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Abstract. We study properties of B-free numbers, that is numbers that are not
divisible by any member of a set B. First we formulate the most-used procedure
for finding them (in a given set of integers) as easy-to-apply propositions. Then we
use the propositions to consider Diophantine properties of B-free numbers and their
distribution on almost all short intervals. Results on B-free numbers have implications
to non-vanishing Fourier coefficients of cusp forms, so this work also gives information
about them.
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1. Introduction. Let B = {bi}i∈� be a set of integers greater than 1 such that

∑
b∈B

1
b

< ∞ and gcd(bi, bj) = 1 whenever i �= j. (1)

We say that a natural number n is B-free if it is not divisible by any element of the set
B. The notion of B-free numbers was first introduced by Erdó́s [9] as a generalisation
of square-free integers.

In this paper, we will prove that certain natural subsets of integers contain B-
free numbers. Compared to the most-studied number theoretic sequence, the prime
numbers, B-free numbers are much easier to handle. This is to be expected since the
set of B-free numbers has positive density

∏
b∈B

(
1 − 1

b

)
.

Besides having independent interest, results on B-free numbers have implications
to non-vanishing Fourier coefficients of cusp forms as was first noticed by Balog and
Ono [7]. We will discuss this application in Section 2.

We will formulate the usual procedure for finding B-free numbers in a given setA ⊂
� ∩ [x, 2x] as easy-to-apply propositions in Section 4. The propositions demonstrate
that if we have enough so-called type I information, we can find B-free numbers. By
saying that we have type I information up to D, we mean that, for any bounded complex
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coefficients ad , we can give an asymptotic formula for the so-called type I sum

∑
dm∈A
d≤D

ad =
∑
d≤D

ad |Ad |,

where

Ad = {a ∈ A | a ≡ 0 (mod d)} (2)

and |C| denotes the cardinality of the set C.
More precisely Proposition 7 below shows that we can find B-free numbers in a

dense enough set A if we have type I information up to D = x1/2+ε. We will actually
prove a more complicated-looking generalisation, Proposition 8 below. It can often
save the day when we cannot quite obtain this good type I information for arbitrary
coefficients ad .

The difference to the case of primes is that type I information is not sufficient for
detecting primes in the set A, but one needs some additional information about A.
Often this additional information is in the form of so-called type II information on
certain ranges [M1, M2], which means information about asymptotic behaviour of the
so-called type II sums

∑
mn∈A

M1<m<M2

ambn,

where am and bn are bounded complex coefficients. Vinogradov was the first one to
split a sum over primes into type I and type II sums, and since then this splitting has
been used in numerous applications. In our case, we will be able split a (weighted) sum
over B-free integers into type I sums only.

As a first illustrative application, we prove in Section 5 the following result on
Diophantine properties of B-free numbers.

THEOREM 1. Let α be irrational and θ < 1/2. Then, for any β ∈ �, there are infinitely
many B-free numbers n such that

‖αn + β‖ < n−θ .

Here ‖x‖ denotes the distance from x to the nearest integer.

This improves a result of Alkan, Harman and Zaharescu [4] who showed that the
theorem holds for any θ < 1/3. They contended themselves with the exponent 1/3
since type II information disappears there. However, as mentioned, type I information
is enough for finding B-free numbers. On the other hand, for primes the best known
result is that, for any ε > 0, ‖αp‖ < p−1/3+ε for infinitely many primes p (see [14])
exactly due to the break in type II information.

Gaps between B-free numbers have enjoyed some recent interest. The latest results
can be found in the paper [13] by Kowalski, Robert and Wu. In particular, they
showed that the gap between consecutive B-free numbers of size x is O(x7/17). Like
its predecessors, this result depends on good estimates for exponential sums over
monomials.
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In this paper, we do not attack individual gaps but instead study the gaps on
average. For this we write

E(x, h) = |{n ∼ x | [n, n + h] does not contain any B-free numbers}|,
where n ∼ x means n ∈ � ∩ [x, 2x). Plaksin [16] has proved that

E(x, h) � xh−1 log x for h ≤ x1/13−ε (3)

and

E(x, h) � xh−1/3 for h ≥ xε. (4)

Here and later ε denotes an arbitrarily small positive constant. Choosing the
parameters in the argument leading to (4) more carefully, one would actually obtain

E(x, h) � x1+ε

h
+ x2/3+εh1/3.

Here we will prove the following estimates for E(x, h).

THEOREM 2. (i) Let δ > 0 and h ≤ x1/6−δ. Then, for any θ < 1,

E(x, h) �δ,θ x/hθ .

(ii) When B ⊂ �, this holds for any h ≥ 1.

The main point of part (i) is the removal of the logarithm in (3), so that unlike
Plaksin’s results, this theorem gives non-trivial information even in very short intervals.
Qualitative results of this sort have been obtained by Alkan in [1] and [2].

Again, the results for B-free numbers are much stronger than what is known for
primes for which Peck [15] has proved that the exceptional set has size x5/4+ε/h2. For
large h, this is better than Theorem 2, which is optimized for small h. However, it
should not be difficult to gain better results for large h.

2. Applications to non-vanishing Fourier coefficients. For a positive integer N and
an even positive integer k, we write S∗

k(N, χ ) for the space of holomorphic primitive
cusp forms of weight k, conductor N and nebentypus χ . Each f ∈ S∗

k(N, χ ) has a
Fourier expansion

f (z) =
∞∑

n=1

λf (n)n(k−1)/2e(nz)

in the upper half plane. The normalised Fourier coefficients λf (n) are also eigenvalues
of Hecke operators and in particular multiplicative.

In the case of the discriminant function

	(z) =
∞∑

n=1

τ (n)e(nz) = e(z)
∞∏

n=1

(1 − e(nz))24 ∈ S∗
12(1, χ0)

Lehmer has famously conjectured that the Fourier coefficients τ (n) (called Ramanujan’s
τ -function) never vanish, and this conjecture is still wide open.
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In the general case Serre [17] has shown that, for any ε > 0 and any non-CM
f ∈ S∗

k(N, χ ),

|{p ≤ x | λf (p) = 0}| �f
x

(log x)3/2−ε
, (5)

so λf (p) can vanish only rarely. Taking

B = {p ∈ � | λf (p) = 0} ∪ {p2 | λf (p) �= 0},
we see from (5) that any result for B-free numbers implies a result for the set of n for
which λf (n) is non-vanishing.

In particular, Theorem 1 implies that there are infinitely many integers n such that
λf (n) �= 0 and ‖αn + β‖ < n−1/2+ε, so that Lehmer’s conjecture cannot completely fail
even in such a sparse set of integers.

From the application’s point of view, short intervals are probably more interesting.
In the case of all short intervals, Kowalski, Robert and Wu [13] have made a
comprehensive study. While considering almost all intervals here, we are able to take
advantage of Theorem 2(ii) thanks to them: They refined Serre’s argument to yield

|{p ≤ x | λf (pν) = 0 for some ν ≥ 1}| �f
x

(log x)3/2−ε
.

This lets us take

B = {p ∈ � | λf (pν) = 0 for some ν ≥ 1},
so that B ⊂ �. Besides rewriting Theorem 2(ii) for non-vanishing Fourier coefficients,
we also immediately get following corollary.

COROLLARY 3. Assume that f (z) ∈ S∗
k(N, χ ) does not have complex multiplication.

Let

if (n) = max{k ≥ 0 | λf (n + j) = 0 for 0 < j ≤ k}.
Then, for any θ < 1,

1
x

∑
n∼x

if (n)θ = Of,θ (1). (6)

This is much superior to the conditional estimates present in [3], where Alkan
shows that if (5) was improved to

|{p ≤ x | λf (p) = 0}| � xρ

for some ρ ∈ (0, 1), one would have (6) for any θ < (1 − ρ)/2.

3. Auxiliary results. In this section, we present a couple of auxiliary results that
we will need later. We start with a fundamental lemma of sieve.

LEMMA 4. Let z ≥ 2 and y = zs with s ≥ 2. Write P(z) = ∏
p<z p. There exist two

sequences (λ±
q )q|P(z) of real numbers such that
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(i) λ±
1 = 1, |λ±

q | ≤ 1 for all q, and λ±
q = 0 for q ≥ y;

(ii) For all Q | P(z), Q > 1, ∑
q|Q

λ−
q ≤ 0 ≤

∑
q|Q

λ+
q ;

(iii) One has

∑
q|P(z)

λ±
q

q
= (1 + O(e−s))

∏
p<z

(
1 − 1

p

)
. (7)

Proof. See for instance [10, Lemma 5]. �
The following lemma shows that while looking for B-free numbers, we can restrict

to a set B with numbers with at most two prime factors. This trick was also utilized by
Alkan and Zaharescu [5].

LEMMA 5. Let B ⊂ � satisfy (1). Then there exists a set B′ ⊂ � such that (1) holds
with B replaced by B′,

B′ ⊂ � ∪ {p2 | p ∈ �} ∪ {p1p2 | p1, p2 ∈ �}
and every B′-free number is also B-free.

Proof. We define a sequence {b′
i}i∈� = B′ satisfying all the conditions. If bi ∈ �,

we take b′
i = bi. Otherwise we take b′

i to be the product of two largest (possibly not
distinct) prime factors of bi. Clearly the elements of B′ are pairwise co-prime and every
B′-free number is also B-free. Furthermore, by co-primality

∑
b′∈B′

1
b′ ≤

∑
b∈B
b∈�

1
b

+
∑
p∈�

1
p2

< ∞.

�

4. Method for finding B-free numbers. The basic framework used in most
subsequent works on B-free numbers was already present in Erdó́s’s first paper [9]
on the topic. However, it seems that the argument, with some refinements, has been
repeated for each problem. Although it is not difficult to apply the method for each
problem separately, it is instructive to have a general formulation from which one
clearly sees, what exactly needs to be known about a sequence in order to find B-free
numbers. In this section, we will give such a formulation. In it and its proof, we will
need small parameters ε > η > 0. The implied (and explicit) constants may depend on
ε and any implied (and explicit) constants in the assumptions but not on η.

Throughout we assume the following.

ASSUMPTION 6. Assume that ω(d) is a multiplicative function such that, for every
p ∈ � and k ∈ �, one has

ω(pk) ∈ [0, pk), and ω(p), ω(p2) � 1.
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Recalling the notation Ad from (2), we write

|Ad | = ω(d)
d

H + Rd, (8)

where one tries to choose H ≥ 1 and ω(d) so that Rd is small at least on average.
We start with a simple statement, which shows that we can find B-free numbers

from a dense enough sequence A as soon as the level of distribution is ≥ x1/2+δ (that
is (10) below holds). By dense enough we mean here that

H � x1/2 and
∑

xε<p<xε+ε2

ω(p)
p

�ε 1 (9)

for any ε > 0 and large enough x.

PROPOSITION 7. Let B = {bi} be a sequence of integers satisfying (1) and let A ⊆
[x, 2x] ∩ � satisfy (8) with some H and ω such that (9) holds for any ε > 0 and any large
enough x. Assume that, for any bounded real coefficients ad and for some δ > 0,∑

d≤x1/2+δ

adRd = o(H). (10)

Then

|{n ∈ A | n is B-free}| � H

for any large enough x.

This is already enough to prove Theorem 1. However, in the situation in Theorem 2
and many other applications, one can conclude something like (10) only for special
coefficients ad . Next more general proposition gives us some flexibility.

There we will need the notation

P(M) = max{p ∈ � | p | m for some m ∈ M},
that is, P(M) is the greatest prime factor occurring in the set M. We also write p(n)
for the smallest prime factor of n.

PROPOSITION 8. Let ε > 0 and let B = {bi} be a sequence of integers satisfying (1)
and let A ⊆ [x, 2x] ∩ � satisfy (8). Let α1, α2 ∈ [0, 1), Mi = xαi and let y ∈ [xε, x] be a
parameter depending on x. Assume that either α1 = 0 or ω(d) is identically 1, and that

M2 ⊆ {
n ∈ [

M2, M1+ε
2

] | p | n =⇒ p > Mε
2

}
is such that

∑
m∈M2

ω(m)/m �ε 1. Assume that the following three conditions hold for
any small enough η.

(i) For any constant a and any sieve coefficients λq as in Lemma 4 with y = Mε
1 and

z = Mη

1 (in case α1 = 0, take just λ1 = 1),∑
q,k,m2

q≤Mε
1 ,M1≤qk≤M1+ε

1
m2∈M2

λqRaqkm2 = o(H);
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(ii) There is a constant C such that, for any set C of integers in the interval
[1, max{y, xηM1+ε

1 }],
∑
c∈C

|Ac| ≤ C
∑
c∈C

ω(c)
c

H + o(H);

(iii) M1M2y > 2x and ∑
b∈B,b>y

p(b)<max{M1+ε
1 ,P(M2)}

|Ab| = o(H). (11)

The estimate (11) holds in particular if either

(a) B ⊂ � and y ≥ max{M1+ε
1 , P(M2)} or

(b) max{M1+ε
1 , P(M2)} · max

b∈B
b>y

|Ab| = o(H).

Then

|{n ∈ A | n is B-free}| � H

for any large enough x.

Notice that Proposition 7 follows from Proposition 8 taking ε = 1/�2/δ�, M1 =
1, M2 = y = x1/2+ε (that is, α1 = 0 and α2 = 1/2 + ε) and

M2 = {
n ∈ [

M2, M1+ε
2

] | p | n =⇒ Mε
2 < p < Mε+ε2

2

}
.

Before going into the proof of Proposition 8, we discuss the conditions (i)–(iii)
a bit. The conditions (i) and (ii) amount to gathering type I information, whereas
the condition (iii) tells how much type I information is needed, that is how large the
parameters y and Mi must be.

In (i), there is a free variable k, which is sometimes of benefit. Other times, one
might choose M1 = 1 still keeping the freedom to choose the set M2 so that type I
information is available.

In (ii), an upper bound of correct order of magnitude suffices. So if there are, for
instance, prime numbers involved, one can use an upper bound sieve. This was the case
in [19], where Wu showed that, for each sufficiently large x, the interval [x, x + x3/4+ε]
contains primes p such that p + 2 is B-free — Wu was able to conclude a result like (ii)
for y = x3/4 using the Brun-Titchmarsh theorem.

Proof of Proposition 8. The essentials of the proof are contained in earlier papers
on B-free numbers. However, for completeness sake, we prove the general formulation
combining the arguments from the literature.

By Lemma 5, we can assume that B consists of numbers with at most two prime
factors, so that ω(b) � 1 for all b ∈ B. Throughout we will assume that x is large. Let

M1 = {
n ∈ [

M1, M1+ε
1

] | p | n =⇒ p > Mη

1

}
,

where η is a very small positive constant. We will consider

A =
∑
n∈A

n B-free

c(n) with weights c(n) =
∑

n=m1m2k
mi∈Mi

1.
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Writing, for i = 1, 2,

α′
i =

{
αi if αi �= 0,

1 otherwise,

we have, for n ≤ 2x,

c(n) ≤
∑
m1|n

m1∈M1

∑
m2|n

m2∈M2

1 ≤
∑
m1|n

m1∈M1

21+1/(α′
2ε) ≤ 22+1/(α′

1η)+1/(α′
2ε), (12)

so it is enough to prove that A � H.
Let l = l(B) ∈ � be such that

∞∑
k=l+1

ω(bk)
bk

<
1

22+1/(α′
2ε)C

∑
m∈M2

ω(m)
m

∏
b∈B

(
1 − ω(b)

b

)
, (13)

where C is the constant in condition (ii). Such l exists since by assumptions on ω,B

and M2, the right-hand side is �ε,B 1.
Now clearly

A ≥ A1 − A2 − A3 − A4,

where

A1 =
∑
n∈A

bk|n =⇒ k>l

c(n), A2 =
∑
b∈B

bl<b≤xα′
1η/2

∑
n∈Ab

c(n)

A3 =
∑
b∈B

xα′
1η/2

<b≤y

∑
n∈Ab

c(n) and A4 =
∑
b∈B

y<b≤2x

∑
n∈Ab

c(n).

Our splitting is similar to that in [20]. In [13], A2 and A3 were treated as one sum,
but in doing that there is a slight problem due to definitions of two parameters η and l
depending on each other. This problem is easy to overcome by working as here, that is
as in [20].

We estimate the sums Ai one by one. By (12),

A2 ≤ 21+1/(α′
2ε)

∑
b∈B

bl<b≤xα′
1η/2

∑
m1∈M1

∑
n∈A

b|n,m1|n

1.
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By the definition of M1, (b, m1) = 1 above. Hence

A2 ≤ 21+1/(α′
2ε)

∑
b∈B

bl<b≤xα′
1η/2

∑
m1∈M1

|Abm1 |

≤ 21+1/(α′
2ε)CH

∑
b∈B

bl<b≤xα′
1η/2

∑
m1∈M1

ω(b)ω(m1)
bm1

+ o(H)

≤ H
2

∏
b∈B

(
1 − ω(b)

b

) ∑
m1∈M1

ω(m1)
m1

∑
m2∈M2

ω(m2)
m2

+ o(H)

by condition (ii) and (13).
Writing f (x) = oη(|g(x)|) when, for any fixed η > 0, f (x)/|g(x)| → 0 when x → ∞,

we see by (12), (ii) and (1) that

A3 ≤ 22+1/(α′
1η)+1/(α′

2ε)
∑
b∈B

xα′
1η/2

<b≤y

|Ab|

≤ 22+1/(α′
1η)+1/(α′

2ε)

⎛
⎜⎜⎝CH

∑
b∈B

xα′
1η/2

<b≤y

ω(b)
b

+ o(H)

⎞
⎟⎟⎠ = oη(H).

Next we treat A4. Only those n divisible by both m1m2 with mi ∈ Mi and by some
b ∈ B with b > y give non-zero contribution to A4. Since M1M2y > 2x, we must have
(m1m2, b) > 1. Now

p(b) ≤ p((b, m1m2)) ≤ max
{
M1+ε

1 , P(M2)
}

and hence we have

A4 ≤ 22+1/(α′
1η)+1/(α′

2ε)
∑

b∈B,b>y
p(b)<max{M1+ε

1 ,P(M2)}

|Ab| = oη(H)

by (12) and (11). It is clear that (iii)(a) implies (11). Also (iii)(b) implies it since b ∈ B

are pairwise co-prime, so that at most max{M1+ε
1 , P(M2)} distinct b give non-trivial

contribution to the sum in (11).
Consider then A1. Following [20] we introduce some notation. For σ =

{k1, . . . , ki} ⊂ {1, . . . , l}, we write |σ | = i and dσ = bk1 bk2 · · · bki with conventions
|∅| = 0 and d∅ = 1.

Let

R =
∑

σ⊆{1,...,l}
(−1)|σ | ∑

m1,m2
mi∈Mi

Rdσ m1m2 =
∑

σ⊆{1,...,l}
(−1)|σ |R(σ ),
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say. We have by the inclusion-exclusion principle

A1 =
∑

σ⊆{1,...,l}
(−1)|σ | ∑

n∈A
dσ |n,m1m2|n

mi∈Mi

1 =
∑

σ⊆{1,...,l}
(−1)|σ | ∑

mi∈Mi

|Adσ m1m2 |

since bi are pairwise co-prime and (dσ , m1m2) = 1 when mi ∈ Mi. We get

A1 = H
∑

σ⊆{1,...,l}

(−1)|σ |ω(dσ )
dσ

∑
mi∈Mi

ω(m1m2)
m1m2

+ R.

Since ω(d) is identically 1 when M1 > 1, ω(m1m2) = ω(m1)ω(m2) here, so that

A1 ≥ H
∏
b∈B

(
1 − ω(b)

b

) ∑
m1∈M1

ω(m1)
m1

∑
m2∈M2

ω(m2)
m2

+ R.

Next we want to show that R = o(H). In case α1 = 0, this follows immediately
from condition (i). Hence, we can assume that ω is identically one. Next we transform
the sum over M1 using Lemma 4. Taking z = Mη

1 and y = Mε
1 we get

R(σ ) ≤
∑

M1≤qk≤M1+ε
1

m2∈M2

(
λ+

q |Adσ qkm2 | − λ−
q H

1
dσ qkm2

)

=
∑

M1≤qk≤M1+ε
1

m2∈M2

λ+
q Rdσ qkm2 + H

∑
M1≤qk≤M1+ε

1
m2∈M2

λ+
q − λ−

q

dσ qkm2
.

The first sum is o(H) by assumption (i). On the other, hand the second sum is

1
dσ

∑
m2∈M2

1
m2

∑
q|P(Mη

1 )

λ+
q − λ−

q

q

(
ε log M1 + O

(
Mε−1

1

))

� e−ε/η log M1

∏
p<Mη

1

(
1 − 1

p

)
+ o(1) � e−ε/η/η + o(1)

by (7) and Mertens’ formula. Hence, in this case R = o(H) + O(H · e−ε/η/η).
Collecting everything together, we obtain that

A ≥ A1 − A2 − A3 − A4

≥ H
2

∏
b∈B

(
1 − ω(b)

b

) ∑
m1∈M1

ω(m1)
m1

∑
m2∈M2

ω(m2)
m2

+ O(H · e−ε/η/η) + oη(H).

(14)

Notice that the sum over m1 above is

∑
M1≤m1≤M1+ε

1
p|m1 =⇒ p>Mη

1

1
m1

�ε 1.
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Hence by our assumptions on B, ω andM2, the first term in (4) is �H, so it dominates
the second term when η is small enough. Letting then x → ∞, we see that indeed
A � H. �

5. Proof of theorem 1. In this section, we derive Theorem 1 from Proposition 7
with

A = {n ∼ x | ‖αn + β‖ < x−θ /2}.

Here x = q2 with q any large denominator in the continued fraction expansion of
α. We further take H = x1−θ and ω(d) = 1. We show that (10) holds for any ε <

(1/2 − θ )/2 (> 0).
We take advantage of the following standard finite Fourier expansion.

LEMMA 9. Let

χδ(x) =
{

1 if ‖x‖ ≤ δ,
0 else.

Then there exist coefficients c±
l such that

2δ − 1
L

+
∑

0<|l|<L

c−
l e(lx) ≤ χδ(x) ≤ 2δ + 1

L
+

∑
0<|l|<L

c+
l e(lx),

where

|c±
l | � min

{
δ + 1

L
,

1
l

}
.

Proof. See [6, Sections 2.2–2.3]. �

We will bound the arising exponential sums by Vinogradov’s estimate for type I
exponential sums; a convenient form for us is the following direct consequence of [11,
formula (1.6.1)].

LEMMA 10. Assume that |α − a/q| < 1/q2 with (a, q) = 1. Then, for any function
f : � → �+ such that 1 ≤ rf (r) ≤ N whenever 1 ≤ r ≤ R, one has

∑
1≤r≤R

∣∣∣∣∣∣
∑

f (r)≤n<2f (r)

e(αnr)

∣∣∣∣∣∣ �
(

N
q

+ R + q
)

log(NRq).

Returning to the proof of Theorem 1, let L = xθ+ε. By Lemma 9

|Ad | =
∑

k∼x/d

χx−θ /2(αdk + β) = H
d

(1 + O(x−ε)) + O

⎛
⎝ ∑

0<|l|<L

cl

∑
k∼x/d

e((αdk + β)l)

⎞
⎠

https://doi.org/10.1017/S0017089512000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000043


392 KAISA MATOMÄKI

for some cl � min{1/ l, x−θ }. Hence (10) holds if

∑
d≤x1/2+ε

∑
l∼L′

∣∣∣∣∣∣
∑

k∼x/d

e(dklα)

∣∣∣∣∣∣ = o(HL′/ log x)

for any L′ ≤ L. The left-hand side is

� xε/2
∑

1≤r≤x1/2+εL′

∣∣∣∣∣∣
∑

f (r)≤k<2f (r)

e(αkr)

∣∣∣∣∣∣ ,
where f (r) = x/d with d ∼ r/(2L′) is chosen so that the corresponding exponential sum
has maximal absolute value. Applying Lemma 10 with N = 2xL′, this is

�
(

xL′

q
+ x1/2+εL′ + q

)
xε � HL′xθ−1/2+2ε = o(HL′/ log x).

Hence, Proposition 7 is applicable and Theorem 1 follows since there are infinitely
many choices for the denominator q.

6. Proof of theorem 2. We prove Theorem 2 by showing that the conditions of
Proposition 8 hold for A = A(n) = [n, n + h] with few exceptional n.

Let ε be very small compared to δ and 1 − θ . For the proof of Theorem 2(i), we
choose ω(d) = 1, H = h + 1, M1 = 1, M2 = (x/h)3/5−δ/2, y = x1/2/(log3 x) and

M2 = {
m2 = n1n2 ∈ [

M2, M1+ε
2

] | ni ∈ [
Mi/3

2 , M(1+ε)i/3
2

]
,

p | ni =⇒ p ∈ [
Mεi

2 , Mε(i+1)
2

]}
.

We start from condition (iii). Since h < x1/6−δ, M2y > 2x. Further the interval
[x, 2x + h] contains � x/b numbers divisible by b ∈ B. As the number of b giving
positive contribution to the sum (11) is at most P(M2) ≤ M3ε

2 , we get in total at most
hx1+3ε/y intervals [n, n + h] containing a number counted in (11). Hence, there are
� hx1+3ε/y = o(x/h) exceptions to (iii).

The work of Plaksin gives that, for any bounded coefficients ad ,∑
d≤D

adRd = o(H) (15)

with � D2(log D)4/h exceptions, which implies condition (ii) with C = 1 and o(x/h)
exceptions.

Establishing condition (i) is more involved. We study the second moment

∑
n

f (n)

⎛
⎝ ∑

m∈M2

Ram

⎞
⎠

2

=
∑

n

f (n)

⎛
⎜⎜⎝ ∑

akm∈A(n)
m∈M2

1 − H
∑

m∈M2

1
am

⎞
⎟⎟⎠

2

, (16)

where f (n) is a smooth weight function such that f (n) = 1 for n ∈ [x, 2x], f (k)(x) � x−k

for any k ≥ 0, and f is supported on [x/2, 5x/2] (See for instance [11, Appendix 5] for
construction of such function). Condition (i) follows with o(x/hθ ) exceptions if we can
show that (16) is o(h2−θ x).

https://doi.org/10.1017/S0017089512000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000043


DISTRIBUTION OF B-FREE NUMBERS 393

REMARK 11. The sum in (16) is essentially a type I sum over almost all short
intervals. Such sums are often handled by applying Perron’s formula to change into
a question about mean values of Dirichlet polynomials (see for instance [11, Chapter
9]) and then applying known results on these. A mean value result where the Dirichlet
polynomials are exactly of the form corresponding to our sum has been proved by
Deshouillers and Iwaniec [8]. However, as we are working on very short intervals, we
cannot afford to transform into Dirichlet polynomials and use their result. A crucial
observation here is that the proof of the mean value result in [8] is carried out by
essentially transforming the problem to estimating a type I sum in almost all short
intervals. This sum is then transformed to sums of Kloosterman sums. We will avoid
losing too much by not going back and forth.

We square out and see that (16) is

∑
n

f (n)

⎛
⎜⎜⎝ ∑

akm∈[n,n+h]
m∈M2

1

⎞
⎟⎟⎠

2

− 2
h + 1

a

⎛
⎝ ∑

m∈M2

1
m

⎞
⎠ ∑

n

f (n)
∑

akm∈[n,n+h]
m∈M2

1

+ (h + 1)2

a2

⎛
⎝ ∑

m∈M2

1
m

⎞
⎠

2 ∑
n

f (n)

= S1 − 2S2 + S3,

say.
For n1 ∈ A(n), |f (n1) − f (n)| � h/n, so

S2 = h + 1
a

⎛
⎝ ∑

m∈M2

1
m

⎞
⎠ ∑

n

∑
akm∈[n,n+h]

m∈M2

f (akm) + O(h3)

= (h + 1)2

a

⎛
⎝ ∑

m∈M2

1
m

⎞
⎠ ∑

m∈M2

∑
k

f (akm) + O(h3) (17)

Notice that, for any α > 0,

∑
k

f (αk) =
∑

k

1
α

∫ α(k+1/2)

α(k−1/2)
f (t) + O(|t − αk|f ′(t))dt = f̂ (0)

α
+ O(1),

where f̂ (z) = ∫
f (t)e(−tz)dt is the Fourier transform of f (x). Applying this to (17) and

to S3, we are left with showing that

S1 = (h + 1)2

a2

⎛
⎝ ∑

m∈M2

1
m

⎞
⎠

2

f̂ (0) + o(h2−θ x).

Squaring the definition of S1 out,

S1 =
∑

n

f (n)
∑

m,m′∈M2

∑
akm∈[n,n+h]

ak′m′∈[n,n+h]

1.
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The diagonal terms (akm = ak′m′) contribute

� h
∑

m,m′∈M2

∑
x/2≤akm≤5x/2+h

akm=ak′m′

1 � h
∑

m,m′∈M2

x
[m, m′]

� hx
∑

d≤M1+ε
2

p|d =⇒ p>Mε
2

1
d

⎛
⎜⎜⎜⎝

∑
m≤M1+ε

2 /d
p|m =⇒ p>Mε

2

1
m

⎞
⎟⎟⎟⎠

2

� hx.

On the other hand, the non-diagonal terms contribute

2
h∑

j=1

(h + 1 − j)
∑

m,m′∈M2

∑
akm=ak′m′+j

f (akm) + O(h3)

Writing g for gcd(m, m′) only terms with ag | j give non-trivial contribution. Hence, we
can rearrange the main term above to

2
∑
g,j

1≤agj≤h

(h + 1 − agj)
∑

bg,b′g∈M2
(b,b′)=1

∑
kb=k′b′+j

f (abgk)

= 2
∑
g,j

1≤agj≤h

(h + 1 − agj)
∑

bg,b′g∈M2
(b,b′)=1

∑
k≡jb (mod b′)

f (abgk)

= 2
∑
g,j

1≤agj≤h

(h + 1 − agj)
∑

bg,b′g∈M2
(b,b′)=1

∑
l

f (abb′g · l + abgjb), (18)

where b is the inverse of b (mod b′).
Recalling that f and its derivatives are very smooth, we apply the Poisson

summation formula (see [12, (4.24)]) to the sum over l getting that (18) is

2
∑
g,j

1≤agj≤h

(h + 1 − agj)
∑

bg,b′g∈M2
(b,b′)=1

1
abb′g

∑
k

f̂
(

k
abb′g

)
e

(
jkb
b′

)
. (19)

If g|k| > K := M2
2x2ε−1, iterated partial integration gives that f̂ (k/(abb′g)) � x−100, so

we can restrict the sum over k to the range g|k| ≤ K . The main term is obtained for
k = 0 and is

2f̂ (0)
a

∑
1≤g≤h/a

∑
bg,b′g∈M2

(b,b′)=1

1
bb′g

�h/(ag)�∑
j=1

(h + 1 − agj)

= 2f̂ (0)
a

∑
1≤g≤h/a

∑
bg,b′g∈M2

(b,b′)=1

1
bb′g

(
(h + 1)2

2ag
+ O(h)

)
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= (h + 1)2

a2
f̂ (0)

⎛
⎜⎜⎝∑

g≥1

∑
bg,b′g∈M2

(b,b′)=1

1
bg

· 1
b′g

−
∑

g>h/a

1
g2

∑
bg,b′g∈M2

(b,b′)=1

1
bb′

⎞
⎟⎟⎠ + O(hx)

= (h + 1)2

a2
f̂ (0)

⎛
⎝ ∑

m∈M2

1
m

⎞
⎠

2

+ O(hx).

After the truncation and removal of the main term k = 0 from (19), we are left
with

∑
1≤g≤h/a

∑
j

1≤agj≤h

∑
bg,b′g∈M2

(b,b′)=1

∑
k

0<g|k|≤K

F(h, g, j, k, b, b′)e

(
jkb
b′

)
, (20)

where

F(h, g, j, k, b, b′) = 2(h + 1 − agj)
1

abb′g
f̂

(
k

abb′g

)
� hx

bb′g
� ghx

M2
2

.

Essentially the same average of Kloosterman sums was also reached by
Deshouillers and Iwaniec in [8, end of page 309], the only difference, besides differently
named parameters, being that their F-function has different size (gLT/(MN) in their
notation). The similarity of the outcomes is not a coincidence but very natural
in light of Remark 11. We can actually readily conclude from [8, Section 4] for
M = M2(1+ε)/3

2 , N = M(1+ε)/3
2 , L = x/(MN) and T = x1+ε/h that (20) is

� xε

ghx
M2

2

gLT
MN

LMN(T1/2M3/4N + T1/2MN1/2 + M7/4N3/2)

� x10εh2
((x

h

)1/2
M5/6

2 + M5/3
2

)
� x10εh2

(x
h

)1−δ/3
� hx

since ε is small compared to δ and h ≤ x1/6−δ.
Now we have shown that (16) is O(hx). This is essentially the required o(h2−θ x)

when h is large, which can be assumed by putting the implied constant in Theorem 2
large enough. From the proof of Proposition 8, one sees that this “essentially o(h2−θ x)”
implies Theorem 2(i).

Next we consider the case B ⊂ �. Now we can assume that h ∈ [x1/7, x7/16] by part
(i) and the result in [13] that the gap between consecutive B-free numbers is O(x7/17).
We take ε, ω, H and y as in part (i) and choose M1 = x9/20, M2 = x1/10 and

M2 = {m ∈ [M2, M1+ε
2 ] | p | m =⇒ p ∈ [Mε

2, M2ε
2 ]}.

Now there are no exceptions to (iii) by (iii)(a). Further (15) gives (ii) with o(x/h)
exceptions.

Consider then the condition (i). This time we have chosen our parameters
corresponding to Dirichlet polynomial result of Watt [18]. Watt’s approach is similar
to that of Deshouillers and Iwaniec and we could quote his Kloosterman sum result to
give an estimate to an expression corresponding to (20). However, as we now have larger
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h, it is possible and perhaps illustrative to use the traditional approach of Dirichlet
polynomials, which lets us directly cite work on primes in almost all short intervals
(recall also Remark 11).

Analogously to [11, Lemma 9.3] (that is transformation of the problem to one
on mean values of Dirichlet polynomials by Perron’s formula), (i) holds with O(x/hθ )
exceptions, if we can show that, for T = x1+ε/h,∫ T

−T

∣∣K1
( 1

2 + it
)
K2

( 1
2 + it

)
M

( 1
2 + it

)∣∣2dt � x/hθ+ε. (21)

Here

M(s) =
∑

m≤Mε
1 M1+ε

2

⎛
⎜⎜⎝ ∑

m=qm2
q≤Mε

1 ,m2∈M2

λq

⎞
⎟⎟⎠ m−s and Ki(s) =

∑
k≤Ki

k−s

with K1 = M1+ε
1 , K2 = x/(M1M2) = x9/20. Actually this does not yet take into account

the cross-condition M1 ≤ kq ≤ M1+ε
1 . However, this can be handled with the truncated

Perron’s formula (for details of such removal, see [11, Section 3.2]), the only differences
are that we need to show that the above holds when K1( 1

2 + it) is replaced by K1( 1
2 +

iu + it) for some |u| ≤ T and coefficients of M(s) are slightly modified.
By the Cauchy-Schwarz inequality and Watt’s mean value theorem [18], (21) is

�
(∫ T

−T

∣∣K1
( 1

2 + it
)4M

( 1
2 + it

)2∣∣dt
)1/2 (∫ T

−T

∣∣K2
( 1

2 + it
)4M

( 1
2 + it

)2∣∣dt
)1/2

� T1+ε(1 + (Mε
1M1+ε

2 )2/T1/2) � T1+ε � x
hθ+ε

finishing the proof of Theorem 2.
The proof of part (i) of Theorem 2 actually shows that, for h ≤ x1/6−δ, one has

E(x, h) � xg(h)/h

for any function g(h) tending to infinity with h. The current proof of part (ii) does not
give such a result for larger h but using the method in the proof of part (i), one could
get a slightly improved result also in this case.
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Études Sci. Publ. Math. 54 (1981), 323–401.
18. N. Watt, Kloosterman sums and a mean value for Dirichlet polynomials, J. Number

Theory. 53 (1995) 179–210.
19. J. Wu, Distribution des nombres B-libres dans de petits intervalles, J. Théor. Nombres
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