, 2, 3, . . .} of a block in the (i, j) spot of size ai × a j and
with entries −(i + j), where ai are the coefficients J (τ ) =∑∞

i=−1 ai qi .

Theorem 7.2.2 The Monster Lie algebra is m = ĝ(A)/c, where A is in (7.2.1) and c is the
(infinite-dimensional) centre of ĝ(A). m has Cartan subalgebra R⊗Z I I1,1 = R⊕ R =:
m(0,0) and simple roots αi,k for each i ∈ {−1, 1, 2, 3, . . .} and 1 ≤ k ≤ ai . Only α−1,1

is real. The root-space decomposition of m is m = ⊕∞i, j=−∞m(i, j). The Monster M acts
on m as Lie algebra automorphisms. Each root space m(i, j) (for (i, j) �= (0, 0)) is an
M-module isomorphic to the homogeneous space (V �)i j+1, while the Cartan subalgebra
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m(0,0)
∼= ρ0 ⊕ ρ0 as an m-module. The denominator identity of m is given in (3.4.7a).

Finally, m has a vector-space decomposition u+ ⊕ gl2 ⊕ u− into a sum of Lie subalge-
bras, where u± are free Lie algebras with countably many generators.

The proof is given explicitly in section 6.2 of [323], and involves the No-Ghost Theorem
(see the appendix of [323]) – a result first proved in string theory and special to VOAs with
central charge c = 24. In particular, the No-Ghost Theorem establishes the M-module
isomorphisms in Theorem 7.2.2. m has only one positive real root, so its Weyl group is
order 2 and sends (i, j) to ( j, i); it is responsible for the difference on the right side of
(3.4.7a) (the j-function is the correction due to imaginary simple roots). The positive
roots are (−1, 1) and the αi j of type (i, j), and this gives the product on the left.

Similarly, the fake Monster Lie algebra is associated in the same way with the near-
VOA V(�)⊗ V1,1. Though it is certainly an interesting example of a Borcherds–Kac–
Moody algebra, it plays no role in the theory. Its name arose because it was initially
suspected as playing a role in the Moonshine proof, but like V(�) doesn’t carry a natural
action of M so was discarded.

This construction of m from V � may seem indirect. An alternate approach uses Moon-
shine cohomology [386] – a functor assigning to certain c = 2 near-VOAs a Lie algebra
carrying an action of M. To V1,1 this functor assigns m. This functor was anticipated in
[72] and [73] and was inspired by BRST (‘Becchi–Rouet–Stora–Tyutin’) cohomology
in string theory, or the semi-infinite cohomology of Lie theory. In particular, the standard
method for obtaining the space of physical states in a string theory involves tensoring the
original space H (a CFT with c = 26) with a space Hghosts of ghosts (with c = −26); on
H⊗Hghosts is an operator Q obeying Q2 = 0, and the space Hphys of physical states is
the cohomology H � = ker Q/im Q. In particular, m is the space H 1 for H = V � ⊗ V1,1.
The Baby Monster Lie algebra [72], which plays the same role for B as m plays for M,
can be obtained in a similar way [290].

Because of a cohomological interpretation of denominator identities valid for any
Borcherds–Kac–Moody algebra, (3.4.7a) can be ‘twisted’ by any g ∈ M. This is how
Borcherds derived (7.1.8b). These formulae are equivalent to the replication formulae
(7.1.8a) conjectured in Section 7.1.4. However, these identities are obtained by more
elementary means – requiring less of the theory of Borcherds–Kac–Moody algebras – in
[324], [331], permitting a simplification of Borcherds’ proof at this stage. In particular,
in [324] the replication formulae (7.1.8a) appear quite naturally because u± are free Lie
algebras.

7.2.3 The algebraic meaning of genus 0

Now, it turns out that if we verify for each conjugacy class Kg of M that the first,
second, third, fourth and sixth coefficients of the McKay–Thompson series Tg and the
corresponding Hauptmodul J�g agree, then Tg = J�g . That is precisely what Borcherds
then did: he compared finitely many coefficients, and as they all equal what they should,
this concluded the proof of Monstrous Moonshine!
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However, this case-by-case verification occurred at the critical point where the
McKay–Thompson series were being compared directly to the Hauptmoduls, and so
provides little insight into why the Tg are genus 0. Recall that the main purpose for the
proof of Conjecture 7.1.1 was not to establish its logical validity – the numerical evidence
was already quite strong. Rather, the proof is supposed to help us understand how the
Monster could be related to Hauptmoduls. This case-by-case verification became known
as the conceptual gap. The basic problem is that V �, m and (7.1.8b) are algebraic, and the
genus-0 property is topological. Fortunately, a more conceptual explanation of the equal-
ity Tg = J�g – a conversion of the Hauptmodul property into an algebraic statement –
has been found [122], replacing Borcherds’ coefficient check with a general theorem.

Let p be prime. Exactly as in the argument of (7.1.6a), we find that the quantity

J (pτ )k + J

(
τ

p

)k

+ J

(
τ + 1

p

)k

+ · · · + J

(
τ + p − 1

p

)k

(7.2.2a)

is a degree-pk polynomial in J (τ ). This uses the Hauptmodul property of J . Thus there
is a polynomial Fp(X, Y ), of degree p in both X and Y , defined by

Fp(X, J (τ )) = (X − J (pτ ))
p−1∏
i=0

(
X − J

(
τ + i

p

))
. (7.2.2b)

Indeed, the coefficients of Fp(X, J (τ )) are symmetric polynomials in the roots J (pτ ),
J
(
τ+i

p

)
, and so can be expressed polynomially using (7.2.2a). For example,

F2(X, Y ) = (X2 − Y )(Y 2 − X )− 393768 (X2 + Y 2)− 42987520 XY

− 40491318744 (X + Y )+ 120981708338256.

Definition 7.2.3 Consider a formal series f (τ ) = q−1 +∑∞
n=1 bnqn (‘formal’ means

we don’t worry about whether it converges). An order-n modular equation for f is a
monic polynomial Fn(x, y) in two variables, of degree ψ(n) := n

∏
primes p|n(1+ 1/p),

such that

Fn

(
f (τ ), f

(
aτ + b

d

))
= 0

for all integers a, b, d ≥ 0 such that ad = n, gcd(a, b, d) = 1 and 0 ≤ b < d.

This definition looks a little obscure, but it is natural. The degree ψ(n) is precisely the
number of those triples (a, b, d). These triples come from the coset expansion

�0(K )

(
n 0
0 1

)
�0(K ) =

⋃
a,b,d

(
a b
0 d

)
�0(K ),

for any K obeying n ≡ 1 (mod K ). Modular equations necessarily obey Fn(x, y) =
±Fn(y, x).

Thus J (τ ) obeys a modular equation for all n. Note that this property depends crucially
on it being a Hauptmodul. Conversely, does the existence of modular equations imply
the Hauptmodul property? Unfortunately not: the exponential function f (τ ) = q−1 also
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obeys one for every n. For example, for p prime, take Fp(x, y) = (x p − y)(x − y p) (see
also Question 7.2.5).

Beautiful and unexpected is that the only functions f (τ ) = q−1 + b1q + · · · to obey
modular equations for all n are J (τ ) and the ‘modular fictions’ q−1 and q−1 ± q (which
are essentially exp, cos and sin) [360]. More generally, we have the following:

Theorem 7.2.4 [122] Let f (τ ) be a formal series q−1 +∑∞
n=1 bnqn, bi ∈ C. Suppose

f satisfies a modular equation of order n for all n ≡ 1 (mod N). Then:
(a) f converges to a holomorphic function on H.
(b) If the symmetry group �( f ) := {α ∈ SL2(R) | f (α.τ ) = f (τ )} consists only of the

translations ±
(

1 t
0 1

)
, then f (τ ) = q−1 + ξq for some coefficient ξ ∈ C; if the

coefficient ξ is an algebraic number, then ξ = 0 or ξ gcd(24,N ) = 1.
(c) If the symmetry group �( f ) does not only contain translations, then �( f ) is genus 0

and f is a Hauptmodul for �( f ). Moreover, �( f ) contains some subgroup �0(K ),
for K |N∞.

Conversely, if f is a Hauptmodul for some subgroup � of SL2(R) containing �0(K ), and
all coefficients bi lie in the cyclotomic field Q[ξK ], then f obeys a modular equation for
every n ≡ 1 (mod K ). For the other n coprime to K , there is also a modular equation
involving twisting by the Galois group, as in (2.3.14). See [122] for details. The condition
K |N∞ means all primes dividing K also divide N .

The denominator identity argument tells us each Tg obeys a modular equation for
each n ≡ 1 modulo the order N = o(g) of g, so Theorem 7.2.4 concludes the proof of
Monstrous Moonshine, and replaces Borcherds’ coefficient check.

The proof of Theorem 7.2.4 is difficult. First, it is established that f is holomorphic
on H. This implies that whenever f (τ1) = f (τ2), there is a diffeomorphism α defined
locally about τ1, such that α(τ1) = τ2 and f (α(τ )) = f (τ ). The hard part of the proof is
to show α extends to all of H. Once that is done, we know α is a Möbius transformation,
and the rest of the argument is reasonably straightforward.

In [120] it is shown that if f obeys a modular equation for any n, all of whose prime
divisors are congruent to 1 (mod N ), then either f = q + ξq−1 for some ξ , or f is the
Hauptmodul for a group containing some �(N ′). However, computer calculations by
[102] indicate that the hypothesis of these theorems can be considerably weakened:

Conjecture 7.2.5 [102], [120] Let f (τ ) = q−1 +∑∞
n=1 bnqn be a formal series and

p, p′ any two distinct primes. If f satisfies modular equations for both p and p′,
then f converges in H to a holomorphic function, and either f (τ ) = q−1 + ξq for
ξ gcd(p−1,p′−1)+1 = ξ , or f is the Hauptmodul for a genus-0 group containing �(N ) for
N coprime to pp′.

This conjecture is completely out of reach at present.
Finding modular equations was a passion of Ramanujan, who filled his notebooks

with them. See [82] for an application of Ramanujan’s modular equations (namely, for
the function p(τ ) = d

dτ log η(τ )) to computing the first billion or so digits of π .
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In Section 1.7.2 we show that although radicals can be used to solve (i.e. find closed
expressions for the roots of) arbitrary polynomials of degree 4 or less, they are inadequate
to solve all polynomials of degree 5 or higher. However, much as the relation cos(3θ ) =
4 cos(θ )3 − 3 cos(θ ) yields the solution to cubics, a modular equation relating τ and 5τ
for
√
θ3/η can be used to solve quintic polynomials (see e.g. chapter 7 of [464]).

Many of the applications of the j-function have to do with its modular equations. For
instance, recall from Theorem 1.7.1 that each abelian extension of Q lies inside some
cyclotomic field Q[ξn], in other words is generated by the values of the exponential
function exp[2π iα] when α is rational. Likewise, the abelian extensions of the imaginary
quadratic fields Q[

√−d] are generated by the values of J (τ ) for special τ . See [117] for
a review of this part of what is called class field theory. Modular equations are used to
establish properties of those special values of J (τ ) (see Question 7.2.2).

Generalising a little a definition of McKay (recall Conjecture 7.1.5), we get:

Definition 7.2.6 By a modular fiction we mean any function of the form f (τ ) =
q−1 + ξq, where either ξ = 0 or ξ 24 = 1.

The point is that these behave like the modular functions Tg – more precisely [122],
these are precisely the non-Hauptmoduls with cyclotomic integer coefficients, which
obey (Galois-twisted) modular equations for each n (see [122] for more details). Perhaps,
exceptional though they are, they shouldn’t be ignored. This suggests the following:

Problem What is the VOA-related question, for which ‘24’ is the answer?

More precisely, out of which VOA-like structure can we obtain the modular fictions, in
a way analogous to how the Tg are obtained from V �? That structure would complete
Moonshine for the modular fictions. Incidentally, it is manifest in the proof of Theo-
rem 7.2.4 that this 24 arises there through the usual exponent-2 property of Section 2.5.1.

7.2.4 Braided #7: speculations on a second proof

Monstrous Moonshine began with the challenge to understand how the Monster (the
right side of (7.1.1)) could be related conceptually to modular functions (the left side of
(7.1.1)). We have seen that VOAs constitute a bridge between the two sides: the Monster
is the symmetry of a VOA V � whose graded dimension is the J -function.

That argument is still the only proof we have of Monstrous Moonshine. But does that
put our finger on the essence of the mystery? The indirect argument sketched in the
previous three subsections leaves the special role of the Monster unclear. As we’ll see
shortly, it also ignores what CFT has tried to teach us regarding modularity. It should
also be remarked that a VOA is quite a complicated beast – do we really need all of its
rich structure, if all we care about is Moonshine? Is there a simpler explanation that,
by requiring less machinery, is both more general and more conceptual and that more
directly connects M to a Hauptmodul property?

For these reasons, we should look for a second proof of Monstrous Moonshine. But
what would it look like? To get a hint, let’s recall the CFT explanation of modularity.
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Two essentially equivalent formulations of quantum field theory are:

(i) The Hamiltonian formulation (canonical quantisation), which presents us with a
state space V , carrying a representation of the symmetry algebra of the theory, and
includes among other things a Hamiltonian (energy operator) H .

(ii) The Feynman formulation, which interprets the amplitudes using path integrals.

In RCFT, the Hamiltonian formulation describes concretely the space V , graded by H , on
which we take the trace trV q H , and hence gives us the coefficients of our q-expansions.
The Feynman path formalism, on the other hand, interprets these graded traces as func-
tions over moduli spaces, and hence makes their modularity manifest. According to
RCFT, the modularity in Moonshine is the conjunction of these two formulations.

On the Hamiltonian side of CFT, the space V is a module for the chiral algebra (VOA)
V . As such, it is a module of the Virasoro algebra (3.1.5) (giving us the Hamiltonian
H = L0), as well as possibly other algebras (e.g. Kac–Moody) and groups (e.g. M). In our
hypothetical second proof, we would like to avoid the full VOA structure, but probably
the presence of Vir is fundamental if we want to give meaning to the coefficients in
the q-expansion, that is the grading of the modules. Thanks to the theory of VOAs, we
understand fairly well the Virasoro side. The remainder of this subsection will be devoted
to the more mysterious question: what is the key ingredient of the Feynman side?

In any treatment of RCFT (e.g. [436], [207], [131], [530], [32]), we read that V-
characters (5.3.13) are ‘1-point functions on the torus’. By this is meant that they are
chiral blocks in B

(1,1)
V for the torus with one marked point, with that point labelled

with the ‘vacuum’ module V itself (see e.g. Sections 4.3.3 and 5.3.4 for the physical
description). Verlinde’s formula tells us that space has dimension equal to the number
of irreducible modules M of the chiral algebra V , and indeed the characters χM form a
natural basis for it. As explained in Section 2.1.4, its (enhanced) mapping class group
�̂1,1 is the braid group B3. Thus B3 will act on the characters of the RCFT. From this,
using (1.1.10a), we obtain the action of the modular group SL2(Z).

To see this B3 action explicitly, we have to undo a simplification we performed in
Definition 5.3.6. The 1-point functions χM are actually functions of the triple (τ, v, z),
where τ lies in the Teichmüller space H of the torus with 1 puncture, v ∈ V is the
insertion state and z ∈ C is a local coordinate at the puncture. Explicitly, as explain in
Section 5.3.4, for v ∈ V[k] we get

χM (τ, v, z) := trM Y (v, e2π iz) q L0−c/24 = e−2kπ iz trM o(v) q L0−c/24, (7.2.3a)

using the notation of Section 5.3.3 (compare with (5.3.13)). The group �̂1,1 is (like any
mapping class group) generated by the Dehn twists, and as mentioned we obtain

�̂1,1 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉 ∼= B3, (7.2.3b)

where σi are the Dehn twists of Figure 2.8. The action of σi on the characters is then

σ1.χM (τ, v, z) = e−2π ik/12 χM (τ + 1, v, z), (7.2.4a)

σ2.χM (τ, v, z) = e−2π ik/12 χM

(
τ

1− τ
,

v

(1− τ )k
, z

)
, (7.2.4b)
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so in particular we get

(σ1σ2σ1)2.χM (τ, v, z) = e−2π ik/2 χM (τ, (−1)kv, z), (7.2.4c)

(σ1σ2σ1)4.χM (τ, v, z) = e−2π ik χM (τ, v, z). (7.2.4d)

The combination (σ1σ2σ1)4, which is trivial in the (unenhanced) mapping class group
�1,1

∼= SL2(Z), here equals the Dehn twist about the puncture, which for the logarithmic
parameter z of course sends z to z + 1. The actions of σi on τ and v are determined from
the homomorphism B3 → SL2(Z) given by (1.1.11b) at w = −1. This should be very
reminiscent of Section 2.4.3.

Of course here the state v comes from the vacuum sector V so the conformal weight
k is an integer. We are in the situation of Section 2.4.3, where our B3 action collapses
to one of PSL2(Z), since the centre (7.2.4c) acts trivially. This is why the z-dependence
of χM could be safely ignored in Definition 5.3.6. As before, the more interesting case
is when the weight k of the modular form is not integral. Here, that will happen when
we insert states from other V-modules, that is when we consider chiral blocks from the
other B

(1,1)
M . In CFT these are equally fundamental. In this case, v ∈ M will have rational

conformal weight k ∈ hM + N, and here the Dehn twist about the puncture will typically
not act trivially. As happened with the Dedekind eta function in (2.4.14), we will then
see nontrivial B3 actions2 (involving e.g. the S(a) of Figure 6.4).

It should be clear that in RCFT, modularity is a topological effect. Zhu’s Theorem 5.3.8
generalises the appearance of SL2(Z) in RCFT to any RVOA, but as we recall from
Section 5.3.5, the proof follows closely the intuition of RCFT: modularity in VOAs
arises through that SL2(Z) action on the space of chiral blocks, which is inherited from
the topological �̂1,1-action mentioned above, once we drop (as Zhu did) the dependence
on z.

A toy model of this idea is provided by the proof in Section 2.4.2 of the modularity
of θ3: we can interpret this action of SL2(Z) as an action of B3. Note that this action of
SL2(Z) on the Heisenberg group H is really the action of B3 on the group R2 given in
(2.4.15b); it factors through to SL2(Z) because R2 is abelian.

The relation of the Hamiltonian (Vir) side to that of Feynman (B3) is that the Virasoro
algebra acts naturally on the enhanced moduli space M̂1,1 (see Section 3.1.2), whose
mapping class group is B3. This Vir-action leads to the KZ equations, which are partial
differential equations obeyed by the chiral blocks in B

(1,1)
V , that is by the VOA characters.

The monodromy group of those equations is �̂1,1
∼= B3, and thus B3 acts on B

(1,1)
V .

Of course the reason Borcherds chose a different route in [72] is that we need more than
merely modularity: we need the genus-0 property. But as we will see in Section 7.3.3,
Norton has proposed a possible relationship between the Monster and the genus-0 prop-
erty, and his method also involves the B3 action given in (2.4.15b). Finally, we argue in
Section 6.3.3 that the �Q-action associated with B3 underlies the Galois action in RCFT.
In all of these examples, the modular group arose from an underlying appearance of the
braid group B3. Is this the same B3? We suggest that this braid group action (together

2 The thought that, for example, topological field theory really sees B3 and not SL2(Z) is also made in [404].
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with a compatible Virasoro action) somehow underlies Moonshine, and pursuing this
thought would lead to a second, more conceptual proof of Monstrous Moonshine.

Question 7.2.1. Verify that any replicable function is uniquely determined by finitely
many coefficients.

Question 7.2.2. (a) Verify that J (τ ) obeys a modular equation for every n = 2, 3, 4, . . .
(b) Suppose τ0 = r + i

√
s for rational r, s, where s > 0. Use part (a) to prove that J (τ0)

is an algebraic number.

Question 7.2.3. Verify that any replicable function obeys a modular equation.

Question 7.2.4. Prove that PV1/rad(�|�) is a Lie subalgebra of PV1/PV0.

Question 7.2.5. For each n, find the modular equations obeyed by the modular fictions
(a) f (τ ) = q−1; (b) f (τ ) = q−1 + q; (c) f (τ ) = q−1 − q.

Question 7.2.6. Arguably, what makes two-dimensional quantum field theory so unique
is the possibility of braid statistics. Could those braid groups directly be responsible for
the B3 action of Section 7.2.4?

Question 7.2.7. Call any VOAV obeying the hypotheses of Corollary 6.2.5, ‘nice’. Prove
that a niceV is holomorphic iff its graded dimensionχV (τ ) is invariant under τ �→ −1/τ .
Use this to show, for the class of nice VOAs, that Conjecture 7.2.1 is true iff V � is the
unique nice VOA with graded dimension J (τ ).

7.3 More Monstrous Moonshine

We give in this section a quick sketch of further developments and conjectures. As we
know, Moonshine is an area where it is much easier to conjecture than to prove.

7.3.1 Mini-Moonshine

It is natural to ask about Moonshine for other groups. Of course any subgroup of M
automatically inherits Moonshine by restriction, but this isn’t at all interesting. A very
accessible sporadic is M24 – see, for example, chapters 10 and 11 of [113]. Most con-
structions of the Leech lattice start with M24, and most constructions of the Monster
involve the Leech lattice. Thus we are led to the following natural hierarchy of (most)
sporadics:

� M24 (from which we can get M11, M12, M22, M23); which leads to
� Co0

∼= 2.Co1 (from which we get H J , H S, McL , Suz, Co3, Co2); which leads to
� M (from which we get He, Fi22, Fi23, Fi ′24, H N , T h, B).

It can thus be argued that we could approach problems in Monstrous Moonshine by first
addressing in order M24 and Co1, which should be much simpler. Indeed, Moonshine
for M24 has been completely established in [153].
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Largely by trial and error, Queen [466] established Moonshine for the following groups
(all essentially centralisers of elements of M): Co0, T h, 3.2.Suz, 2.H J , H N , 2.A7, He,
M12. In particular, to each element g of these groups, there corresponds a series Qg(τ ) =
q−1 +∑∞

n=0 an(g)qn , which is a Hauptmodul for some modular group of Moonshine-
type, and where each g �→ an(g) is a virtual character. For Co0, 3.2.Suz, 2.H J and 2.A7,
it is only a virtual character. Other differences with Monstrous Moonshine are that there
can be a preferred nonzero value for the constant term a0, and that although �0(N ) will
be a subgroup of the fixing group, it won’t necessarily be normal.

For example, Queen’s series Qe for Co0 is the Hauptmodul (2.2.17a) for the genus-0
group�0(2). Checking the tables in [109], we see that 276, 299, 1771, 2024 and 8855 are
dimensions of irreducible modules of the Conway group Co1 (hence its Z2-extension
Co0), and 24 is the dimension of the Co0 representation associated with the Leech
lattice (it’s only a projective representation of Co1). We find 11 202 = 8855+ 1771+
299+ 276+ 1, and the ambiguity 2048 = 1771+ 276+ 1 = 2024+ 24 is resolved in
favour of the latter by considering other character values and comparing to the list of
Hauptmoduls. That a virtual character is needed for Co0 is clear from the minus signs in
(2.2.17a). This Hauptmodul is better known as the McKay–Thompson series T2B (and
the centraliser of 2B involves Co0, which isn’t a coincidence), but about half of Queen’s
Hauptmoduls Qg for Co0 do not arise as Tg for M. Nevertheless, next subsection we see
how to interpret them through the Moonshine for M.

The Hauptmodul for �0(2)+ looks like

q−1 + 4372q + 96256q2 + 12 40002q3 + · · · (7.3.1a)

and we find the relations

4372 = 4371+ 1, 96 256 = 96 255+ 1, 1 240 002 = 1 139 374+ 4371+ 2 · 1,
(7.3.1b)

where 1, 4371, 96 255 and 1 139 374 are all dimensions of irreducible representations of
the Baby Monster B. Thus we may expect Moonshine for B. This should actually fall
into Queen’s scheme because (7.3.1a) is the McKay–Thompson series associated with
class 2A of M, and the centraliser of an element in 2A is a double cover of B.

However, there can’t be a VOA V = ⊕nVn with graded dimension (7.3.1a) and auto-
morphism B, because, for example, the B-module V3 doesn’t contain V2 as a submodule
(recall Question 5.2.1). Nevertheless, Höhn deepened the analogy between M and B by
constructing a vertex operator superalgebra V B� of central charge c = 23.5, called the
shorter Moonshine module, closely related to V � (see e.g. [289]). Like V � it is holo-
morphic (i.e. it has only one irreducible module), with automorphism group Z2 × B and
graded dimension

χV B� (τ ) = q−47/48
(
1+ 4371q3/2 + 96256q2 + 1143745q5/2 + · · · ). (7.3.2a)

Of course the strange−47/48 is−c/24; the half-integer powers of q come from the odd
(i.e. fermionic) part of V B�. Just as M is the automorphism group of the Griess algebra
V �

2 , so is B the automorphism group of the algebra (V B�)2. Just as V � is associated
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with the Leech lattice �, so is V B� associated with the shorter Leech lattice O23,
the unique 23-dimensional positive-definite self-dual lattice with no vectors of length-
squared 2 or 1 (see chapter 6 of [113]). The automorphism group of O23 is a central
extension of Co2 by Z2. The relation between (7.3.2a) and (7.3.1a) will be clearer next
subsection.

Similarly, Duncan [163] constructs a vertex operator superalgebra A f � with c = 12
and automorphism group Co1. Again it is holomorphic, and has graded superdimension

χA f � (τ ) = q−1/2
(
1+ 276 q − 2048 q3/2 + 11202 q2 − 49152 q5/2 + · · · ), (7.3.2b)

i.e. is given by (2.2.17a) with τ �→ τ/2 and hence is fixed by a genus-0 subgroup of
SL2(R) (see Question 7.3.1). It is the unique ‘nice’ holomorphic vertex operator superal-
gebra with c = 12 and no elements with conformal weight 1/2, in perfect analogy with
the conjectured uniqueness of V � (Conjecture 7.2.1). The algebra A f � plays the same
role for Co1 that V � plays for M. In particular, just as V � is obtained from a Z2-orbifold,
so is A f �, and this removes the constant term and enhances the symmetry. From this
construction of A f �, it is then straightforward (see Theorem 7.1 in [163]) to compute
explicit finite expressions for the Thompson twists of (7.3.2b) by g ∈ Co1, using Frame
shapes as described in [111]. In this way, a genus-0 Moonshine for Co1 is established
(as expected, the arguments are far simpler than that for M).

There has been no interesting Moonshine rumoured for the remaining six sporadics
(the pariahs J1, J3, Ru, O N , Ly, J4). There is some sort of weaker Moonshine for any
group that is an automorphism group of a vertex operator algebra (so this means any
finite group [152]!). Many finite groups of Lie type should arise as automorphism groups
of VOAs associated with affine algebras except defined over finite fields. But apparently
the known finite group examples of genus-0 Moonshine are limited to those involved
with M.

7.3.2 Twisted #7: Maxi-Moonshine

In an important announcement [450], on par with [111], Norton unified and generalised
Queen’s work. Unfortunately he called it ‘Generalised Moonshine’, but we won’t (recall
the diatribe in Section 3.3.1).

About a third of the McKay–Thompson series Tg will have some negative coefficients.
In Section 7.3.5 we see that Borcherds interprets them as dimensions of superspaces
(which automatically come with signs). Norton proposed that, although Tg(−1/τ ) will
not usually be another McKay–Thompson series, it will always have nonnegative integer
q-coefficients, and these can be interpreted as ordinary dimensions. In the process, he
extended the g �→ Tg assignment to commuting pairs (g, h) ∈ M×M.

Conjecture 7.3.1 (Norton [450]) To each pair g, h ∈ M, gh = hg, we have a function
N(g,h)(τ ) such that

N(ga hc,gbhd )(τ ) = α N(g,h)

(
aτ + b

cτ + d

)
, ∀

(
a b
c d

)
∈ SL2(Z), (7.3.3)
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for some root of unityα (of order dividing 24, and depending on g, h, a, b, c, d). N(g,h)(τ )
is either constant, or generates the modular functions for a genus-0 subgroup of SL2(R)
containing some�(M). Constants N(g,h)(τ ) arise when all elements of the form gahb (for
gcd(a, b) = 1) are ‘non-Fricke’ (defined below). Each N(g,h)(τ ) has a q

1
M -expansion for

that M; the coefficients of this expansion are characters evaluated at h of some central
extension of the centraliser CM(g). Simultaneous conjugation of g, h leaves the function
unchanged: N(aga−1,aha−1)(τ ) = N(g,h)(τ ).

We call N(g,h)(τ ) the Norton series. An element g ∈ M is called Fricke if the group �g

fixing Tg contains an element sending 0 to i∞. In terms of the notation of Conjecture 7.1.1,
g ∈ M is Fricke iff the invariance group�g contains the Fricke involution τ �→ −1/(Mτ ).
The identity e is Fricke, as are 120 of the 171 �g . For example, the classes pA, for p
prime, are Fricke, while the classes pB are not.

The McKay–Thompson series are recovered by the g = e specialisation: N(e,h)(τ ) =
Th(τ ). Unlike the McKay–Thompson series, the Norton series can have cyclotomic
integer coefficients, and the groups fixing them may not contain �0(M). If g is Fricke,
then clearly N(g,e)(τ ) = Tg(τ/M). The action (7.3.3) of SL2(Z) is related to its natural
action on the fundamental group Z2 of the torus, as we saw in Section 6.3.1, as well as
a natural action of the braid group, as we’ll see next subsection.

For example, when 〈g, h〉 ∼= Z2 × Z2 and g, h, gh are all in class 2A, then

N(e,g)(τ ) = N(e,h)(τ ) = Tg(τ ) = q−1 + 4372q + 96256q2 + · · · , (7.3.4a)

N(g,e)(τ ) = N(h,e)(τ ) = Tg(τ/2) = q−1/2 + 4372q1/2 + 96256q + · · · , (7.3.4b)

N(g,h)(τ ) =
√

J (τ )− 984 = q−1/2 − 492q1/2 − 22590q3/2 + · · · , (7.3.4c)

N(g,g)(τ ) = N(h,h)(τ ) = q−1/2 + 4372q1/2 − 96256q + · · · . (7.3.4d)

Hence N(g,e)(τ + 1) = i N(g,g)(τ ), giving us an example of a nontrivial α in (7.3.3).
The basic tool we have for approaching Moonshine conjectures is the theory of VOAs,

so we need to understand Norton’s suggestion from that point of view. This is done using
twisted modules (Section 5.3.6). For each g ∈ M, there is a unique g-twisted module of
V � [150] – call this twisted module V �(g). This generalises the holomorphicity of V �

mentioned in Section 7.2.1. Given any automorphism h ∈ Aut(V �) commuting with g,
we can perform Thompson’s trick (5.3.23) and write

q−1trV �(g)h q L0 =: Z(g, h; τ ). (7.3.5)

Then Z(g, h) = N(g,h).
[150] proves that, whenever the subgroup 〈g, h〉 generated by g and h is cyclic, then

N(g,h) will be a Hauptmodul satisfying (7.3.3). This will happen, for instance, whenever
the orders of g and h are coprime. [150] proves this by reducing it to Conjecture 7.1.1
(which is now a theorem). Extending [150] to all commuting pairs g, h is one of the
most pressing tasks in Moonshine.

Höhn [290] verified Conjecture 7.3.1 for g in class 2A and h ∈ CM(g) ∼= 2.B. In partic-
ular, those 247 functions N(g,h)(2τ ) are Hauptmoduls for genus-0 groups of Moonshine-
type (see Question 7.3.1). The proof mirrors that of [72] fairly closely. There is a simple
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relation between the twisted module V �(g) and the shorter Moonshine module V B�,
and from this the 286 Thompson twists of (7.3.2a) can be obtained [290]. Verifying
Conjecture 7.3.1 for g in class 2B should likewise be possible.

More satisfying though would be a uniform proof of Conjecture 7.3.1, for example,
by considering the full orbifold V �/M. It appears that the 3-cocycle α corresponding to
this orbifold (recall the cohomological twist of Section 5.3.6) will have to be nontrivial –
in fact, its order in H 3(M,C×) should be a multiple of 12 [408]. Suggestive is that
the permutation orbifold M⊗n/〈g〉 gives a natural interpretation of the left-half of the
definition (7.1.9) of a replicable function.

The orbifold theory for M24 is established in [153] (the relevant series Z(g, h) had
already been constructed in [407]). Next up should be the orbifold theory for Conway’s
group Co1, but that seems out of reach right now, in spite of [163].

As has been alluded to elsewhere in this book, the subfactor approach complements
that of VOAs. In particular, orbifolds seem more accessible for them [157], [332].

7.3.3 Why the Monster?

That M is associated with modular functions can be explained mathematically by it
being the automorphism group of the vertex operator algebra V �. But what is so special
about that group M that these modular functions Tg and N(g,h) should be Hauptmoduls?
In fact, every group known to have rich genus-0 Moonshine properties is contained
in the Monster. To what extent can we derive M from Monstrous Moonshine? Our
understanding of this seemingly central role of M is still poor.

The most interesting approach to this important question is due to Norton, and was first
(cryptically) stated in [450]: the Monster is probably the largest (in a sense) group with
the 6-transposition property. A k-transposition group G is one generated by a conjugacy
class K of involutions, where the product gh of any two elements of K has order ≤ k.
For example, take K to be the transpositions in the symmetric group Sn , that is, K is the
set of all permutations (i j). Since π ◦ (i j) ◦ π−1 = (π i, π j), K is a conjugacy class
in Sn . An easy induction on n confirms that Sn is generated by K . Moreover, (i j)(k�)
has order 1, 2, 3, respectively iff the set {i, j} ∪ {k, �} has cardinality 2, 4, 3. Thus Sn

is a 3-transposition group (this example is the source of the name ‘k-transposition’).
The Monster M is 6-transposition, for the choice of class K = 2A (see Section 7.3.6 for
more details). Transposition groups were used in the finite simple group classification
by Fischer to great effect. The simplest relation known to this author, of the number ‘6’
to genus 0, is given in Question 7.3.2.

The group � = PSL2(Z) is isomorphic to the free product Z3 ∗ Z2 generated by an

order 3 element u =
(

0 −1
1 1

)
and an order 2 element v =

(
0 −1
1 0

)
. A transitive

action of� on a finite set X with one distinguished point x0 ∈ X is equivalent to specifying
a finite index subgroup�0 of�. In particular,�0 is the stabiliser {g ∈ � | g.x0 = x0} of x0,
X can be identified with the cosets�0\� and x0 with the coset�0. (If we avoid specifying
x0, then �0 will be identified only up to conjugation.) As an abstract group, �0 will be
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a free product of a certain number of Z2’s, Z3’s and Z’s (e.g. Fn = Z ∗ Z ∗ · · · ∗ Z n
times).

To such an action, we can associate a directed graph G: its vertices are labelled by
the set X , and we draw a solid edge directed from x to u.x , and a dotted undirected
edge between x and v.x . Choose any spanning tree T of G (i.e. a connected subgraph of
G containing all vertices of G and the minimum possible number (‖X‖ − 1) of edges).
Then the Reidemeister–Schreier method (see e.g. the appendix to [292] or section I.3 of
[103]) gives a presentation for �0, with one generator for every edge in G not in T .

We are more interested though in a triangulation of the closed surface �0\H, called
a (modular) quilt, which we can canonically associate with the action of � in X . The
definition, originally due to Norton and further developed by Parker, Conway and Hsu,
is somewhat involved and will be avoided here (but see especially chapter 3 of [292]).
It is so-named because there is a polygonal ‘patch’ covering every cusp of �0\H, and
the closed surface is formed by sewing together the patches along their edges (‘seams’).
There are a total of 2n triangles and n seams in the triangulation, where n is the index
‖�0\�‖ = ‖X‖. The boundary of each patch has an even number of edges, namely the
double of the corresponding cusp width. The formula (2.2.16) for the genus g of �0\H
in terms of the index n and the numbers ni of �0-orbits of fixed points of order i , can be
interpreted in terms of the data of the quilt (see (6.2.3) of [292]), and we find in particular
that if every patch of the quilt has at most six sides, then the genus will be 0 or 1, and
genus 1 only exceptionally.

The quilt picture was specifically designed for one class of these�-actions (actually an
SL2(Z)-action, but this doesn’t matter). Fix a finite group G (we’re most interested in the
choice G = M). Recall from (2.4.15) the right action of B3 on triples (g1, g2, g3) ∈ G3,
and the equivalent reduced action of B3 on G2. We will be interested in this action on
the subset of G3 where all gi ∈ G are involutions. The modular group SL2(Z) is related
to B3 by (1.1.10a). From this, we can get an action of SL2(Z) in two ways: either (i)
by restricting to commuting pairs g, h; or (ii) by identifying each pair (g, h) with all
conjugates (aga−1, aha−1). Norton’s SL2(Z) action (7.3.3) arises from the B3 action of
(2.4.15b), when we combine both (i) and (ii).

The number of sides in each patch of the corresponding quilt is determined by the
orders of the g, h in these pairs. Taking G to be the Monster, and the involutions
gi from class 2A, then each patch will have ≤ 6 sides, and the corresponding genus
will be 0 (usually) or 1 (exceptionally). In this way we can relate the Monster with a
genus-0 property. This approach to genus 0 faces the same challenge of any other: how
to incorporate the Atkin–Lehner involutions of Proposition 7.1.2(ii).

Based on the B3 actions (2.4.15), Norton hopes for some analogue of Moonshine valid
for noncommuting pairs. Although the resulting series are always modular, they may
not be Hauptmoduls, their fixing group may not contain some �(N ), and the coefficients
won’t always be cyclotomic integers. CFT considerations (‘higher-genus orbifolds’)
alluded to in Section 6.3.1 suggest that this might be more natural to do using, for example,
noncommuting quadruples (g1, g2, h1, h2) ∈ M4 obeying g1h1g−1

1 h−1
1 = h2g2h−1

2 g−1
2 ;

the role of SL2(Z) is then played by higher-genus mapping class groups.
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An important question is, how much does Monstrous Moonshine determine the Mon-
ster? How much of M’s structure can be deduced from, for example, McKay’s Ê8 Dynkin
diagram observation (Section 7.3.6), and/or the (complete) replicability of the Tg , and/or
Conjecture 7.3.1, and/or Modular Moonshine in Section 7.3.5 below? A small start
towards this is taken in [452], where some control on the subgroups of M isomorphic to
Zp × Zp (p prime) is obtained, using only the properties of the N(g,h). See also chapter 8
of [292].

7.3.4 Genus 0 revisited

Tuite [532] suggests a very intriguing reformulation of the genus-0 property, directly
in terms of VOAs. Assume the uniqueness conjecture: V � is the only c = 24 VOA
with graded dimension J (Section 7.2.1). He argues from this that, for each g ∈ M, the
McKay–Thompson series Tg will be a Hauptmodul iff the only orbifolds of V � are the
Leech lattice VOA V(�) and V � itself. More precisely, orbifolding V � by 〈g〉 should be
V � if g is Fricke, and V(�) if g is non-Fricke (‘Fricke’ is defined in Section 7.3.2).

In, for example, [313], this analysis is extended to the genus-0 property of some Norton
series N(g,h), when the subgroup 〈g, h〉 is not cyclic (thus going beyond [150]), although
again assuming the uniqueness conjecture. Tuite is thus suggesting that the genus-0
property of the Monstrous Moonshine functions Tg and N(g,h) seems to be equivalent
to a single principle. These arguments emphasise the importance of establishing the
uniqueness conjecture of V �. Unfortunately, that still seems out of reach.

7.3.5 Modular Moonshine

Consider an element g ∈ M. We know from [466], [450], [150] that there is a Moon-
shine for the centraliser CM(g) of g in M, governed by the g-twisted module V �(g).
Unfortunately, V �(g) is not usually itself a VOA, so the analogy with M is not perfect.
Ryba found it interesting that, for g ∈ M of prime order p, Norton’s series N(g,h) can be
transformed into a McKay–Thompson series (and has all the associated nice properties)
whenever h is p-regular (i.e. h has order coprime to p) – as we know, in this case 〈g, h〉 is
cyclic. This special behaviour of p-regular elements suggested to him to look at modular
representations, for reasons we’ll soon see.

Let’s begin by reviewing the basics of modular representations and Brauer characters
(see also [446], [308]). A modular representation ρ of a group G is a representation
defined over a field of positive characteristic p dividing the order ‖G‖ of G. This is
precisely the class of finite-dimensional representations where the usual properties break
down. Such representations possess many special (that is to say, unpleasant) features.

For one thing, they are no longer completely reducible, so Theorem 1.1.2 breaks down.
For a simple example, let p be any prime and consider G = Zp; then over any field of
characteristic p, the map

a �→
(

1 a
0 1

)
(7.3.6)
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defines a two-dimensional representation of G that is indecomposable but not irre-
ducible. It’s not irreducible because it maps the x-axis to itself, and so contains the
one-dimensional identity representation as a subrepresentation. Before, given a repre-
sentation we could simplify it enough merely by writing it as a direct sum of indecom-
posables, but here there are far too many indecomposables. In other words, there are
other more complicated ways to combine irreducibles than direct sum. The familiar role
of irreducibles as direct summands is replaced here by their role as composition factors.
It is completely analogous to, and simpler than, the role of simple groups in finite group
theory (recall Section 1.1.2). Completely reducible representations (as in Theorem 1.1.2)
are equivalent to a representation with blocks down the diagonal and zero-blocks above
and below the diagonal; the diagonal blocks are its irreducible summands. On the other
hand, a modular representation ρ is equivalent to a matrix with zero-blocks below the
diagonal; the blocks along the diagonal (e.g. two copies of the trivial representation (1)
for the representation in (7.3.6)) are the composition factors, and the blocks above the
diagonal describe how these glue together.

Another complication is that the familiar character χρ of (1.1.5) loses its usefulness.
As we saw at the end of Section 1.1.3, very different modular representations can have
identical characters. Instead, the more subtle Brauer character β(ρ) is used. It can be
defined as follows. Let m be the order ‖G‖ of G, and write m = pa p′ where p and
p′ are coprime. Let K be the cyclotomic field Q[ξm], and let R = Z[ξm] be the ring
of cyclotomic integers. A finite field k of characteristic p can be obtained from R
by choosing any prime ideal p of R containing pR; then k = R/p. This construction
of k defines a ring homomorphism φp : R → k. In particular, put ξ := ξp′ ∈ R; then
ξ = φp(ξ ) will be a primitive p′th root of unity in k.

Suppose ρ is some n-dimensional modular representation of G over k. Let G p′ be the
set of all p-regular elements in G. The field k defined above is big enough that the n × n
matrix ρ(g), for any g ∈ G p′ , is diagonalisable over k. More precisely, its n eigenvalues

(counting multiplicities) are all p′th roots of unity in k, and so can be written as ξ
�i for

some integers �i , 1 ≤ i ≤ n.
The Brauer character β(ρ) of ρ is defined to be

β(ρ)(g) :=
n∑

i=1

ξ�i ∈ R ⊂ C, ∀g ∈ G p′ .

It is a well-defined class-function on G p′ , and in fact the Brauer characters form a basis for
the space of class functions on G p′ . Two representations have the same Brauer character
iff they have the same composition factors. Brauer characters were introduced by Brauer
and his student Nesbitt in 1937. Apart from their role in modular representations, they also
relate p-subgroups of G with properties of the usual character table. See Question 7.3.4
for an example.

Theorem 7.3.2 ([484], [79], [77]) Let g ∈ M be any element of prime order p, for any
p dividing ‖M‖. Then there is a vertex operator superalgebra gV = ⊕n∈Z

gVn defined
over the finite field Fp and carrying a (projective) representation of the centraliser CM(g).
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If h ∈ CM(g) is p-regular, then the graded Brauer character

R(g, h; τ ) := q−1
∑
n∈Z

β(gVn)(h) qn

equals the McKay–Thompson series Tgh(τ ). Moreover, for g belonging to any conjugacy
class in M except 2B, 3B, 5B, 7B or 13B, this is in fact an ordinary VOA (i.e. the ‘odd’
part vanishes), while in those remaining cases the graded Brauer characters of both the
odd and even parts can be expressed separately using McKay–Thompson series.

We defined vertex operator superalgebras in Section 5.1.3. The centralisers CM(g) in
the theorem are quite nice: for example, for groups of type 2A, 2B, 3A, 3B, 3C, 5A,
5B, 7A, 11A these are extensions of the sporadic groups B, Co1, Fi ′24, Suz, T h, H N ,
H J , He and M12, respectively. The proof for p = 2 is not complete as it relies on a
still-unproven hypothesis. The conjectures in [484] concerning modular analogues of
the Griess algebra for several sporadic groups follow from Theorem 7.3.2.

Can these modular gV’s be interpreted as a reduction mod p of (super)algebras in
characteristic 0? What can we say about elements g of composite order in M?

Conjecture 7.3.3 (Borcherds [77]) Choose any g ∈ M and let n denote its order.
Then there is a 1

n Z-graded superspace gV̂ = ⊕i∈ 1
n Z

gV̂i over the ring of cyclotomic

integers Z[e2π i/n]. It is often (but probably not always) a vertex operator superalge-
bra – in particular, 1V̂ is an integral form of the Moonshine module V �. Each gV̂
carries a representation of a central extension of CM(g) by Zn. Define the graded
trace

B(g, h; τ ) = q−1
∑
i∈ 1

n Z

chg V̂i
(h) qi .

If g, h ∈ M commute and have coprime orders, then B(g, h; τ ) = Tgh(τ ). If all q-
coefficients of Tg are nonnegative, then the ‘odd’ part of gV̂ vanishes, so it is an ordinary
space, and should equal the g-twisted module V �(g) of [150]. If g has prime order
p, then the reduction mod p of gV̂ is the modular vertex operator superalgebra gV of
Theorem 7.3.2.

More precisely, gV̂ is to be a free module over the ring Z[e2π i/n], and each graded piece
is finite-dimensional over that ring. When we say 1V̂ is an integral form for V �, we
mean that 1V̂ has the same structure as a VOA, with everything defined over Z, and
tensoring it with C gives V �. Borcherds’ conjecture, which beautifully tries to explain
Theorem 7.3.2, is completely open. It provides the analogue for V � of the surprising Lie
algebra Theorems 1.5.4 and 3.4.1.

7.3.6 McKay on Dynkin diagrams

McKay found other relationships with Lie theory [411], [75], [247], reminiscent of his
A–D–E correspondence with finite subgroups of SU2(C) (see Section 2.5.2). As we
see from Table 7.2, M has two conjugacy classes of involutions. Let K be the smaller
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one, called ‘2A’ in [109] (the alternative, class ‘2B’, has almost 100 million times more
elements). The product of any two elements of K will lie in one of nine conjugacy classes:
namely, 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A. These conjugacy classes are of elements of
orders 1, 2, 2, 3, 3, 4, 4, 5, 6. It is remarkable that, for such a complicated group as M, that
list stops at only 6 – as we know from Section 7.3.3, we call M a 6-transposition group
for this reason. The punchline: McKay noticed that those nine numbers are precisely the
labels ai of the affine E8 diagram (see Figure 3.2). Thus we can attach a conjugacy class
of M to each vertex of the E8

(1) diagram. A direct interpretation of the edges in the E8
(1)

diagram, in terms of M, is unfortunately not yet known, though [247], [365] establish
how to unambiguously assign classes to the nodes.

We can’t get the affine E7 labels in a similar way, but McKay noticed that an order 2
folding of affine E7 gives the affine F4 diagram, and we can obtain its labels using the
Baby Monster B (the second largest sporadic). In particular, let K now be the smallest
conjugacy class of involutions in B (also labelled ‘2A’ in [109]); the conjugacy classes
in K K have orders 1, 2, 2, 3, 4 (B is a 4-transposition group) – these are the labels of
F4

(1). Of course we’d prefer E7
(1) to F4

(1), but perhaps that two-folding has something
to do with the fact that an order-2 central extension of B is the centraliser of an element
g ∈ M of order 2.

Now, the triple-folding of affine E6 is affine G2. The Monster has three conjugacy
classes of order 3. The smallest of these (‘3A’) has a centraliser that is a triple cover of
the Fischer group Fi ′24.2. Taking the smallest conjugacy class of involutions in Fi ′24.2,
and multiplying it by itself, gives conjugacy classes with orders 1, 2, 3 (Fi ′24.2 is a
3-transposition group) – and those not surprisingly are the labels of G2

(1)!
McKay’s E8

(1), F4
(1),G2

(1) observations still have no explanation. In [247] these pat-
terns are extended, by relating various simple groups to the E8

(1) diagram with deleted
nodes. More recently, [365] relate the E8

(1) observation to VOAs, by applying [425] to
the lattice VOA V(

√
2E8); the connection with V � is plausible but not yet completely

established. As we know from Section 1.5.4, the folding of Coxeter–Dynkin diagrams
arises when we restrict to the invariant subalgebras of automorphisms, so perhaps that
provides a clue how to attack the F4

(1) and G2
(1) observations.

7.3.7 Hirzebruch’s prize question

Algebra is the mathematics of structure, and so of course it has a profound relationship
with every area of mathematics. Therefore the trick for finding possible fingerprints of
Moonshine in, say, geometry is to look there for modular functions. And that search
quickly leads to the elliptic genus.

We briefly discuss this in Section 5.4.2, where we mention several deep relationships
between elliptic genera and the material covered elsewhere in this book. Let us simply
mention here that the genus of a manifold will typically involve negative coefficients
and be the graded dimension of a vertex operator superalgebra. This certainly doesn’t
preclude Moonshine-like behaviour – for example, Moonshine for Co1 involves as we
know the vertex operator superalgebra A f �. However, the genera of even-dimensional
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projective spaces has nonnegative integer coefficients [400]; it would be interesting to
study the representation-theoretic questions associated with them.

Hirzebruch’s ‘prize question’ (page 86 of [287]) asks for the construction of a 24-
dimensional manifold M with Witten- or Â-genus J (after being normalised by η24). We
would like M to act on M by diffeomorphisms, and the twisted Witten genera to be the
McKay–Thompson series Tg . See also [151]. It would also be nice to associate Norton’s
series N(g,h) with this Moonshine manifold. Constructing such a manifold would realise
the geometry underlying Monstrous Moonshine, and as such is perhaps the remaining
Holy Grail in the subject.

Hirzebruch’s question was partially answered by Mahowald–Hopkins [399], who
constructed a manifold with Witten genus J , but couldn’t show it would support an
effective action of M. Related work is [21], who constructed several actions of M on, for
example, 24-dimensional manifolds (but none of which could have genus J ), and [364],
who showed the graded dimensions of the subspaces V �

± of the Moonshine module are
twisted Â-genera of Milnor–Kervaire’s manifold M8

0 (the Â-genus is the specialisation
of elliptic genus to the cusp i∞).

Related to elliptic genus is elliptic cohomology, which is described beautifully in
[499]. Mason’s constructions [407] associated with Moonshine for the Mathieu group
M24 have been interpreted as providing a geometric model (‘elliptic system’) for elliptic
cohomology Ell∗(B M24) of the classifying space of M24 [523], [154].

7.3.8 Mirror Moonshine

There has been a second conjectured relationship between geometry and Monstrous
Moonshine. Calabi–Yau manifolds (see e.g. [299]) are a class of complex manifolds
with an unusually rich mathematical structure – for example, in dimensions 1 and 2 they
are elliptic curves and K3 surfaces, respectively. Specifying a Calabi–Yau manifold X
means choosing a complex structure, as well as a Kähler class [ω] ∈ H 2(X,C). In the
case of an elliptic curve (i.e. a torus), this corresponds to choosing parameters τ, σ ∈ H.
Mirror symmetry [291] says that most Calabi–Yau manifolds come in closely related
pairs, where the roles of the complex structure and Kähler structure are switched. In
the case of elliptic curves, it relates the pair (τ, σ ) to the pair (σ, τ ) and implies the
modularity of certain generating functions for Gromov–Witten invariants – see [132] for
a review. This unexpected modularity is, of course, reminiscent of Moonshine, and it is
tempting to look for a concrete connection.

Consider a one-parameter family Xλ of Calabi–Yau manifolds, with mirror X∗ given
by the resolution of an orbifold X/G for G finite and abelian. Then the Hodge numbers
h1,1(X ) and h2,1(X∗) will be equal, and more precisely the moduli space of (complexified)
Kähler structures on X will be locally isometric to the moduli space of complex structures
on X∗. The ‘mirror map’ λ(q), which can be defined using the Picard–Fuchs equation
[438], is a canonical map between those moduli spaces. For example, x4

1 + x4
2 + x4

3 +
x4

4 + λ−1/4x1x2x3x4 = 0 is such a family of K3 surfaces, where G = Z4 × Z4. Its mirror
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map is given by

λ(q) = q − 104q2 + 6444q3 − 311 744q4 + 13 018 830q5 − 493 025 760q6 + · · · .
(7.3.7)

Lian–Yau [385] noticed that the reciprocal 1/λ(q) of the mirror map in (7.3.7) equals
the McKay–Thompson series T2A(τ )+ 104. After looking at several other examples with
similar conclusions, they proposed their Mirror Moonshine Conjecture: The reciprocal
1/λ of the mirror map of a one-parameter family of K3 surfaces with an orbifold mirror
will be a McKay–Thompson series (up to an additive constant).

A counterexample (and more examples) are given in section 7 of [544]. In particular,
although there are relations between mirror symmetry and modular functions (see e.g.
[266] and [275]), there doesn’t seem to be any special relation with M. Doran [158]
‘demystifies the Mirror Moonshine phenomenon’ by finding necessary and sufficient
conditions for 1/λ to be a modular function for a modular group commensurable with
SL2(Z).

This focus on K3 surfaces is not significant. Calabi–Yau 3-folds are the real meat of
mirror symmetry, but it is much harder to find explicit families. Some of the interesting
number theory of Calabi–Yau manifolds and mirror symmetry is reviewed in [571].

7.3.9 Physics and Moonshine

The physical side of Moonshine (namely, perturbative string theory and conformal field
theory) was noticed early on, and has profoundly influenced the development of Moon-
shine and VOAs. This effectiveness of physical interpretations isn’t magic – it merely tells
us that finite-dimensional objects are sometimes seen much more clearly when studied
through infinite-dimensional structures (often by being ‘looped’). Of course Monstrous
Moonshine, which teaches us to study the finite group M via its infinite-dimensional
module V �, fits perfectly into this picture.

Throughout this book we’ve described various points-of-contact between mathemat-
ics and physics. Because V � is so mathematically special, it may be expected that it
corresponds somehow to interesting physics. Although there have been some attempts
to directly interpret Monstrous Moonshine in the context of physics, we still have no
evidence Nature concurs.

There is a c = 24 RCFT whose anti-holomorphic chiral algebra is trivial, and whose
holomorphic one, as well as the state space H, are both V � (this is possible because
V � is holomorphic). This RCFT is nicely described in [142]; its symmetry is the
Monster. The Bimonster M - Z2 = (M×M)×Z2 (Section 7.1.1) is the symmetry of
a c = c = 24 RCFT with state space H = V � ⊗ V �. The paper [119] finds the D-branes
(boundary states) of lowest mass for this theory; they are in one-to-one correspondence
g �→ ‖g〉〉with the elements of M. The Bimonster permutes them: (h, k).‖g〉〉 = ‖hgk−1〉〉,
while the remaining involution sends ‖g〉〉 to ‖g−1〉〉. Most interestingly, their ‘overlaps’
〈〈g‖q 1

2 (L0+L̄0− c
24 )‖h〉〉 equal the McKay–Thompson series Tg−1h . We largely ignored D-

branes (surfaces on which endpoints of open strings rest) in Chapter 4, but they are a
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natural ingredient in string theory. Much as every natural property of the Wess–Zumino–
Witten string translates nicely into Lie theory, it would appear that the same holds with
the string theory H = V � ⊗ V � and the Monster M. Surely it would be interesting to
continue that investigation. Other suggestions for the physics of Monstrous Moonshine
are [99], [274], [96], [260], [281].

Question 7.3.1. Let f (τ ) be a Hauptmodul for some genus-0 group �. For any a > 0,
prove that f (aτ ) is fixed by a genus-0 group (call it �a), and any modular function for
�a will be a rational function in f (aτ ).

Question 7.3.2. Let G be any group with exponent k < 6 (i.e. gk = e for all g ∈ G).
Suppose there are a set of functions N(g,h)(τ ) associated with every commuting pair
g, h ∈ G, with the property that equation (7.3.3) always holds with α = 1. Prove that
each of these functions is fixed by a genus-0 subgroup of SL2(Z).

Question 7.3.3. Assume for simplicity that g ∈ M is such that CM(g) acts linearly (i.e.
nonprojectively) on the twisted module V �(g). Then for h ∈ CM(g) of order n, the q-
coefficients of Z(g, h) all lie in the field Q[ξn]. Fix any Galois automorphism σ ∈
Gal(Q[ξn]/Q), and let σZ(g, h) denote the q-expansion obtained by formally applying σ
term-by-term to Z(g, h): σ (

∑
i ai qi ) =∑

i σ (ai )qi . Show that σZ(g, h) equals another
series Z(g′, h′), for some g′ ∈ M, h′ ∈ CM(g′).

Question 7.3.4. Consider the usual representation ρ of G = S3 by 3× 3 permutation
matrices, associating with π ∈ S3 the matrix ρ(π ) obtained from the identity matrix by
applying π to the components of each column. For example,

ρ(123) =
⎛⎝ 0 0 1

1 0 0
0 1 0

⎞⎠ .

Show that ρ is completely reducible when considered as a modular representation over
characteristic 2, but is not completely reducible when considered as a modular represen-
tation over characteristic 3. For both characteristic 2 and 3, compute its Brauer character
using the definition given in Section 7.3.5.
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