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Linear Groups Generated by Reflection Tori
Dedicated to Professor Coxeter

A. M. Cohen, H. Cuypers and H. Sterk

Abstract. A reflection is an invertible linear transformation of a vector space fixing a given hyperplane, its
axis, vectorwise and a given complement to this hyperplane, its center, setwise. A reflection torus is a one-
dimensional group generated by all reflections with fixed axis and center.

In this paper we classify subgroups of general linear groups (in arbitrary dimension and defined over
arbitrary fields) generated by reflection tori.

1 Introduction

Let V be a left vector space over a (possibly commutative) skew field k.
For g ∈ GL(V ), we set

[V, g] = {vg − v | v ∈ V} and CV (g) = {v ∈ V | vg − v = 0},

and call these subspaces the center and axis of g. A transformation g ∈ GL(V ) satisfying
dim([V, g]) = 1 is called a transvection if [V, g] ⊆ CV (g), and a reflection or pseudo-
reflection otherwise. Observe that CV (g) is a hyperplane if g is a transvection or a reflection.

Let V ∗ be the dual of V , considered as a right vector space over kopp , acting from the
right on V . For every v ∈ V and φ ∈ V ∗, we define the map rv,φ : V → V by

xrv,φ = x − xφv.

The map rv,φ is a reflection with center 〈v〉 and axis kerφ (or 〈φ〉), provided vφ 
= 0, 1. If
both v and φ are nonzero but vφ = 0, the element rv,φ is a transvection. In fact, every
transvection or reflection in GL(V ) is equal to rv,φ for some v ∈ V and φ ∈ V ∗.

If we specify a hyperplane H and a one-dimensional subspace, that is, a projective point,
p of V , then by Tp,H we denote the subgroup of GL(V ) generated by all g ∈ GL(V ) with
p = [V, g] and H = CV (g). If p ∈ H, the subgroup Tp,H consists of the identity and all
transvections with center p and axis H. Such groups are often referred to as transvection
subgroups of GL(V ). They are isomorphic to the additive group of k. Groups generated by
transvection subgroups have been studied extensively by McLaughlin, cf. [8], [9], and later,
by Cameron and Hall, cf. [2]. An analogous study of the subgroups of GL(V ) generated by
groups of the form Tp,H with p /∈ H is the purpose of this paper. In fact, this paper is in-
spired by the general and geometric setup of Cameron and Hall. In particular, the study of
the geometry of points and hyperplanes appearing as centers and axes, respectively, as well
as various elementary observations parallels their approach. Moreover, the generic results

Received by the editors February 5, 1999; revised July 8, 1999.
AMS subject classification: 20Hxx, 20Gxx, 51A50.
c©Canadian Mathematical Society 1999.

1149

https://doi.org/10.4153/CJM-1999-051-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-051-7


1150 A. M. Cohen, H. Cuypers and H. Sterk

are comparable to those of Cameron and Hall; for small fields, however, more exceptional
cases arise, which require special treatment. Note that in our situation Tp,H is isomorphic
to the multiplicative group k∗ of k. Pursuing the analogy, we might have called such groups
reflection subgroups, but, in order to avoid confusion with existing terminology and to
emphasize that Tp,H is a torus (i.e., an Abelian diagonizable subgroup of GL(V )), we prefer
the name reflection torus.

All reflection tori in GL(V ) generate the full finitary general group FGL(V ) of V , i.e., the
subgroup of GL(V ) consisting of all elements g ∈ GL(V ) with [V, g] finite dimensional.
Below we will describe more examples of groups generated by reflection tori, examples that
will reoccur in our classification.

Let W ∗ be a subspace of V ∗. The annihilator Ann(W ∗) of W ∗ is defined to be the
subspace {v ∈ V | vφ = 0 for all φ ∈W ∗} of V .

By R(V,W ∗) we denote the subgroup G of GL(V ) generated by the reflections rv,φ with
v ∈ V and φ ∈ W ∗. If W ∗ = V ∗, then G is equal to the full finitary general linear group
FGL(V ). If W ∗ 
= V ∗ but Ann(W ∗) = 0, then R(V,W ∗) still acts irreducibly on V . Indeed,
each point in P(V ) is the center of some reflection in G. So, [U ,G] := 〈[U , g] | g ∈ G〉 = V
for any nontrivial subspace U of V . Hence G is irreducible on V .

The groups R(V,W ∗) are the generic examples of groups generated by reflection tori.
But over small fields there are a few other classes of examples.

First consider the case where k = F3. Then a reflection torus consists of just two el-
ements, the identity and a unique reflection. The orthogonal group O(V,Q) where Q is
some nondegenerate orthogonal form on V contains reflections. Indeed, if v ∈ V with
Q(v) 
= 0, then

rv : w ∈ V �→ w + b(w, v)Q(v)v

is an orthogonal reflection in O(V,Q) with center v and axis v⊥ = {w ∈ V | b(w, v) = 0}.
Here b is the bilinear form associated to Q.

The orthogonal reflections of O(V,Q) fall into two conjugacy classes, according as the
center of a representative reflection contains a vector v with Q(v) = 1 or Q(v) = −1,
respectively. The reflections in each of these classes generate a subgroup of index at most
two in the finitary orthogonal group FO(V, q), i.e., the subgroup of finitary elements in
O(V, q). See for example [6], [7].

For k = F3, the group GL(V ) contains more subgroups generated by reflections. The
following examples are all closely related to the real reflection groups as studied by Cox-
eter [5].

Let B be a basis of the vector space V over the field k = F3. For distinct b, b ′ ∈ B

we define the reflection rb±b ′ to be the reflection with center 〈b± b ′〉 and axis 〈b∓ b ′,B \
{b, b ′}〉 of V . Furthermore, by rb we denote the reflection with center 〈b〉 and axis 〈B\{b}〉.
Now consider the following groups G:

• G =W3(AB) is the group generated by the reflections rb−b ′ , b, b ′ ∈ B.
• G =W3(DB) is the group generated by the reflections rb±b ′ , b, b ′ ∈ B.
• G =W3(BB) is the group generated by the reflections rb and rb±b ′ , b, b ′ ∈ B.

These groups will be called Weyl groups mod 3 of type A, D, B, respectively. If B has finite
order n, then W3(AB) � W (An−1), W3(DB) � W (Dn) and W3(BB) � W (Bn). In this
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case we also use the following notation: W3(AB) = W3(An−1), W3(DB) = W3(Dn) and
W3(BB) =W3(Bn).

The subspace [V,G] of V is an irreducible module for G, except when G =W3(An) and
3 | n + 1. If G is of type A, it is a hyperplane of V , in all other cases it equals V . We call
[V,G] the natural F3 reflection module for G. When G = W3(An) and 3 | n + 1, then the
G-invariant 1-space K = 〈b1 + · · ·+ bn+1〉 is contained in [V,G]. The (irreducible) module
[V,G]/K is called the (n − 1-dimensional) quotient of the natural F3 reflection module
for G.

Not only the classical Weyl groups appear as groups generated by reflection tori, also
the exceptional ones do. Let Λ be a root lattice of type X, with X equal to G2, F4, or En,
n = 6, 7, 8, and consider Λ := Λ/3Λ, as a vector space over F3. The reflections in the Weyl
group W (X) induce reflections on Λ. So the Weyl group W (X) induces a group W3(X) on
Λ generated by reflection tori. As above, the group W3(X) is called a Weyl group mod 3 of
type X and the module Λ the natural reflection module for G. It is irreducible when G is of
type F4, E7 or E8. If G =W3(E6), then the module is reducible and admits a 5-dimensional
irreducible quotient, called the quotient of the natural module. In fact, W3(E6) is the group
generated by one class of orthogonal reflections. Among the orthogonal groups and Weyl
groups mod 3 we find the following inclusions.

W3(A1) < W3(B2) = O(F2
3,Q), for Q nondegenerate of Witt index−.

W3(A1 × A1) = O(F2
3,Q), for Q nondegenerate of Witt index +.

W3(A2) < W3(G2) = O(F2
3,Q), for Q nonzero, degenerate.

W3(D3) =W3(A3) < W3(B3) = O(F3
3,Q) for Q nondegenerate.

W3(D4) < W3(B4) < W3(F4) = O(F4
3,Q), for Q nondegenerate of Witt index +.

W3(A4) < W3(A5) < O(F4
3,Q), for Q nondegenerate of Witt index−.

W3(E6) < O(F5
3,Q) for Q nondegenerate.

Now suppose that k is the field F4. Let h be a Hermitian form on V . For each vector
v ∈ V with h(v, v) = 1 and α ∈ k, α 
= 0, 1, the map

rv : w ∈ V �→ w + αh(w, v)v

is a reflection with center v and axis v⊥ = {w ∈ V | h(w, v) = 0}. This reflection is an
element of the finitary unitary group FU(V, h) = {g ∈ FGL(V ) | ∀x,y∈V h(xg, yg)) =
h(x, y)}.

The reflection rv is of order 3 and generates the unitary reflection torus T〈v〉,v⊥ . If the
Hermitian form h is nondegenerate, then FU(V, h) is generated by all reflection tori T〈v〉,v⊥
with h(v, v) = 1.

Finally, when k = F5, we find one more exceptional example of a group generated by
reflection tori. Consider the following reflections in GL2(5) (with respect to some basis
of F2

5): (
α 0
0 1

)
,

(
(α + 1)/2 (α− 1)/2
(α− 1)/2 (α + 1)/2

)
with α ∈ k∗. Let G be the subgroup of GL2(5) generated by these reflections. Then G
acts on the projective line over k with kernel of order 4. Moreover, the partition of the
6 points of this projective line into the pairs

(
〈(1, 0)〉, 〈(0, 1)〉

)
,
(
〈(1, 1)〉, 〈(1,−1)〉

)
and
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〈(1, 2)〉, 〈(1,−2)〉

)
is G-invariant. From this we easily deduce that G induces the group

S4 on the 6 points. Hence G � 4 · S4. The group G will be denoted by S. The group is
isomorphic to a finite complex reflection group in GL

(
2,Q(i)

)
generated by reflections of

order 4 (the group with Shephard-Todd number 8, see [10]).
Our first result is the following theorem.

Theorem 1.1 Suppose that G is an irreducible subgroup of GL(V ) generated by reflection
tori. Then we have one of the following cases.

1. G = R(V,W ∗), where W ∗ is a subspace of V ∗ with Ann(W ∗) = 0; the group G contains
a unique conjugacy class of reflection tori.

2. k = F3 and G is a Weyl group mod 3 of type A, B, D, F4 or En, n = 6, 7, 8. The space V is
the natural F3 reflection module for G, or its irreducible quotient when G = W3(An) and
3 | n + 1, or G =W3(E6).

3. k = F3 and G is a subgroup of index at most 2 in FO(V,Q) for some nondegenerate
orthogonal form Q generated by one or both classes of orthogonal reflections.

4. k = F4 and G = FU(V, h) for some nondegenerate Hermitian form h. The group G is
generated by its unique class of unitary reflection tori.

5. k = F5, dim(V ) = 2, and G is isomorphic to the group S.

Notice that there is some overlap between the cases 2 and 3 in the above theorem.
As in Cameron and Hall [2] we find exceptional cases of groups generated by reflection

tori for small fields.
Vavilov [11] also studied irreducible linear groups generated by reflection tori. He con-

sidered the case where V is a finite dimensional vector space over a field with at least 7
elements, and (only) found the groups GL(V ). Vavilov’s proof consists of the construction
of full transvection subgroups. This enables him to quote the results of McLaughlin [8],
[9] (or Cameron and Hall [2]). It also explains why the exceptional cases in our theorem
only occur for small fields.

In this paper we do not restrict our attention to irreducible subgroups of GL(V ) gen-
erated by reflection tori, but also consider reducible ones. Reducible groups can of course
be obtained by taking the direct product of irreducible groups acting on the direct sum of
the corresponding modules. But there are other ways to produce reducible examples, as we
will now explain.

As before let V be a left vector space over a (skew) field k and let V ∗ be its dual acting
from the right on V . (We consider V ∗ as a right vector space over kopp .) The elements
of GL(V ) act on V from the right. If G is a subgroup of GL(V ), then it also acts on V ∗.
Indeed, if for g ∈ G and φ ∈ V ∗ we define φg to be the linear map

φg : v ∈ V �→ (vg−1)φ,

then φ �→ φg, φ ∈ V ∗ and g ∈ G, defines an action of G on V ∗.
A reflection or transvection r = rv,φ induces a homomorphism w ∈ V �→ −[w, r] =

(wφ)v from V to V . So we can identify rv,φ with v ⊗ φ ∈ V ⊗V ∗
(
� Hom(V,V )

)
.

Now suppose G0 ≤ GL(V0) is generated by its normal (i.e., invariant under conjugation)
set R0 of reflection tori. Let U0 be a nontrivial k-vector space different from V0 and consider
the direct sum V = U0 ⊕V0. We extend the action of G0 to V trivially, i.e., G0 centralizes
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U0. Then G0 also acts on the tensor product U0 ⊗V ∗0 and we can form the split extension
G = (U0 ⊗V ∗0 ) : G0 of U0 ⊗V ∗0 by G0.

As explained above, a nonzero element u ⊗ φ ∈ U0 ⊗ V ∗0 can be identified with a
transvection in GL(V ) with center 〈u〉 and axis U0 + ker(φ). In this way the split extension
G acts naturally on V = U0 ⊕ V0. It is straightforward to check that the normal set of
reflection tori in this split extension containing R0 generates the subgroup (U0⊗[V ∗0 ,G0]) :
G0 of G. This split extension is clearly reducible as U0 is an invariant subspace of V . The
spirit of Theorem 1.2 (see below) is to show that, at least for a single orbit of centers, the
above split extension is the only way to construct reducible examples of groups generated
by reflection tori.

Before stating this theorem, we need some more notation. If a group G ≤ GL(V ) is
generated by a normal set R of reflection tori, the set of all centers of elements from R,
called the center set, is a union of G-orbits. For any subsetΣ of this set of centers we denote
by G(Σ) the subgroup of G generated by those elements from R that have their centers in
Σ. The subspace [V,G(Σ)] of V equals 〈Σ〉 and is G(Σ) invariant. By G

(
(Σ)
)

we denote
the group induced by G(Σ) on 〈Σ〉. If U is a subspace of V , and ∆ a subset of P(V ), then
∆ ∩U denotes, by abuse of notation, the set {d ∈ ∆ | d ⊆ U}. With this notation our
most general result reads as follows.

Theorem 1.2 Suppose that G is a subgroup of GL(V ) generated by reflection tori. If Σ is a
G-orbit of centers, then the subspace 〈Σ〉 can be written as U0⊕V0 for some G-invariant space
U0 ≤ CV

(
G(Σ)

)
, such that one of the following holds.

1. G0 := G
(

(Σ ∩V0)
)

is irreducible on V0, as listed in Theorem 1.1, and acts transitively on
Σ ∩V0.

2. G0 := G
(
(Σ ∩ V0)

)
is isomorphic to W3(An) with 3 | n + 1, or W3(E6), and V0 is the

reducible natural F3 reflection module for G of dimension n or 6, respectively. Moreover, G0

is transitive on Σ ∩V0.
3. G(Σ) is not transitive on Σ and there is a unique second G-orbit Σ ′ of centers in 〈Σ〉 such

that G0 := G
((

(Σ ∪ Σ ′) ∩V0

))
is a Weyl group mod 3 of type B acting on its natural F3

reflection module V0.

Moreover, the group G
(
(Σ)
)

, respectively, G
(
(Σ ∪ Σ ′)

)
in case 3, is isomorphic to the split

extension of U0 ⊗ [V ∗0 ,G0] by G0 acting naturally on U0 ⊕V0, where G0 is as defined in the
appropriate case.

Now suppose G ≤ GL(V ) is a group generated by reflection tori. For each orbit Σ of
centers the group G(Σ) is a normal subgroup of G. If, for some orbit Σ the space U0 as
defined in Theorem 1.2 is nontrivial, then another set of centers could be contained in U0.
More details on several orbits can be found in the last section, notably Theorem 11.1.

The main topic of the remainder of this paper is the proof of Theorem 1.2. It is divided
into the following parts. In Section 2 we derive some general properties of reflections and
reflection tori. Section 3 is devoted to the case where the dimension of V is equal to 2.
The purpose of Section 4 is to set the case leading to the third part of the conclusion in
Theorem 1.2 apart. Then in Sections 5 and 6 we handle the generic case. In particular, it
will become clear that the non-generic cases can only occur when the field k contains at
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most 5 elements. Section 7 handles the unitary groups over F4, Section 8 the orthogonal
groups over F3 and Section 9 the Weyl groups mod 3. The completion of the proof of
Theorem 1.2 can be found in Section 10. In Section 11 we discuss the case where G has
more than one orbit on the centers of the reflections of elements in R. In particular, we
prove Theorem 1.1. We end this paper with an appendix on graphs and trees, relevant to
Section 9.

2 Reflections

We will study the right action of reflections and reflection tori on a left vector space V over
the (skew) field k and its dual V ∗.

Lemma 2.1 For every v ∈ V and φ ∈ V ∗ with vφ 
= 0, 1, the reflection rv,φ belongs to
GL(V ) and satisfies the following properties.

1. The inverse of rv,φ equals rv,φ(vφ−1)−1 .
2. For each λ ∈ k, rv,φλ = rλv,φ.
3. If g ∈ GL(V ), then g−1rv,φg = rvg,φg .
4. Let rw,ψ be a second reflection with 〈v〉 
= 〈w〉 or 〈φ〉 
= 〈ψ〉. Then rv,φ and rw,ψ commute

if and only if v ∈ kerψ and w ∈ kerψ.

The proof can be obtained by straightforward calculations.
The lemma implies that the reflection rv,φ (with vφ 
= 0, 1) is contained in a unique

reflection torus of GL(V ), which we shall denote by Tp,H , where p = 〈v〉 and H = kerφ.
For a geometric approach, it is convenient to consider the action of reflections on the

projectivised spaces P(V ) and, if necessary, P(V ∗). A center determines a point in P(V ), an
axis a hyperplane in P(V ) (and a point in P(V ∗)). It depends on the context whether we
consider p as a point in P(V ) or a line in V , etc.

The next lemma deals with subspaces invariant under a reflection. Its proof is elemen-
tary and is omitted.

Lemma 2.2 Let r be a reflection with center p and axis H. A subspace of V is invariant
under r if and only if it contains p or is contained in H.

Proposition 2.3 Let Tp,H be a reflection torus. Then:

1. For every q ∈ H, the torus Tp,H is transitive on the points of pq \ {p, q}.
2. Dually, for every hyperplane K containing p, the torus Tp,H is transitive on the hyperplanes

of HK \ {H,K}, i.e., the set of hyperplanes containing H ∩ K but different from H and K.

Proof Straightforward.

Let G be a group containing a normal (that is, G-conjugation invariant) set R of reflec-
tion tori. Let Ap = AR

p be the intersection of all axes of reflections in the reflection tori in
R with center p. It is evident that any element of G that fixes p, leaves Ap invariant; similar
considerations hold for the dual situation, but we refrain from setting up notation for it.
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Corollary 2.4 Let T = Tp,H be a reflection torus in G with center p = 〈v〉. There exists a
subspace W ∗ of V ∗ with Ann(W ∗) = Ap such that for each ψ ∈W ∗ with vψ 
= 0, 1, there is
a reflection torus Tp,ker(ψ) in R.

Proof Proposition 2.3 implies that the set of hyperplanes that occur as axis for some re-
flection torus in R with center p is an affine subspace A of the affine space we obtain by
removing all hyperplanes on p from P(V ∗). Let W ∗ be the subspace of V ∗ spanned by A.
Then for every element ψ ∈ W ∗ with vψ 
= 0, 1, the kernel ker(ψ) is in A and appears as
an axis of some reflection torus in R. Since the intersection of all hyperplanes in A equals
Ap, we find Ann(W ∗) = Ap.

Let G be a subgroup of GL(V ) generated by a normal set R of reflection tori. We recall
some notation from the introduction. Let Σ = ΣR be the set of centers of the reflections
belonging to reflection tori in R. If p ∈ Σ, we shall also say that p is a center of R. For
any subset∆ of P(V ), we denote by G(∆) = GR(∆) the subgroup of G generated by those
reflection tori in R whose centers are in∆. By G

(
(∆)
)
= GR

(
(∆)
)

we denote the quotient
group of G(∆) induced on the subspace of V spanned by ∆. (Notice that this subspace is
invariant under G(∆).) Recall that Ap = AR

p is the intersection of all axes of reflections of
reflection tori in R with center p. For a subset∆ of Σ, we shall write A∆ =

⋂
x∈∆ Ax.

Lemma 2.5 For each g ∈ G and subspace W of V we have: W g ≤W ⇒W g =W .

Proof As g ∈ G is a product of a finite number of reflections, the subspace CV (g) has
finite codimension. It is obvious that g ∈ G induces a bijective map W/W ∩ CV (g) →
W g/CV (g)∩W of finite dimensional spaces. So the dimensions are equal and, since W g ⊂
W , this implies that W =W g.

Lemma 2.6 Let a, b ∈ Σ with a ∈ Ab. Then b ∈ Aa provided at least one of the following
conditions holds:

i. Aa is a hyperplane;
ii. a and b are in one G-orbit on Σ.

Moreover, if a ∈ Ab and b ∈ Aa, and if r ∈ R has center a and s ∈ R has center b, then
rs = sr.

Proof Suppose a ∈ Ab. Then, for any reflection r of R with center b, we have ar = a and
thus Aar = Aa. By Lemma 2.2, either b ∈ Aa or Aa ⊂ Ab, where the inclusion is strict as
a ∈ Ab \ Aa.

The latter possibility cannot occur if Aa is a hyperplane. So in case (i) we do have b ∈ Aa.
If a and b are in the same G-orbit, then there is an element g ∈ G with a = bg and hence

Aa = Abg. But then Abg ≤ Ab, and by Lemma 2.5 this implies that Abg = Ab. So again we
have b ∈ Aa.

The last statement follows from Lemma 2.1.
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3 Subgroups of GL2 Generated by Reflection Tori

We retain the setting in which G is a subgroup of GL(V ) generated by a normal set R of
reflection tori and Σ is the set of centers of the reflections belonging to reflection tori in R.

Let l be a line of P(V ). If l meets Σ in at least 3 points, then it is called a thick line. If all
points on l are in Σ, then l is called full. A line l meeting Σ in just two points is called thin.
AΣ-line is the intersection of a thick line withΣ. The set of allΣ-lines is denoted by L(Σ).
Clearly, the pair

(
Σ,L(Σ)

)
is a partial linear space. A Σ-plane is a subspace of

(
Σ,L(Σ)

)
spanned by two intersecting Σ-lines. Clearly each point of a Σ-plane lies in the projective
plane spanned by any two of its thick lines.

In this section we concentrate on the groups G(l) and G
(
(l)
)

. First we analyze the action
on lines in general.

Lemma 3.1 Suppose that l is a thin line with Σ ∩ l = {a, b}. Then Ab ∩ l = {a} and
Aa ∩ l = {b}. In particular, G(a) and G(b) commute.

Proof Let H be a hyperplane such that Ta,H ∈ R. Then, as b is the only center of l distinct
from a, we have Ta,Hb = b, so b ∈ H. Hence b ∈ Aa. Similarly, a ∈ Ab. The last statement
of the lemma then follows from Lemma 2.1.

Lemma 3.2 Suppose that l is a thick line. Then we have one of the following:

i. the line l is full;
ii. there is a unique point p ∈ l which is not in Σ; this point p is contained in Aa for all points

a ∈ l ∩ Σ. The group G
(
(l)
)

is doubly transitive on l \ {p}.

Proof Suppose that l is thick but not full. Then there is a point p ∈ l \ Σ, and l ∩ Σ has at
least three points. For each x ∈ l ∩Σ, the group G(x) stabilizes l and preserves l ∩Σ. Since
l∩Σ contains at least 3 points, we find that G(x) fixes p and acts transitively on l \ ({x, p}),
which is contained in Σ. It follows that G

(
(l)
)

is doubly transitive on l \ {p} = l ∩ Σ.
Moreover, p ∈

⋂
x∈l Ax.

Lemma 3.3 If, for two distinct centers a, b ∈ Σ, we have b ∈ Aa and a /∈ Ab, then l = ab is
a full line with Ab ∩ l = ∅ and Ax ∩ l = {b} for all x ∈ l \ {b}; moreover, the group G

(
(l)
)

fixes {b} and is doubly transitive on l \ {b}.

Proof As a /∈ Ab, there is a hyperplane H such that p = H ∩ l is a point distinct from a
and b and Tb,H ∈ R. Now Tb,H acts transitively on l \ {p, b}, and, as b ∈ Aa, G(a) acts
transitively on l \ {a, b}. So all points x ∈ l \ {b} are centers in Σ with Ax = Aa = {b}. In
particular, l is a full line. The rest follows easily.

We can now completely classify the subgroups of GL2 generated by a normal set of re-
flection tori.

Theorem 3.4 Let G be a subgroup of GL(V ) generated by a normal set R of reflection tori
and let Σ be the set of centers of the reflections belonging to reflection tori in R. Let W be a
2-dimensional subspace of V and l = P(W ). If l meets Σ in at least two points then we are in
one of the following cases.
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i. l is thin and G
(

(l)
)

is a direct product of two commuting reflection tori.
ii. l is thick but not full and with respect to a suitable basis of W , the group G

(
(l)
)

is isomor-
phic to the subgroup {(

1 β
0 γ

) ∣∣∣ β ∈ k, γ ∈ k∗
}

of GL(W ).
iii. l is full and misses the set Ax for each point x ∈ l. The group G

(
(l)
)

coincides with GL(W ).
iv. l is full and there is a center p ∈ l with Ax ∩ l = {p} for all x ∈ l \ {p}. With respect to a

suitable basis of W , the group G
(
(l)
)

is isomorphic to{(
α β
0 γ

) ∣∣∣ β ∈ k, α, γ ∈ k∗
}

of GL(W ).
v. l is full, k = F3 and the induced group G

(
(l)
)

is isomorphic to the group W3(B2) in its
natural action on W .

vi. l is full, k = F5 and G
(
(l)
)

is isomorphic to S acting naturally on W .

Proof If the line l is thin, then we are in case (i) as follows from 3.1.
If the line is thick but not full, then Lemma 3.2(ii) implies that we are in case (ii).
Now suppose the line l is full. If there are points a and b on l with a ∈ Ab but b /∈ Aa,

then we can apply the previous lemma to find that we are in case (iii) of the statement of
the theorem.

So now we can assume that a ∈ Ab implies b ∈ Aa. Suppose that on l there is a point x
such that l does not meet Ax. Then, by Proposition 2.3, G(x) acts transitively on l \ {x}. If
y is a second point on l, then y /∈ Ax and thus, by our assumption, also x /∈ Ay . So in G(y)
we find a reflection moving x. Hence G

(
(l)
)

is 2-transitive on l, and consequently l misses
Az for all z ∈ l.

Fix a point x ∈ l. The above implies that G
(

(l)
)

contains two distinct reflection tori with
center x. But then Corollary 2.4 proves that G

(
(l)
)

contains all reflection tori in GL(W )
with center x. As G

(
(l)
)

is transitive on l, it contains all possible reflection tori of GL(W )
and thus equals GL(W ).

For the remainder of the proof, we may assume that, for each z ∈ l, there is a unique
point in Az ∩ l, which will be denoted by z⊥.

Now suppose z is a point on l\{x, x⊥}. Inside G
(

(l)
)

there is a reflection r with center x
such that zr = z⊥. But then (z⊥)r = (zr)⊥ = z⊥⊥ which by Lemma 2.6 is equal to z. Thus
r is the unique reflection of order 2 in G

(
(l)
)

with center x. In particular, the characteristic
of k is 0 or odd. Moreover, since z is an arbitrarily chosen point different from x and x⊥,
we find zr = z⊥ for all z ∈ l \ {x, x⊥}.

Now fix a point y on l distinct from x and x⊥. Then, by the same arguments as above,
we find a reflection s with center y in G

(
(l)
)

that interchanges all points z ∈ l \ {y, y⊥}
with z⊥. So rs fixes all points of l \ {x, x⊥, y, y⊥} and interchanges x with x⊥ and y with
y⊥. But as only the identity in PGL(W ) fixes more than 2 points, we find that l contains at
most 6 points.

Hence, k is F3 or F5. If k is F3, then G
(
(l)
)

is equal to the group W3(B2) acting naturally
on W . If k = F5, then with x = 〈(1, 0)〉 and x⊥ = 〈(0, 1)〉 we find for z = 〈(1, α)〉 that z⊥
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is equal to 〈(−1, α)〉. Now it is easily checked that all reflections in G
(

(l)
)

are as described
in Section 2. Hence G

(
(l)
)

is isomorphic to S, acting naturally on W .

Remark 3.5 Consider the setting of the above theorem. In cases (ii), (iii) and (vi) the
group G(l) is transitive on Σ ∩ l. In case (iv) the group G(l) fixes one point of Σ ∩ l and
is transitive on the remaining points. We notice that, as a consequence of Lemma 2.6, the
unique point fixed by G(l) is in another G-orbit on Σ than the remaining points of Σ ∩ l.

In case (v) the group G(l) has two orbits on l, both containing two points. If a and b
are in the same G(l)-orbit then a ∈ Ab. We call such a line a B2-line, as the group G

(
(l)
)

induced on the line is the Weyl group mod 3 of type B2.

4 Some Reduction Theorems

Let G ≤ GL(V ) be generated by a normal set of reflection tori R. ByΣ we denote the set of
centers of the tori in R.

Lemma 4.1 Suppose that Σ1 ⊆ Σ is a G-orbit. Then Σ1 is contained in a connected com-
ponent of

(
Σ,L(Σ)

)
. In particular, if Σ is a G-orbit, then

(
Σ,L(Σ)

)
is connected.

Proof Let r be a reflection of a reflection torus in R with center c. If a is an element in Σ1

and ar 
= a, then the line ac contains at least three points from Σ (viz., c, a, ar, as every
reflection in G with center c moves the point a to a point on ac). Thus a and ar are on a
Σ-line.

Since every g ∈ G is the product of a finite number of reflections of reflection tori in R,
the centers a and ag are connected by a finite number ofΣ-lines, which proves the first part
of the lemma. The second part is now trivial.

Lemma 4.2 If Σ1 and Σ2 are subsets of distinct connected components of
(
Σ,L(Σ)

)
, then

G(Σ1) and G(Σ2) centralize each other.

Proof This is immediate, as the result is true for any two points on a thin line.

The above two lemmas are in fact our first reduction results. They allow us to restrict
attention to the case where

(
Σ,L(Σ)

)
is connected. We will say that Σ is connected if the

space
(
Σ,L(Σ)

)
is connected. For the remainder of this section we will assume Σ to be

connected.
For our second reduction result we need the following definition. Let l be a thick line

meeting CV

(
G(Σ)

)
nontrivially. Then, as G(Σ) = G, l meets CV (G) in a unique point.

Such a line is called degenerate (with respect toΣ). It is as in case (ii) or (iv) of Theorem 3.4,
where in the latter case there is a unique point on l not in Σ. Denote by U the subspace of
V spanned by the intersection points of degenerate lines with CV (G). So

U := 〈l ∩CV

(
G(Σ)

)
| l is a degenerate line〉.

The subspace U of V will be called the radical of Σ and is denoted by Rad(Σ). We will
call Σ degenerate if it does contain degenerate lines and nondegenerate otherwise.
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We consider the action of G = G(Σ) on V/U and denote by N the kernel of this action.
A reflection r in G induces a reflection on V/U . Two reflection tori of R will induce the
same reflection torus on V/U if and only if their axes are the same and their centers are the
same modulo U .

Lemma 4.3 Suppose that Σ spans V . Let l be a degenerate line and R a reflection torus in R

with center x on l and axis H. For each y ∈ l∩Σ there is a reflection torus Ry ∈ R with center
y and axis H. In particular, RN = RyN.

Proof Let R be a reflection torus with center x and axis H. Let R ′ ∈ R be a reflection torus
with center y ∈ l different from x and axis H ′. Suppose that H 
= H ′. Then, since V is
spanned by Σ, there is a point z ∈ Σ \ l such that the line xz does not meet H ∩ H ′. Let
π be the plane spanned by l and z and denote by u the unique point on l in CV (G). The
group 〈R,R ′〉 acts doubly transitively on the lines in π through u but different from l. It
easily follows from Theorem 3.4 that any line on u meets Σ in at most one point or is thick
but not full.

The point z is either not in H or not in H ′. In particular, one of the lines xz and yz is
thick. If xz is thick, then (xz)r ′ is thick for every r ′ ∈ R ′. Similarly, if yz is thick, then (yz)r
is also thick for every r ∈ R. So, inside the plane π there are at least two thick, hence full,
lines not through u. But that implies that at least two lines and hence all lines in π on u are
thick. So we can assume the point z to be neither in H nor in H ′.

If there is a reflection torus S ≤ G(z) that centralizes l, then there is an element s ∈ S
that centralizes l but maps H ′ ∩ zx to H ∩ zx. The reflection torus s−1R ′s has center y and
axis H ′s. As H ′s ∩ H ′ contains H ∩ H ′ ∩ Hs, where Hs is the axis of s, as well as the point
H ∩ zx, we find H ′s ∩ H ′ to be contained in H. Now Corollary 2.4 implies that there is a
reflection torus Ry ∈ R with center y and axis H.

It remains to consider the case where there is no reflection torus S ≤ G
(
(z)
)

that cen-
tralizes l. This is only possible when both xz and yz are as in case (iv), (v) or (vi) of The-
orem 3.4. If xz is as in case (iv) of Theorem 3.4, then each reflection torus S ≤ G(z)
centralizes H ∩ π. Similarly, if yz is as in case (iv) of Theorem 3.4, then each reflection
torus S ≤ G(z) centralizes H ′ ∩ π. But, since H ′ ∩ π 
= H ∩ π, we find that at least one of
xz or yz is as in case (v) or (vi) of Theorem 3.4.

Suppose that xz is as in case (v) or (vi) of Theorem 3.4. Let v be the intersection point
of xz and H. Then inside G(v) we find a reflection rv centralizing l. The reflection torus
r−1

v R ′rv has center y and axis H ′rv. As H ′rv meets yz in a point distinct from H ′ ∩ yz,
we find yz to be of type (iv), but not every torus in G(z) fixes H ′ ∩ π. We have reached a
contradiction.

This proves that, indeed, there is a reflection torus Ry with center y and axis H in R.
Clearly R and Ry induce the same reflection torus on V/U .

Suppose that l is a degenerate line and that R and S are two reflection tori in R with
distinct centers x and y, respectively, on l but with the same axis H. Then for each reflection
r ∈ R there is a (unique) reflection s ∈ S such that r and s induce the same reflection on
V/U . So rN = sN . The element 1 
= rs−1 ∈ N centralizes H. In particular, [V, rs−1] is
1-dimensional and rs−1 is a reflection or transvection with center on l. Since rs−1 is trivial
on V/U , we conclude that rs−1 is a transvection with center l ∩ H. As explained in the
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introduction, we can identify this transvection with an element u⊗φ ∈ U ⊗V ∗, where 〈u〉
is its center and ker(φ) its axis.

Lemma 4.3 implies that the normal subgroup N of G contains U ⊗ [V ∗,G]. Let V0 be a
complement to U in V and defineΣ0 to beΣ∩V0. Then,Σ0 is nondegenerate and G0∩N =
1, where G0 := G(Σ0). So G contains the semi-direct product (U ⊗ [V ∗,G0]) : G0. More-
over, as each degenerate line meets V0 in a point, the above implies that (U ⊗ [V ∗,G0]) : G0

contains R and therefore equals G. Hence, we have proved the following.

Theorem 4.4 Let G ≤ GL(V ) be generated by a normal set R of reflection tori with center
set Σ spanning V . Suppose that Σ is connected. Let V0 be a complement in V to the radical
U of Σ. Then the set Σ0 := Σ ∩ V0 is nondegenerate and G = (U ⊗ [V ∗0 ,G0]) : G0, where
G0 = G(Σ0).

We notice that the space P(U ) equals {l ∩ CV (G) | l is a degenerate Σ line}. Indeed, if
x ∈ Σ0 and u ⊗ φ ∈ U ⊗ [V ∗0 ,G0] with u 
= 0 and xφ 
= 0 (notice that such a φ exists),
then the line through x and 〈u〉 is thick and degenerate.

Let Σ1 be a G-orbit on Σ. Our final reduction result is concerned with the action of
G(Σ1) on Σ1. Since the normal subgroup N as defined above acts trivially on the set of
degenerate lines of Σ we find that, in the notation of the above theorem, Σ1 ∩ Σ0 is a
G0-orbit. This will allow us to restrict our attention to the case where Σ is nondegenerate.

Lemma 4.5 If no two points of Σ1 are on a B2-line in L(Σ), then G(Σ1) is transitive on Σ1.

Proof Suppose y, z ∈ Σ1 and yg = z, for some g ∈ G. By assumption, g = r1 · · · rt where
each ri is a reflection with center, say, ci ∈ Σ. By induction on t , it suffices to show that
y1 = yr1 is in the G(Σ1)-orbit of y. This is obvious if y = y1 or c1 ∈ Σ1, so assume not.
Then y and y1 span a thick Σ-line, say l, containing the distinct centers yr (r ∈ G(c1)) and
c1. Hence we are in case (iv) or (v) of Theorem 3.4. In case (iv) we find that G(l ∩ Σ1),
which is contained in G(Σ1)∩G(l), is transitive on theΣ1-line l∩Σ1. Case (v) is ruled out
by assumption.

Now we consider the case where the G-orbit Σ1 decomposes into several G(Σ1)-orbits.
So, by the above lemma, k = F3.

Lemma 4.6 Let∆1 and∆2 be distinct G(Σ1)-orbits in Σ1. Then we have the following.

(i) Any line meeting both∆1 and∆2 is either thin or a B2-line.
(ii) ∆2 ⊆ A∆1 .
(iii) G(∆1) is transitive on∆1.

Proof Let a ∈ ∆1 and b ∈ ∆2. Remark 3.5 implies that the line spanned by a and b is either
thin or a B2-line, whence (i). In either case we have a ∈ Ab and b ∈ Aa. This proves (ii).
Moreover, as∆1 is a G(Σ1)-orbit, it also is a G(∆1)-orbit, which proves (iii).

Let Σ2 be the set of all centers x in Σ \ Σ1 with Σ1 � Ax. Any element of Σ2 is on some
thickΣ-line with an element ofΣ1. This line is then a B2-line meeting Ax, x ∈ Σ\(Σ1∪Σ2)
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in at least 2 and hence all points. In particular, Σ1 ∪ Σ2 is centralized by all reflection tori
in R with center outside Σ1 ∪ Σ2.

We can now prove the following result.

Theorem 4.7 Let G ≤ GL(V ) be generated by a normal set R of reflection tori with center
set Σ. If Σ1 ⊆ Σ is a G-orbit, then either

(i) G(Σ1) is transitive on Σ1, or
(ii) there is a unique second G-orbit Σ2 ⊆ Σ with Rad(Σ1) = Rad(Σ1 ∪ Σ2) and 〈Σ1〉 =
〈Σ1 ∪ Σ2〉, such that, for each complement V0 in [V,G(Σ1)] to Rad(Σ1), the group
G
(
(Σ1 ∪ Σ2) ∩V0

)
equals W3(BB) in its natural action on V0. Here B is a basis for V0.

Proof Let Σ2 be the set of centers as constructed above. Since Σ1 ∪ Σ2 is contained in Ax

for each x ∈ Σ \ (Σ1 ∪ Σ2), we find that Σ1 is a G(Σ1 ∪ Σ2)-orbit, and Σ2 is G(Σ1 ∪ Σ2)-
invariant. In particular, Lemma 4.1 implies that Σ1 ∪ Σ2 is connected.

Suppose ∆1, ∆2 and ∆3 are three orbits such that there exist B2-lines meeting ∆i and
∆i+1, with i = 1, 2. Let di be a point in ∆i and consider the plane spanned by d1, d2 and
d3.

Let e ∈ d1d2∩Σ2 and r a reflection in G with center e. Then (d2d3)r is a B2-line through
d1. It is easily seen inside GL3(3) that the reflections with center in the plane spanned by
d1, d2 and d3 induce the group W � W3(B3) on the plane. So, the line (d2d3)r equals the
line d1d3.

By the connectedness of Σ1 ∪ Σ2 any two G(Σ1)-orbits∆ and∆ ′ on Σ1 are connected
by a B2-line. Moreover, it follows from Lemma 4.6 that G(∆∪∆ ′) is transitive on∆×∆ ′.
This implies that every line meeting both∆ and∆ ′ is a B2-line.

The group W intersects G(Σ2) in a Weyl group mod 3 of type D3 which is transitive on
the six points of Σ2 in the plane spanned by d1, d2 and d3. Each reflection in G with center
in Σ2 ∩ d1d2 centralizes d3. Hence, these two reflections induce a transposition on the set
of all G(Σ1)-orbits switching∆1 and∆2. The above implies that Σ2 is a single G-orbit.

Let l be a thick Σ1 or Σ2-line and m a B2-line meeting both Σ1 and Σ2 in two points.
Suppose that l and m meet nontrivially. Knowledge of reflection subgroups of GL3(3)
shows that the group generated by the reflections with center on l and m induces 32 :
W3(B2) or W3(B3) on the 3-space spanned by l and m. In the latter case l is a nondegenerate
Σ2-line. In the first case the plane spanned by l and m contains exactly two thick lines only
meeting Σ1 and two only meeting Σ2. These 4 lines are not full and intersect in the unique
point of the plane outside Σ1 ∪ Σ2. This intersection point is centralized by all reflections
in G(l,m) and is the radical of the plane.

This has the following consequences. First, if l is a degenerate Σi-line, then there is a
degenerate Σ j-line l ′, {i, j} = {1, 2}, with l ∩ l ′ in the radical of both Σ1 and Σ2. So,
Rad(Σ1) = Rad(Σ2) = Rad(Σ1 ∪ Σ2).

Secondly, if∆ is a G(Σ1)-orbit onΣ1, then each thick∆-line is not full, and the subspace
∆ of

(
Σ1,L(Σ1)

)
is an affine space consisting of all points outside the hyperplane U =

Rad(∆) of 〈∆〉. Notice that U is centralized by all reflections with center in Σ1 and hence
contained in Rad(Σ1) = Rad(Σ1 ∪ Σ2). Theorem 4.4 now allows us to assume that Σ1 is
nondegenerate, so that each G(Σ1)-orbit on Σ1 consists of a single point.

Fix, in each point ofΣ1, a vector b spanning it and denote by B the set of all such vectors.
We notice that B is a linearly independent set. Indeed, if λ1b1 + · · · + λnbn, λi 
= 0, is a
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linear combination of elements b1, . . . , bn from B which is 0, then applying the reflection
in G with center b1 will yield that also −λ1b1 + · · · + λnbn = 0. Combining these two
equations yields that λ1 = 0 which is against our assumptions. As [V,G(Σ1)] is spanned
by the centers in Σ1, B is a basis of [V,G(Σ1)]. Now let b, b ′ ∈ B. On the B2-line spanned
by b and b ′ and in the corresponding reflection group we can check that the reflections rb

with center 〈b〉 and axis 〈B\{b}〉 and rb±b ′ with center 〈b±b ′〉 and axis 〈B\{b, b ′}, b∓b ′〉
are in G. Thus G(Σ1 ∪ Σ2) induces the group W3(BB) on [V,G(Σ1)].

5 Planes in the Geometry of Reflection Tori

We keep the notation of the previous section. We will now assume that G ≤ GL(V ) is
generated by a normal set R of reflection tori with center set Σ spanning V . Moreover, we
assume Σ to be a single G-orbit and hence connected, cf. Lemma 4.1. The case where Σ
consists of more than one G-orbit will be studied in Section 11. Moreover, the reduction
results of the previous section allow us to assume that Σ is nondegenerate. Note, however,
that this assumption need not be valid for G

(
(∆)
)

, where∆ is any subset of Σ.
The following proposition plays a very important rôle in the sequel. The section is

almost entirely devoted to its proof.

Proposition 5.1 Let π be a Σ-plane and W the 3-dimensional subspace of V containing π.
Then we have one of the following.

i. P(W ) \ π is the subspace
⋂

x∈π Ax of P(W ).
ii. k = F3, the group G

(
(π)
)

is the group W3(A3) �W3(D3) in its natural action on the root
lattice modulo 3.

iii. k = F4 and there is a nondegenerate Hermitian form h on W such that the points of π are
those subspaces 〈w〉 of W for which h(w,w) = 1. The group G

(
(π)
)

is U(W, h).

The Σ-planes as in case (i) of Proposition 5.1 are called generic planes. The planes in
the other cases are called exceptional planes. The exceptional planes are dual affine planes of
order 2 in case (ii) and of order 3 in case (iii).

Lemma 5.2 If |k| ≥ 5, then all planes are generic.

Proof Let l and m be two thick lines intersecting in a point x ∈ Σ. Let y be a point on l∩Σ
not in Ax. Then x /∈ Ay and we can find a second point z 
= x in m∩Σ which is also not in
Ay . So yz is also thick. On yz there are at least |k| − 1 points in Σ but not in Ax. Together
with x, each of these points generates a thick line. Thus x is on at least |k| − 1 thick lines.

Now consider the plane P(W ). If there is at most one point of P(W ) not in Σ, then we
are in case (i). Thus suppose r and s are distinct points in P(W ) but not in Σ. The line rs
contains at most 2 points from Σ. Since we can replace x by y which is also on two thick
lines of π, we may assume that x is not on rs.

If all points of P(W ) that are not inΣ are inside rs, we find two thick lines on x meeting rs
in points not in Σ. These intersection points are points of Ax, see 3.2, and we have rs ⊆ Ax.
If t is a point on rs ∩ Σ, then the line xt is full and contains a point u /∈ At . But then by 2.6
also t /∈ Au. However, with u in the rôle of x, the above implies that rs and thus also t is
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in Au. We have found a contradiction. Thus rs contains no point of Σ and we are again in
case (i) of the lemma.

So finally we can assume that there is a third point t of π not on rs that is also not in Σ.
But that implies that among rs, rt and st we can find at least one non-thick line, say n, in
P(W ) which is not contained in Ax nor contains x. Any thick line on x meets n either in a
point from Σ or in Ax ∩ n. As there are at most 2 points from Σ on n, there are at most
three thick lines on x. Hence |k| − 1 ≤ 3. This proves the lemma.

Suppose π is a Σ-plane in the projective plane of order 4. Using knowledge of GL3(F4),
see for example the Atlas [4], we easily find that G

(
(π)
)

is one of the following subgroups
of GL3(F4): the group GL3(F4) itself, 42 : GL2(F4), 42 : 3, or U3(F4). The first 3 examples
correspond to generic planes, the last one to the exceptional dual affine plane of order 3 as
in case (iii) of the proposition.

If π is embedded in a plane of order 3, then the subgroups of GL3(F3) that can occur
as G
(
(π)
)

are GL3(F3), 32 : GL2(F3), 32 : W3(B2), 32 : 2, all leading to a generic plane,
W3(A3) =W3(D3) corresponding to the dual affine plane in case (ii) of the proposition, or
W3(B3). In the latter case the plane π consists of 9 centers falling apart in 2 orbits of length
6 and 3, respectively. We will call such a plane a B3-plane.

To prove the proposition it remains to rule out B3-planes. This can be done with the
following lemma.

Lemma 5.3 If Σ contains B3-planes, then it is not a single G-orbit.

Proof Assume that Σ is a G-orbit but contains B3-planes. Consider the geometry Π with
point set Σ and as lines the thick, but not full Σ-lines. Then, by the above, any two inter-
secting lines in this geometry generate an affine plane as in case (i) or a dual affine plane
as in case (ii) of Proposition 5.1. The diameter of any connected component of Π is at
most 2. Moreover, two reflections whose centers are at distance 2 in Π commute. As, by
assumption, there are B3-planes, Σ splits into at least two connected components of Π. As
G is transitive on the points of Π, each component of Π has diameter 2.

We show that for any x ∈ Σ and reflection r in R, the point xr is in the same connected
component of Π as x. This is clearly true if x = xr or if the line on x and xr is thick but
not full. Hence, let us assume that x and y := xr are in distinct components. Then x and y
span a full line, l say.

The existence of B3-planes and the transitivity of G on Σ imply that there is a B2-line m
on x such that x and z = Ax ∩m are in the same component ofΠ. Clearly m 
= l.

Now consider the Σ-plane π spanned by l and m. If it is a B3-plane, then the reflection
r centralizes z. Hence also z = zr and y = xr are in the same component, a contradiction.
Thus the plane is generic. If the line on yz is not full, then we have found a path from x to y
via z. Hence yz is full, and the plane π is projective. We easily find that G

(
(π)
)

is transitive
on the points of π. As the intersection point p of xz and (xz)r is on two B2-lines, Ap ∩ π
is a line. Hence, the map q �→ Aq induces a polarity on π without absolute points. Such
polarities, however, do not exist. This final contradiction proves the lemma.

This finishes the proof of Proposition 5.1.
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6 The Generic Case

We now embark upon the proof of Theorem 1.2. By the results of Section 4 we may and
do assume that G is generated by a normal set R of reflection tori with Σ a nondegenerate
G-orbit spanning V . In view of Theorem 3.4, we assume that dim(V ) is at least 3.
Lemma 4.1 implies connectedness of Σ and the existence of Σ-planes.

Lemma 6.1 If there exists a full line, then all Σ-planes are generic.

Proof AllΣ-planes are either generic or exceptional. Suppose x is a point ofΣ. Then, as Σ
is a single G-orbit, there is a full line on x, say l. By 5.1 we see that any other thick line m
on x spans together with l a genericΣ-plane.

Now suppose m and n are thick lines on x spanning an exceptional plane. Inside the
generic planes 〈l,m〉 and 〈l, n〉, respectively, we see that at most one line on y or z, respec-
tively, is not full. So, as |l| ≥ 4, we find a point u ∈ l \ {x} with both uy and uz being
full. However, then the Σ-plane on u, y and z contains both full and thin lines, which is
not possible. This contradiction shows that there are only generic planes on x and hence
on any point of Σ, which proves the lemma.

Theorem 6.2 Let G ≤ GL(V ) be generated by a normal set R of reflection tori with center
set Σ spanning V of dimension at least 3. Suppose that Σ is a nondegenerate G-orbit. If all
Σ-planes are generic, then G = R(V,W ∗) for some W ∗ ≤ V ∗ with Ann(W ∗) = 0 and R

consists of all reflection tori with axis in W ∗.

Proof Since all generic planes are linear, the space
(
Σ,L(Σ)

)
is linear. Let l be a thick

but not full line, and let x be the unique point of l not in Σ. Then, as Σ is assumed to be
nondegenerate, there is a reflection torus R not centralizing x. Let y be the center of R.
Inside the generic plane spanned by l and y, however, we see that x ∈ Ay . This contradicts
the fact that R does not centralize x. Thus all lines are full and all Σ-planes are projective,
which implies that Σ consists of all points of P(V ).

As every point p ∈ P(V ) is contained in a projective Σ-plane with x ∈ Σ, we find, by
Proposition 5.1, that p /∈ Ax. So, Ax = ∅. The theorem now follows from Corollary 2.4.

7 Unitary Groups over F4

We keep the notation and hypothesis of the previous section. By Lemma 6.1 and Theo-
rem 6.2 we can concentrate on the case where there are no full Σ-lines and where there
exist exceptional planes. In particular, k = F3 or F4, and every Σ-plane is either affine or
dual affine. This easily implies that the diameter of

(
Σ,L(Σ)

)
is equal to 2.

In this section we handle the case where k = F4.

Lemma 7.1 Let x be a point in Σ. Then Ax is a hyperplane.

Proof Suppose that R1 and R2 are two tori in R with the same center x but distinct axes H1

and H2, respectively. As V = 〈Σ〉, there is an element in y ∈ Σ such that the line xy does
not meet H1 ∩ H2. But then xy is full, which is against our assumptions.
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Lemma 7.2 Let l be a thick line. Then G(l) � SL2(3). The central involution τ of G(l) is
a transvection on V with center the point p of l not in Σ. The transvection τ is the unique
transvection with center p fixing a point y ∈ Σ if and only if p ∈ Ay.

Proof Let l be a thick line. Then, as Σ is nondegenerate, there is an element R ∈ R that
does not centralize the unique point of l \Σ. But then theΣ-plane π spanned by the center
of R and l ∩ Σ is dual affine. Inside G(π) we find G(l) isomorphic to 2 · A4 � SL2(3). Its
central involution τ acts as a transvection on the projective plane spanned by π. Indeed,
let p be the unique point of 〈l〉 outside Σ. Then τ fixes all points of l, and interchanges the
two points of Σ as well as the two points outside Σ different from p, on the 4 thin lines of
π on p. If π ′ is an affine Σ-plane on l, then τ is in the kernel of the action on π ′, see 5.1.

Let y be an element in Σ. If l is contained in Ay , then y ∈ Ax for each x ∈ l, and thus
yτ = y. If l is not contained in Ay , then the plane 〈y, l〉 is either affine or dual affine. In
both cases we find that [y, τ ] ≤ p.

Since V = [V,G] is spanned byΣ, we find that [V, τ ] = p, and τ is indeed a transvection
on V with center p.

The action of τ on Σ and hence on V is uniquely determined by its center.

By T we denote the set of transvections that we obtain as centers of subgroups G(l) of G
where l is a thick line.

Clearly T is a union of (possibly a single) conjugacy class(es) of transvections. Let∆ be
the set of centers for the transvections in T. For each d ∈ ∆, there is a unique transvection
in T with center d, see Lemma 7.2. This transvection is denoted by τd, its axis by Ad.

Lemma 7.3 Let l be a line meeting Σ ∪ ∆ in at least two points. Then we have one of the
following.

(i) l is a thick line meeting∆ in a unique point d. The transvection τd centralizes l.
(ii) l is a thin line meeting ∆ in 3 points. A transvection of T with center on l switches the

two points of Σ ∩ l.
(iii) l is contained in∆. The transvections τd, d ∈ l, all centralize l.

Proof If l is a thick line then clearly we are in case (i). Suppose l is thin and x and y are the
two points of l ∩Σ. Then, since the diameter of

(
Σ,L(Σ)

)
is 2, there is a point z ∈ Σ with

both xz and yz thick. The plane spanned by x, y and z is nondegenerate, and inside this
plane we see that the three points of l different from x and y are centers of transvections
switching x and y.

Suppose l is a line containing a point x ∈ Σ and a point y ∈ ∆. Let m be a thick line
on y. If m is not contained in Ax, then there is a thick line on x meeting l nontrivially. But
then π = 〈x, l〉 is a plane as in the conclusion of 5.1. Inside these planes all lines meeting Σ
nontrivially contain at least two points from Σ. Thus assume that l ⊆ Ax. Let z be a point
of m different from y. The line xz is thin. Thus by the above, there is a transvection τ ∈ T

with center on xz and xτ = z. But then mτ = Axτ ∩ π = Az ∩ π = xy and xy is thick.
Let l be a line meeting ∆ in two points, d and e say, but disjoint from Σ. Let m be a

thick line meeting l in d. Then by the above, every line through e meeting l in a point of Σ
contains at least two points fromΣ. Hence the intersection ofΣ with the plane spanned by
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l and m contains a Σ-plane. If this Σ plane is affine, then l is contained in ∆ and any two
transvections td, d ∈ l, centralizes l. If the plane is dual affine, then l meets Σ nontrivially,
which is against our assumptions.

The above lemma implies that every line of P(V ) which meets Σ ∪ ∆ in two points is
contained in Σ ∪∆. Hence Σ ∪∆ is the complete point set of P(V ).

Now we are able to conclude with the following theorem.

Theorem 7.4 Let G ≤ GL(V ) be generated by a normal set R of reflection tori with center
set Σ spanning V . Suppose that Σ is connected, nondegenerate and a G-orbit. If there exists a
dual affine Σ-plane of order 3, then G = FU(V, h) for some nondegenerate unitary form h on
the F4 vector space V and R is the unique class of unitary reflection tori in G.

Proof Clearly V is an F4-vector space. We claim that the map

⊥ : p ∈ P(V ) �→ p⊥,

where p⊥ = Ap for p ∈ ∆ ∪ Σ is a nondegenerate unitary polarity on P(V ). For that
purpose we have to show that for each p ∈ P(V ) the subspace p⊥ of P(V ) is a hyperplane,
and that for all p, q ∈ P(V ) we have:

q ∈ p⊥ implies p ∈ q⊥.

If p ∈ ∆, then by definition p⊥ is a hyperplane. If p ∈ Σ, then p⊥ is a hyperplane by
Lemma 7.1.

Now suppose that p, q ∈ P(V ) and q ∈ p⊥. If p, q ∈ Σ, then Lemma 2.6 implies
q ∈ p⊥. If p, q ∈ ∆, then Lemma 7.3 implies q ∈ p⊥. If p ∈ Σ and q ∈ ∆, or q ∈ Σ and
p ∈ ∆, then by Lemma 7.3 and Theorem 3.4 the line pq is thick and again p ∈ q⊥.

So indeed, ⊥ is a polarity. Since ⊥ restricted to a dual affine plane is a unitary polarity,
⊥ itself is a nondegenerate unitary polarity. So, with h being a unitary form inducing this
polarity, we find G and R to be as stated in the theorem.

8 Orthogonal Reflection Groups over F3

In this section we consider the case where G is generated by a normal set R of reflection
tori inside the group GL(V ), where V is a vector space over the field F3. Since each reflec-
tion torus is of order 2, we will often identify the tori with their nontrivial elements. We
assume that the set Σ of centers of elements in R forms a single G-orbit, is connected and
nondegenerate. As the case where all Σ-planes are generic is handled by Theorem 6.2, we
can and do assume that there are exceptional planes around. Lemma 6.1 implies that there
are no full lines in

(
Σ,L(Σ)

)
, so that the reflections in the elements of R form a class of

3-transpositions, i.e., the product of two elements of R has order 1, 2 or 3. (Many results
of this and the following section can be deduced from the theory of groups generated by
3-transpositions, see for example [6], [7]. However, for the sake of completeness we pre-
fer the tailor-made approach given below.) Moreover, any Σ-plane is either affine or dual
affine. From Proposition 5.1 we easily deduce that in the 3-dimensional case there is always
a quadratic form left invariant by the reflections. This is true in general as follows from the
following result of [6].
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Proposition 8.1 There exists a G-invariant quadratic form Q on V such that the reflections
in R are orthogonal reflections with respect to Q. The form is unique up to scalar multiplica-
tion.

Since Σ is a G-orbit, we can choose the form Q in such a way that the points in Σ are
+-points, i.e., projective points 〈v〉, v ∈ V , with Q(v) = 1.

In the remainder of this section we will consider the case where there exist affine Σ-
planes.

Theorem 8.2 Let G ≤ GL(V ) be generated by a normal set R of reflection tori with center
set Σ spanning V . Suppose that Σ is connected, nondegenerate and a G-orbit. If there exists a
dual affine Σ-plane of order 2 and an affine Σ-plane of order 3, then G = FO(V,Q) for some
nondegenerate orthogonal form Q on the F3-vector space V and R is the class of reflection tori
in G whose center is a +-point.

The proof is divided into a number of steps. But first we need some notation and obser-
vations.

Fix a point x in Σ. The tangent lines on x, i.e., the lines meeting the quadric of Q in a
single point, form a polar space Px isomorphic with the polar space of Q restricted to Ax.
The Σ-lines on x are (part of) tangent lines and can therefore be considered to be points
of Px. The affine Σ-planes correspond to lines of Px. The Σ-lines and affine Σ-planes on
x actually form a subspace of Px denoted by Σx. The assumption that there is an affine
Σ-plane π on x, but no degenerate line, implies that the (polar) rank of the subspace Σx is
at least 2.

Step 1 There is a 5-dimensional subspace W of V containing x, such that Q|W is nonde-
generate andΣ∩P(W ) consists of all +-points of P(W ). Moreover, the hyperplane Ax ∩W
contains singular lines.

Proof Since the polar space Px has rank at least 2, we can find a grid in Σx. The subspace
of V spanned by all lines on x in this grid is the space W we are looking for.

Step 2 Let X be a finite subset ofΣ which is the union of tangents through x. If X contains
Σx ∩ P(W ), then all +-points of 〈X〉 are in Σ.

Proof Suppose X is a minimal counter example to the statement. Consider PX
x , the polar

subspace of Px of those tangents that are in 〈X〉. Then PX
x has rank at least 2 as 〈X〉 contains

W . The Σ-lines on x that are in 〈X〉 form a subspace ΣX
x of PX

x . By our assumption, this
subspace has to be proper. Indeed, if ΣX

x = PX
x , then, as every +-point from 〈X〉 is the sum

of at most two +-points on tangents through x, we would find that all +-points of 〈X〉 are
in Σ.

Fix a tangent line l on x in X but not in P(W ). Then, by minimality of X, we find that
X − {l} does not generate 〈X〉. So Y := 〈X − {l}〉 is a hyperplane of 〈X〉. Moreover, all
+-points of Y are in Σ. The tangent lines on x that are in Y form a geometric hyperplane
H of PX

x contained in ΣX
x . Now the line l ∈ Σx is a point of PX

x outside this hyperplane.
But, as PX

x has rank at least 2, it is generated by H and any ‘point’ outside this geometric
hyperplane, see [3]. But this leads to the contradiction that ΣX

x equals PX
x .
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Step 3 Σ consists of all points 〈w〉 ∈ V with Q(w) = 1.

Proof Let p = 〈w〉 ∈ V with Q(w) = 1. Then, as V = [V,G] = 〈Σ〉 = 〈Σx〉, there
is a finite subset X ′ of Σx such that p ∈ 〈X ′〉. But then p is also contained in 〈X〉, where
X = X ′ ∪

(
P(W ) ∩ Σx

)
, and Step 2 implies that p ∈ Σ.

Step 4 Q is nondegenerate.

Proof If Q has a nontrivial radical, then a line through a +-point and a point of the radical
is a degenerate Σ-line. But Σ is nondegenerate, so Q is also nondegenerate.

9 Weyl Groups Acting on their Natural Module Mod 3

In this section we consider the case where G is generated by a normal set R of reflection
tori in GL(V ), with V a vector space over F3 of dimension at least 3. By Σ we denote the
set of centers of the reflections in R. As before we assume that Σ is a single G-orbit and
nondegenerate. By Lemma 6.1 and Theorem 8.2 we can and do restrict our attention to the
case where the reflections in R form a conjugacy class of 3-transpositions and that all Σ-
planes are dual affine. As the reflection tori of R contain just one nontrivial reflection, we
identify these tori with these nontrivial reflections. Moreover, by Proposition 8.1 there is a
unique quadratic form Q on V such that the reflections in R leave Q invariant and have as
centers a +-point with respect to Q. So, if B denotes the bilinear form associated to Q, then
a reflection r ∈ R with center 〈v〉, for some v ∈ V , has axis v⊥ = {w ∈ V | B(w, v) = 0}.
This reflection will be denoted by rv.

The diagram ∆(R) of a subset R of reflections in R is the graph whose vertices are the
elements of R and whose edges consists of the pairs of non-commuting elements from R.

Lemma 9.1 Let R ⊆ R be finite. If∆(R) contains a subdiagram of type D̃4, then there is a
proper subset R ′ of R with 〈R ′〉 = 〈R〉.

Proof It is enough to consider the case where R is a subset of 5 reflections in R with dia-
gram∆(R) of type D̃4.

Let r ∈ R such that R ′ = R−{r} is a subset of R with diagram D4. So 〈R ′〉 is isomorphic
to the Weyl group W3(D4) and there is a basis B = {b1, b2, b3, b4} of [V, 〈R ′〉] such that
the reflections in R ′ have as centers the 1-spaces spanned by b1 − b2, b1 + b2, b2 − b3

and b3 − b4. Moreover, we can assume that the reflection r centralizes the hyperplane
〈b1 − b2, b1 + b2, b3 − b4〉 of [V, 〈R ′〉], but not b2 − b3. But then r does not centralize the
three vectors b2 − b3, b3 + b4 and b2 + b4 which all span centers in Σ. So, either r has center
b3 + b4 and r ∈ 〈R ′〉 or the Σ-plane spanned by the center of r and 〈b3 + b4〉 and 〈b2 + b4〉
is an affine plane, which is against our assumptions.

This lemma together with the results from the appendix yield:

Proposition 9.2 Let R be a finite subset of reflections of R with connected diagram. Then
〈R〉 is isomorphic to a Weyl group mod 3 of type An, Dn, E6, E7 or E8 and [V, 〈R〉] is the natural
F3-reflection module for 〈R〉, or, 〈R〉 is of type An, 3 | n+1, or E6 and [V, 〈R〉] is the irreducible
quotient of the natural F3-reflection module of dimension n− 1 or 6, respectively.
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Proof Without loss of generality we can assume that R is a minimal generating set for 〈R〉.
Consider ∆(R). Now consider any pair s, r of non-commuting elements from R. We can
transform R into the set R ′ = {r, s} ∪ {r−1tr | t ∈ R \ {r, s}}. We notice that R ′ is also a
minimal generating set of 〈R〉. The diagram ∆(R ′) is isomorphic to the diagram ∆(R)(r,s)

as defined in the appendix. Now Theorem 12.4 implies that we can transform R into a tree.
Without loss of generality we can assume that ∆(R) is a tree. In the equivalence classes of
the diagrams of type D̃n and Ẽn there are diagrams with an induced subdiagram of type D̃4.
Then the previous lemma and minimality of R, however, imply that∆(R) does not contain
these diagrams as a subdiagram. But that implies that∆(R) is of type An, Dn, E6, E7 or E8,
and it is clear that 〈R〉 is isomorphic to a Weyl group mod 3 of type An, Dn, E6, E7 or E8.

The module [V, 〈R〉] is easily seen to be a quotient of the natural F3 reflection module
for 〈R〉. But, as proper quotients only exist when G is of type An where 3 | n + 1, or E6, the
proposition follows.

Proposition 9.3 If there is a finite subset R of R such that 〈R〉 � W3(E6), then G is iso-
morphic to W3(En), n = 6, 7 or 8 and G acts naturally on V which is isomorphic to the F3

reflection module for G or its irreducible quotient when G =W3(E6).

Proof Since a Weyl group mod 3 of type An or Dn does not contain a subgroup generated
by reflections isomorphic to W3(E6), the proposition is clear from the previous result.

Now suppose that all finite subsets of R with connected diagram generate Weyl groups
mod 3 of type An or Dn. We will use our knowledge of the finite Weyl groups of type An

and Dn and their natural F3-reflection modules to finish our classification in the case where
R is infinite.

Suppose that R is infinite. If R is a finite subset of R, generating a Weyl group mod 3 of
type An or Dn, n ≥ 4, then by the previous result we see that the subspace [V, 〈R〉] is the
natural n-dimensional reflection module for 〈R〉. (Indeed, if 〈R〉 is isomorphic to W3(An),
with 3 | n + 1, then we can replace R by a larger subset of R so that it generates a (larger)
subgroup isomorphic to W3(An+1) or W3(Dn+1) and check inside this group that [V, 〈R〉]
is at least n-dimensional.) In particular, there is a unique point in [V, 〈R〉] (which is not in
Σ) fixed by a parabolic subgroup of type An−1 or Dn−1, respectively, of 〈R〉. Such a point
is called a base point for the set R (or the group it generates). The group 〈R〉 induces the
symmetric group Sn+1 on the n + 1 base points of R. By Ω we denote the set of all those
points that appear as base point for some finite subset of R. For each point p ∈ Ω we fix a
vector b spanning p. The set of all such vectors is denoted by B.

If p is a base point for some set R of reflections and S is a finite set of reflections in R

containing R and with connected diagram, then p is also a base point for S. This can be
checked easily within the group 〈S〉.

Proposition 9.4 Suppose that R is infinite. If all finite subsets R of R with connected di-
agram generate a Weyl group mod 3 of type An or Dn, then G is isomorphic to W3(AB) or
W3(DB). The space V is the natural F3-reflection module for G.

Proof Let r be a reflection in R. Then r induces a transposition on the setΩ of base points.
Indeed, let R be a set of reflections with r ∈ R generating a Weyl group mod 3 of type A4,
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then we see that there are 2 base points that are switched by r. Let b1 and b2 be two vectors
in B spanning these two base points. For any third point p of Ω we can find a subset R ′ of
R such that this point is a base point for R ′. But then R∪R ′ is contained in a finite subset S
of reflections with connected diagram. The three base points are all base points for S and,
as r induces a transposition on base points, p is fixed by r. This proves that r indeed induces
a transposition on Ω.

So, r induces the reflection rb1−b2 or rb1+b2 on V . But then it is clear that G is isomorphic
to W3(AB) or W3(DB) acting on a quotient of the natural module. As the natural module
is irreducible, we find that V is a natural module for G.

Combining the results from this section we obtain the following classification.

Theorem 9.5 Let G ≤ GL(V ) be generated by a normal set R of reflection tori with center
set Σ spanning the F3-vector space V of dimension at least 3. Suppose that Σ is connected and
a G-orbit. If all Σ-planes are dual affine of order 2, then G is a Weyl group mod 3 of type
A, D, or E. The module V is the natural F3 reflection module for G or, G = W3(An) (with
3 | n + 1) or W3(E6), and V is the irreducible quotient of the natural F3 reflection module for
G of dimension n− 1 or 5, respectively.

10 Proof of Theorem 1.2

In this short section we will show how Theorem 1.2 follows from the results obtained so
far. So, suppose that G is a subgroup of GL(V ) generated by a normal set R of reflection
tori. Let Σ be a G-orbit on the set of centers of R. If the group G(Σ) is not transitive on Σ,
Theorem 4.7 shows that assertion 3 of the conclusion of Theorem 1.2 holds.

Therefore, we can assume that G(Σ) is transitive on Σ. But then Theorem 4.4 implies
that we can restrict attention to the case where Σ is nondegenerate. Without loss of gener-
ality, we assume from now on that G = G(Σ), where Σ is nondegenerate and spans V .

If dim(V ) = 2, then Theorem 3.4, together with nondegeneracy clearly implies irre-
ducibility of G on V . We obtain cases 1 and 5 of Theorem 1.1.

Thus we can assume that the dimension of V is at least 3. The connectedness of Σ
(Lemma 4.1) then implies that there are Σ-planes. If all Σ-planes are generic, then Theo-
rem 6.2 implies that the group G acts irreducibly, leading to case 1 of Theorem 1.1. If there
are exceptional planes, then Theorem 7.4, Theorem 8.2 and Theorem 9.5 imply that the
group G is either irreducible on V , or G =W3(An) (n = 2 mod 3) or W3(E6), and V is the
natural F3 reflection module for G, as listed under cases 2, 3, 4 of Theorem 1.1.

11 Proof of Theorem 1.1

As in the previous sections we consider a group G ≤ GL(V ) generated by its normal set of
reflection tori R with center set Σ. Up till now we have considered the case where Σ is a
single G-orbit. But how can two distinct orbits of centers fit together? In this section we try
to answer this question. In particular, we prove the following.

Theorem 11.1 Let G ≤ GL(V ) be generated by a normal set R of reflection tori. Denote by
Σ the set of all centers of elements in R. Then Σ is a union of G-orbits. Let Σ1 and Σ2 be two
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distinct G-orbits on Σ. Then one of the following holds.

i. Σ1 and Σ2 are not connected by thick Σ1 ∪ Σ2-lines. Then G(Σ1) and G(Σ2) commute
and 〈Σi〉 ≤ CV

(
G(Σ j)

)
, for {i, j} = {1, 2}.

ii. Up to a permutation of indices, Σ2 is contained in Rad(Σ1) but not conversely.
iii. Σ2 does not meet the radical of Σ1. Moreover, if Σ1 is nondegenerate then, with V1 =
〈Σ1〉, we have the following.

(a) G(Σ1 ∪Σ2) is an orthogonal group O(V1,Q), where V1 is an F3 vector space and Q a
nondegenerate quadratic form on V1. The orbits Σ1 and Σ2 are the two orbits on the
non-isotropic points of the orthogonal form Q.

(b) G(Σ1 ∪ Σ2) is a Weyl group mod 3 of type B acting naturally on V1, and Σ1, Σ2 are
the two classes of centers of G.

Proof Let Σ1 and Σ2 be two distinct G-orbits on Σ. For i = 1, 2, set Vi := 〈Σi〉 and let Ri

be the subset of R consisting of those tori with center in Σi .
Suppose that Σ2 ∩ V1 is empty. Then each reflection in a reflection torus from R2

centralizes V1 and Σ1 ≤ AΣ2 . If also Σ1 intersects V2 trivially, then G(Σ1) and G(Σ2)
commute and Vi ≤ CV

(
G(Σ j)

)
, i 
= j. IfΣ1 meets V2 nontrivially, then there is an element

R ∈ R1 acting nontrivially onΣ2. In particular, there is a degenerateΣ2-line meetingΣ1 in
a point of Rad(Σ2), see case (iv) of Theorem 3.4. This implies that Σ1 is contained in the
radical of Σ2.

Thus, now assume that Σ1 ∩V2 and Σ2 ∩V1 are nonempty. Then, since G stabilizes Σ1

and Σ2, we find V1 = V2. Let {i, j} = {1, 2}. Then there is an element x ∈ Σi with Ax not
containing Σ j . So, if G(Σi) is not transitive on Σi , then by Theorem 4.7 Σ j is the unique
G-orbit on Σ with Σi not in Ax for some x ∈ Σ j and G(Σ1 ∪ Σ2) induces a Weyl group
mod 3 of type B on the space V1/U = V2/U , where U = Rad(Σi).

So, assume that both G(Σ1) and G(Σ2) are transitive onΣ1 andΣ2, respectively. We can
restrict attention to the case whereΣ1 is nondegenerate.

Theorem 3.4 implies that the dimension of V has to be at least 3. So, there exist Σ1-
planes. If all Σ1-planes are generic, then Theorem 6.2 implies that all points of P(V1)
are in Σ1, so there is no room for Σ2. If there is a dual affine Σ1-plane of order 3, then
Theorem 7.4 implies that there is a nondegenerate Hermitian form h on V1 such that Σ1

consists of all non-singular points with respect to h. As no reflection with center a singular
point will leave Σ1 invariant, we again have no room for Σ2. So we can assume that k =
F3. If there are both affine and dual affine Σ1-planes, then dim(V1) > 4 and there is
a nondegenerate orthogonal form Q on V1, such that Σ1 consists of the +-points of Q.
Since there is no reflection in GL(V1) with center singular with respect to Q that leaves Σ1

invariant, Σ2 consists of all−-points of Q.
By Theorem 9.5, it remains to consider the case where G(Σ1) is a Weyl group mod 3 of

type A, D or E. There is a unique G(Σ1)-invariant quadratic form Q on V1 such that the
elements of Σ1 are (part of the set of) +-points with respect to Q. As G(Σ2) normalizes
G(Σ1), also G(Σ2) is contained in the orthogonal group O(V1,Q).

Let a ∈ Σ1 and p ∈ Σ2 not orthogonal to a. Then, as a is a +-point, the line ap is
a B2-line containing two +-points from Σ1, a and b say, and two −-points from Σ2, see
Theorem 3.4. In particular, Σ2 consists of−-points.
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Let π be a dual affine Σ1-plane containing a and b. Denote by Π the projective plane
spanned by π. Then G(π) is transitive on the 3 −-points in Π, which are therefore all in

Σ2. Clearly, G
((

(Σ1 ∪Σ2)∩Π
))
=W3(B3). In particular, the assumption of G(Σ2) being

transitive on Σ2 implies that dim V ≥ 4.
Let q be in Σ2 but not orthogonal to p. Thus q lies outside Π. Denote by∆ the span of

Π and q. There are at least two centers in Σ1 ∩ Π nonorthogonal to q, and hence B2-lines
on q with two points of each of Σ1 and Σ2. In particular, G

(
(Σ1 ∩ ∆)

)
must be W3(A4),

W3(A5) or W3(D4) according as the restriction of Q to∆ has Witt index− or +.
In the latter case, i.e., G

(
(Σ1 ∩ ∆)

)
∼= W3(D4), the +-points of ∆ form a single orbit,

which coincides with Σ1 ∩ ∆. Moreover, the −-points come into three G
(
(Σ1 ∩ ∆)

)
-

orbits, each of size 4. Each consists of an orthonormal basis of −-points. As p and q are
not orthogononal, they are in distinct orbits under G

(
(Σ1 ∩ ∆)

)
. But the reflections of

any two of these three orbits generate a group isomorphic to W3(D4) which is transitive on
the −-points. Hence G

(
(∆)
)
= O(∆,Q|∆) which is isomorphic to W3(F4), and we are in

case (iii)(a).
If G
(

(Σ1 ∩∆)
)
= W3(A4) or W3(A5), then it has a single orbit of size 15 on −-points

of ∆. Thus, Σ2 ∩∆ consists of all −-points of ∆. But then G
(
(Σ1 ∩∆)

)
= W3(A5) and

G
(

(∆)
)
= O(∆,Q|∆).

If dim V ≥ 5, then we can choose the point q in such a way that G
(

(Σ1 ∩∆)
)

contains
a subgroup W3(A4) and hence equals W3(A5).

But a Weyl group mod 3 of type A, D or E, different from A5 or E6, does not contain a
subgroup generated by reflections of type A5 acting irreducibly on the space spanned by its
centers. If G =W3(E6), then G acts as an orthogonal group on a 5-dimensional space, and
Σ2 is the orbit of−-points. This proves the theorem.

We are now able to complete the proof of Theorem 1.1. Suppose that the group G ≤
GL(V ) is generated by a normal set R of reflection tori with center set Σ. Suppose that G
acts irreducibly.

If Σ1 is a G-orbit on Σ, then the radical of Σ1 is G-invariant, and hence trivial. So Σ1 is
nondegenerate. If dim(V ) = 2, then Theorem 1.1 follows easily from Theorem 3.4. So, we
assume dim(V ) ≥ 3.

If G(Σ1) = G for some orbit Σ1, then
(
Σ1,L(Σ1)

)
contains planes and Theorem 1.1

follows from the results of Sections 6–9.
If G(Σ1) 
= G then for some G-orbit Σ1, then the above theorem implies that G is as

described in case (iii) of Theorem 11.1 (note that there is no room for a third orbit). This
finishes the proof of Theorem 1.1.

12 Appendix: Graphs and Trees

The theorem below is used in the proof of Proposition 9.2. The special case treated in
Theorem 3.3 of [1] suffices for this proof, but we prefer to give Theorem 12.4 with proof as
it was part of the first author’s PhD thesis defense 25 years ago.

Graphs are finite, without loops and without multiple edges.
Let Γ be a graph with vertex set VΓ and edge set EΓ. Adjacency is denoted by ∼. For

vertices γ, δ of Γ we write Γ(γ,δ) to denote the graph on the same vertex set as Γ and with
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edge set

EΓ(γ,δ) =

{(
EΓ ∪ {{ζ, δ} | ζ � δ, ζ ∼ γ}

)
\ {{ζ, δ} | ζ ∼ δ, γ} if γ ∼ δ

EΓ otherwise.

Lemma 12.1 If Γ is connected, then so is Γ(γ,δ).

We say that Γ(γ,δ) can be obtained from Γ by an elementary transformation with respect
to (γ, δ). Note that Γ(γ,δ)(γ,δ) = Γ. Let X, Y be subsets of VΓ. We say that Γ is (X,Y )-
equivalent to∆ if it can be obtained from∆ by a series of elementary transformations with
respect to pairs (γ, δ) with γ ∈ X and δ ∈ Y .

Lemma 12.2 If Z is a set of vertices of Γ separated from X by Y (that is, X and Z are in
distinct connected components of Γ \ Y ), then for any graph∆ that is (X,Y )-equivalent to Γ,
the subgraphs of ∆ and of Γ induced on Z coincide and so do the sets of edges in ∆ and in Γ
between Z and Y .

In particular, the subgraph induced on Z is the same for all graphs in the (X,Y )-equiv-
alence class of Γ.

Lemma 12.3 If γ is a vertex of Γ and there is a circuit on γ in Γ, then there is a graph ∆
which is (VΓ \ {γ},VΓ)-equivalent to Γ and satisfies

valency∆(γ) = valencyΓ(γ)− 1.

Proof Let C : γ = γ1, γ2, . . . , γn be the distinct vertices along a minimal induced circuit
on γ in Γ. Suppose Γ \C = {ζ1, . . . , ζl}. Then

∆ = Γ(γ2,γ)···(γn−1,γ)(γ2,ζ1)···(γn−1,ζ1)···(γ2,ζl)···(γn−1,ζl)

is as required. To see this, note first that the circuit C has changed into the tree determined
by the adjacencies

γ ∼ γn−1 ∼ γn, γn−1 ∼ γn−2 ∼ · · · ∼ γ2.

Second, for ζ /∈ C , the adjacency between ζ and γ has not changed. So, the valency of γ
in∆ is the same as the one for Γ except that the valency of γ in C has dropped from 2 to 1.

Theorem 12.4 Every connected graph is equivalent to a tree.

Proof Consider induced subtrees of Γ not containing two vertices of any circuit. Notice
that, as a vertex is a tree not containing two vertices of a circuit, such subtrees exist. Fix a
maximal subtree T not containing two vertices of any circuit. Let γ be an endpoint of T
having a neighbor outside T. Then γ separates T \ {γ} from VΓ \ T. Suppose γ lies on a
circuit. Then, by the above separation property, the circuit lies entirely in (VΓ \ T) ∪ {γ}.
Apply Lemma 12.3 to the induced graph on (VΓ\T)∪{γ} to find a

(
(VΓ\T), (VΓ\T)∪

{γ}
)
-equivalent graph ∆ of Γ with valency∆(γ) < valencyΓ(γ). (Use Lemma 12.2 to see
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that the transformations on (VΓ \ T) ∪ {γ} can be extended to all of Γ without effecting
the graph structure on T.)

Continue until there are no more circuits on γ. As the valency of γ decreases, this loop
terminates. Pick a neighbor δ of γ in (∆ \ T) ∪ {γ}. Now the induced graph on T ∪ {δ}
is a tree. Repeat the above procedure, beginning with the choice of a vertex of T separating
the rest of T from a nonempty remainder in Γ, until there are no such end nodes. (At each
step, the induced subtree becomes bigger, so the loop terminates.) Then T = Γ is a tree.
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